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EXTENDED HADAMARD PRODUCTS,
TRIGONOMETRIC INTEGRALS AND

ASSOCIATED SUMS

L.R. BRAGG

ABSTRACT. The notion of the Hadamard product is ex-
tended to evaluate an extensive number of trigonometric in-
tegrals in terms of sums. These sums are taken over index
sets defined by a Diophantine equation which can be sim-
plified in certain circumstances. The results obtained include
generalizations of integrals defining sums of products of Bessel
functions and integrals of powers of cosines evaluated in terms
of sums of products of binomial coefficients. Generating func-
tions for special polynomials are also called upon in some of
the developments.

1. Introduction. Let f(z1) and g(z2) be a pair of analytic functions
of z1 and z2 and let f(z1) ◦ g(z2) = (2π)−1

∫ 2π

0
f(z1eiθ)g(z2e−iθ) dθ. If

f(z1) =
∑∞

n=0 anz
n
1 and g(z2) =

∑∞
n=0 bnz

n
2 for |zj | < R, j = 1, 2,

then it follows that f(z1) ◦ g(z2) =
∑∞

n=0 anbnz
n
1 z

n
2 for |zj | < R. The

product ◦ was introduced by Hadamard [6] to discuss the singularities
of the analytic function having element

∑∞
n=0 anbnz

n in terms of those
of the functions f(z) and g(z). It has been variously referred to as the
Hadamard product, the Schur product or the quasi inner product. It
was employed in [1] to discuss some properties of special functions and
in [2] and [3] to construct solution representations of Cauchy problems.
Examples relating to combinatorics and trigonometric integral evalua-
tions were considered in [4]. Also see [7] for additional applications. A
generalized version of this product, namely p◦q, was also introduced in
[1]:

(1.1) f(z1)p ◦q g(z2) = (2π)−1

∫ 2π

0

f(z1epiθ)g(z2e−qiθ) dθ
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30 L.R. BRAGG

where p and q are relatively prime integers. In terms of series, this
product leads to f(z1)p ◦q g(z2) =

∑∞
n=0 anqbnpz

nq
1 z

np
2 .

In this paper we consider extended versions of (1.1) and make appli-
cation to integral evaluations and summations. To describe these for-
mally, let fj(z) =

∑∞
k=0 a

j
kz

k for |z| < R and for j = 1, 2, . . . , n where
the aj

k are the coefficients in the series. We have used the same variable
in all of the functions fj for simplicity. Take εj = 1 for j = 1, 2, . . . ,m
and εj = −1 for j = m + 1, . . . , n, and let p1, p2, . . . , pn be a set of
positive integers. Now consider the integral

(1.2) (2π)−1

∫ 2π

0

( n∏
j=1

fj(zeεjpj iθ)
)
dθ.

Note that if n = 2, (p1, p2) = 1 and ε1 = 1, ε2 = −1, this reduces to the
generalized Hadamard product (1.1) with z1 = z2 = z. Upon replacing
the functions fj(z) in (1.2) by their series representations, that integral
becomes
(1.3)

(2π)−1

∫ 2π

0

( ∞∑
l1,l2,... ,ln=0

( n∏
j=1

aj
lj

)
·zl1+l2+···+ln

)
exp

(( n∑
j=1

εjpjlj

)
iθ

)
dθ.

Now the integral (2π)−1
∫ 2π

0
((

∑n
j=1 εjpj lj)iθ) dθ vanishes unless the

Diophantine equation
∑n

j=1 εjpjlj = 0 holds. In this case it takes
on the value 1. We therefore refer to the set D of all vectors
l = (l1, l2, . . . , ln) with nonnegative integer components that sat-
isfy

∑n
j=1 εjpj lj = 0 as the Diophantine index set for the product

(1.2). The expression (1.3) then reduces to
∑

l∈D(
∏n

j=1 a
j
lj

)z|l| where
|l| = l1 + l2 + · · · + ln. Hence, we have

(1.4) (2π)−1

∫ 2π

0

( n∏
j=1

fj(zeεjpj iθ)
)
dθ =

∑
l∈D

( n∏
j=1

aj
lj

)
z|l|.

Observe that if all of the εj = 1, i.e., m = n, then the righthand
member of (1.4) reduces to the product a10 · a20 · · · an

0 . Depending
upon the values of m and n and the choices for the pj , it may be
possible to simplify the description of the set D and evaluation the
righthand member of (1.4). In other cases, the integral in the left
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member of (1.4) can have an evaluation that permits assigning a value
to the sum in its right member. This approach was taken in [4]
for the generalized Hadamard product. In the sections to follow, we
consider a variety of choices for the functions fj(z), the integers pj

and the parameters m and n. Among the choices for the fj(z) will be
exponential functions, polynomials including binomial expansions and
generating functions for special polynomials. Of particular interest will
be the generating functions for certain generalized Hermite polynomials
[5] and the Tchebychev polynomials Un(x) [8, 9]. These will lead to
an extensive variety of trigonometric integral evaluations in terms of
combinatorial sums as well as sums involving special functions that
include the standard and modified Bessel functions. In many of these
examples, we replace the variable z by the value 1 to obtain identities
involving arithmetic and combinatorial sums.

To fix ideas and for future reference, consider the particular example
with fj(z) = ez for j = 1, 2, . . . , n. The integral in the left member of
(1.2), using the Euler relations, can be given as

(1.5)

(2π)−1

∫ 2π

0

e
z
∑n

j=1
cos(εjpj)θ

(
cos z

( n∑
j=1

sin(εjpj)θ
)

+ i sin z
( n∑

j=1

sin(εjpj)θ
))
dθ.

Using the oddness of the integrand in the integral that is the coefficient
of i, it follows that this coefficient has the value 0. On the other hand,
the right member of (1.3) reduces to

∑
l∈D z

|l|/(l1!l2! . . . ln!) with D as
defined earlier. Hence we see that (1.2), for the given choices and with
z replaced by 1, yields the integral evaluation formula

(1.6)

(2π)−1

∫ 2π

0

e

∑s

j=1
cos(εjpj)θ cos

( n∑
j=1

sin(εjpj)θ
)
dθ =

∑
l∈D

1/(l1!l2! . . . ln!).

2. Some of the pj = 1. Here we reconsider the example above with
at least one of the pj = 1. The integral or the sum in (1.6) leads to the
evaluation of a modified Bessel function I0(x) or expression involving
a sum of modified Bessel functions.
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(a) pn = 1. We assume that εj = 1 for j = 1, 2, . . . , n − 1 and
εn = −1. Then formula (1.4) with z replaced by 1 can be written

(2π)−1

∫ 2π

0

( n∏
j=1

fj(eεjpj iθ)
)
dθ

=
∑
lj≥0

j=1,2,... ,n−1

( n−1∏
j=1

aj
lj

)
· an

l1p1+l2p2+···+ln−1pn−1
.

If all of the fj(z) = ez, the reader can show that this becomes

(2.1)

(2π)−1

∫ 2π

0

exp
{( n−1∑

j=1

cos pjθ

)
+ cos θ

}
· cos

{
sin θ −

n−1∑
j=1

sin pjθ
}
dθ

=
∑
lj≥0

j=1,2,... ,n−1

1
l1! · l2! · · · ln−1! · (p1l1 + p2l2 + · · · + pn−1ln−1)!

.

For this general case, the integral in the left member usually has no
simple evaluation. However, we now examine a special case of this that
leads to sums of modified Bessel function evaluations at 2. To obtain
this, reconsider (2.1) with n replaced by n + 2, pn+1 = pn+2 = 1 and
εj = 1 for j = 1, 2, . . . , n+ 1 and εn+2 = −1. Then (2.1) becomes

(2.2) (2π)−1

∫ 2π

0

exp
( n∑

j=1

cos pjθ + 2 cos θ
)
· cos

( n∑
j=1

sin pjθ

)
dθ

=
∑
lj≥0

j=1,2,... ,n+1

1
l1! · l2! · · · ln+1! · (p1l1 + p2l2 + · · · + pnln + ln+1)!

.

But, by inserting the factor 22ln+1+p1l1+p2l2+···+pnln into the numerator
and denominator of this sum and the first summing on ln+1, the reader
can show that the right member of (2.2) becomes

∑
lj≥0

j=1,2,... ,n

1
l1! · l2! · · · ln!

Ip1l1+p2l2+···+pnln(2)
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where Iv(z) denotes the modified Bessel function defined by the sum∑∞
j=0 z

v+2j/(2v+2jj! ·(j+v)!) for v a nonnegative integer. Hence, (2.2)
becomes

(2.3)

(2π)−1

∫ 2π

0

exp
( n∑

j=1

cos pjθ + 2 cos θ
)
· cos

( n∑
j=1

sin pjθ

)
dθ

=
∑
lj≥0

j=1,2,... ,n

1
l1! · l2! · · · ln!

Ip1l1+p2l2+···+pnln(2).

(b) All pj = 1. Again, assume εj = 1 for j = 1, 2, . . . ,m and εj = −1
for j = m+ 1, . . . , n. The equation determining the Diophantine index
set D in this situation becomes l1 + l2 + · · · + lm − lm+1 − · · · − ln = 0
with the lj ≥ 0, j = 1, 2, . . . , n. If m = n − 1, we can rewrite this as
ln = l1 + l2 + · · · + ln−1. Then the integral relation (1.6) becomes

(2.4) (2π)−1

∫ 2π

0

en cos θ cos((2m− n) sin θ) dθ =
∑
l∈D

1/(l1!l2! · · · ln!).

Consider the standard Hadamard product ez1◦ez2 = (2π)−1
∫ 2π

0
ez1eiθ ×

ez2e−iθ

dθ. Using the Euler relations, this can be expressed as (2π)−1 ×∫ 2π

0
e(z1+z2) cos θ cos((z1 − z2) sin θ) dθ. This agrees with the integral

in the left member of (2.4) if z1 + z2 = n and z1 − z2 = 2m − n.
Thus, z1 = m and z2 = n − m. On the other hand ez1 ◦ ez2 =∑∞

n=0 z
n
1 z

n
2 /(n! ·n!) = I0(2

√
z1z2). Thus, the integral in the first mem-

ber of (2.4) has the value I0(2
√
m(n−m)) and we obtain the formula

(again from (2.4))

(2.5)
∑
l∈D

1
/( n∏

j=1

lj !
)

= I0(2
√
m(n−m)).

If m = n− 1, this can be written as
(2.6) ∑

lj≥0
j=1,2,... ,n−1

1
l1! · l2! · · · ln−1! · (l1 + l2 + · · · + ln−1)!

= I0(2
√
n−1).
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For n ≥ 3, it is clear from this, by summing first on ln−1 and then
calling on the definition of the modified Bessel function that

(2.7)
∑
lj≥0

j=1,2,... ,n−2

1
l1! · l2! · · · ln−2!

Il1+l2+···+ln−2(2) = I0(2
√
n− 1).

3. Binomial expansions choices. In this section we develop
generalizations of some of the special integral evaluations obtained
in [4] that make use of binomial expansions. For this purpose, take
fj(z) = (1 + z)aj , j = 1, 2, . . . , n, in which the aj are positive integers.
Then consider the extended Hadamard product

(2π)−1

∫ 2π

0

( n∏
j=1

(1 + ze2pj iθ)aj

)
(1 + ze±2pniθ)an dθ

(3.1)

= (2π)−1

∫ 2π

0

( n−1∏
j=1

( aj∑
lj=0

(
aj

lj

)
zlje2pj ljiθ

)( an∑
ln=0

(
an

ln

)
zlne±2pnlniθ

))
dθ.

With some factoring of complex exponentials in the binomial terms,
the first member of this can be written

(2π)−1

∫ 2π

0

e(p1a1+p2a2+···+pn−1an−1±pnan)iθ

( n−1∏
j=1

(zepj iθ + e−pj iθ)aj

)

× (ze±pniθ + e∓pniθ)an dθ.

Taking z = 1, it isn’t difficult to show that this reduces to

(3.2)

2a1+a2+···+an

2π

∫ 2π

0

( n∏
j=1

(cos pjθ)aj

)

× cos(p1a1 + p2a2 + · · · + pn−1an−1 ± pnan)θ dθ
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after replacing (ep
iθ
j + e−piθ

j )aj by 2aj (cos pjθ)aj . On the other hand,
the second member of (3.1) with z = 1 can be rewritten

(3.3)
aj∑

lj=0
j=1,2,... ,n

( n∏
j=1

(
aj

lj

))
(2π)−1

∫ 2π

0

exp
((

2
n−1∑
j=1

pjaj ± 2pnan

)
· iθ

)
dθ

=
∑
l∈D

( n∏
j=1

(
aj

lj

))

where D is defined by
∑n−1

j=0 pj lj ± pnln = 0 with 0 ≤ lj ≤ aj .
Comparing this with the integral (3.2) and solving, we get

∫ 2π

0

( n∏
j=1

(cos pjθ)aj

)
cos(p1a1 + p2a2 + · · · + pn−1an−1 ± pnan)θ dθ

(3.4)

=
2π

2a1+a2+···+an

∑
l∈D

( n∏
j=1

(
aj

lj

))
.

Note that if a plus sign is selected in the exponent in the factor
(1 + ze±pniθ)an in (3.1), then D = (0, 0, . . . , 0) and (3.4) reduces to

∫ 2π

0

( n∏
j=1

(cos pjθ)aj

)
· cos

(
(a1p1 + a2p2 + · · · + anpn)θ

)
dθ

(3.5)

=
2π

2a1+a2+···+an
.

However, suppose a minus sign is selected in the exponent of the
factor (1 + ze±2pniθ)an in (3.1). Then with the choices pn = 1 and
an =

∑n−1
j=1 ajpj , the formula (3.4) becomes

(3.6)
∫ 2π

0

( n−1∏
j=1

(cosaj pjθ)
)
· (cosa1p1+a2p2+···+an−1pn−1 θ) dθ

=
2π

2a1(p1+1)+a2(p2+1)+···+an−1(pn−1+1)

×
∑

0≤lj≤aj

j=1,2,... ,n−1

( n−1∏
j=1

(
an

lj

))
·
(
a1p1 + a2p2 + · · · + an−1pn−1

l1p1 + l2p2 + · · · + ln−1pn−1

)
.
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If n in this is replaced by n + 1 and all of the pj = 1, the lefthand
member can be evaluated by using the beta function and then expressed
as a binomial coefficient. With this hint, we leave it to the reader to
establish the combinatorial formula

∑
0≤lj≤aj

j=1,2,... ,n

(
a1
l1

) (
a2
l2

)
· · ·

(
an

ln

) (
a1 + a2 + · · · + an

l1 + l2 + · · · + ln

)

=
(

2(a1 + a2 + · · · + an)
a1 + a2 + · · · + an

)
.

4. Binomials with exponentials. We consider an example
of an extended Hadamard product that involves four functions and
uses notions for the generalized Hadamard product. For this, take
f1(z) = f2(z) = ez

2/2, f3(z) = f4(z) = (1 + z)m and consider the
integral

(4.1) (2π)−1

∫ 2π

0

e(z
2e2piθ)/2e(z

2e−2piθ)/2(1+ze2qiθ)m(1+ze−2qiθ)m dθ

where we assume (p, q) = 1. Using some of the approaches of Section 3,
we can rewrite the integrand of this to obtain the integral

(4.2) (2π)−1

∫ 2π

0

ez
2 cos 2pθ(zeqiθ + e−qiθ)m(eqiθ + ze−qiθ)m dθ.

Alternatively, if we expand each of the factors in the integrand in (4.2)
in powers of z, that integral becomes
(4.3)∑

lj≥0
j=1,2,3,4

z2l1+2l2+l3+l4

l1! · l2! · 2l1+l2

(
m
l3

)
·
(
m
l4

)
·(2π)−1

∫ 2π

0

e{2p(l1−l2)+2q(l3−l4)}iθ dθ

in which the binomial coefficient
(
m
lj

)
is assigned the value 0 if lj > m.

The complex integral in this sum takes on the value 1 only if 2p(l1−l2) =
2q(l4 − l3) (and 0 otherwise). Since (p, q) = 1, this conditions holds
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only if l1− l2 = qk and l4− l3 = pk for k = 0, 1, 2, . . . . Thus l1 = l2 +qk
and l4 = l3 + pk and (4.3) becomes

(4.4)
∑
D

z4l2+2l3+2qk+pk

l2! · (l2 + qk)! · 22l2+qk

(
m

l3

)
·
(

m
l3 + pk

)
.

In this sum, l3 + qk must be restricted so that l3 + qk ≤ m or
k ≤ [(m − l3)/p]. Now take z = 1 in (4.2) and (4.4) and replace
the summation variable l2 by j and the summation variable l3 by n.
Then equating (4.2) and (4.4), we obtain the formula

(4.5)
∫ 2π

0

ecos 2pθ cos2m qθ dθ

=
π

22m−1

∑
j,k,n≥0

0≤n+pk≤m

1
22j+qkj! · (j + qk)!

(
m
n

)
·
(

m
n+ pk

)
.

The relabeling of variables was introduced to avoid subscripts in this
final relation.

5. Exponentials and Bessel relations. Again, suppose that
(p, q) = 1 and consider the integral

(2π)−1

∫ 2π

0

exepiθ/2exe−piθ/2eyeqiθ/2eye−qiθ/2 dθ.

This clearly reduces to the real integral

(5.1) (2π)−1

∫ 2π

0

ex cos pθ+y cos qθ dθ.

Upon expanding the integrand in the starting integral in powers of x
and y, that integral can also be written as

(2π)−1

∫ 2π

0

( ∑
lj≥0
j=1,2

xl1+l2ep(l1−l2)iθ

2j1+j2 l1! · l2!

)
·
( ∑

lj≥0
j=3,4

yl3+l4eq(l3−l4)iθ

2l3+l4 l3! · l4!

)
· dθ

(5.2)

=
∑
lj≥0

j=1,2,3,4

xl1+l2yl3+l4

2l1+l2+l3+l4 l1!l2!l3!l4!
· (2π)−1

∫ 2π

0

e{p(l1−l2)+q(l3−l4)}iθ dθ.
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Just as in the previous example, the integral in the last member of this
takes on the value 1 only if l1 = l2 + qk, l4 = l3 +pk for k = 0, 1, 2, . . . .
The last member of (5.2) then becomes

∑
k≥0

( ∑
l2≥0

x2l2+qk

22l2+qkl2!(l2 + qk)!

)( ∑
l3≥0

y2l3+pk

22l3+pkl3!(l3 + pk)!

)

=
∞∑

k=0

Iqk(x)Ipk(y)

where Iv(x) denotes, as earlier, a modified Bessel function of index v.
A comparison of this with (5.1) yields the integration formula

(5.3) (2π)−1

∫ 2π

0

ex cos pθ+y cos qθ dθ =
∞∑

k=0

Iqk(x)Ipk(y).

Suppose one were to replace the function eye−qiθ/2 in the starting
integral by the function e−ye−qiθ/2. Then the types of reductions, as
considered above, lead to an integral formula somewhat analogous to
(5.3), namely,

(5.4) (2π)−1

∫ 2π

0

ex cos pθ cos(y sin qθ) dθ =
∞∑

k=0

(−1)pkIqk(x)Jpk(y).

6. Some generating function. In this final section, we consider
two examples that involve generating functions of special polynomials.
The first of these uses one for a class of generalized Hermite polynomials
while the second calls on the generator for the Tchebychev polynomials
of the second kind, Un(x).

(a) A generalized Hermite generator. Let f(a, x) = eqxa−aq

. Then
f(a, x) =

∑∞
n=0H

q
n(x)an/n! where Hq

n(x) is a generalized Hermite
polynomial [5]. Observe that if q = 2, then f(a, x) generates the
classical Hermite polynomials. Take g(y) = ey/2 and h(y) = e−y/2

and consider the following extended Hadamard product

(6.1) P (a) = (2π)−1

∫ 2π

0

f(aepiθ)g(yeiθ)h(ye−iθ) dθ
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with a replaced by 1. A straightforward calculation, using the Euler
relations, permits showing that
(6.2)

P (1) = (2π)−1

∫ 2π

0

eqx cos pθ−cos pqθ cos(qx sin pθ− sin pqθ+ y sin θ) dθ.

Following our earlier discussions, it is left to the reader to show that
P (1) can also be expressed as

(6.3) P (1) =
∞∑

�,m,n=0

anbmc�

(
(2π)−1

∫ 2π

0

e(pn+m−�)iθ dθ

)

in which an = Hq
n(x)/n!, bn = yn/(2nn!) and cn = (−1)nyn/(2nn!).

Making the usual restriction on the exponent in the integral in (6.3),
we can solve to get $ = m + np. Reinserting this into (6.3) and using
the noted formulas for the coefficients, we find

(6.4) P (1) =
∞∑

n=0

Hq
n(x)
n!

( ∞∑
m=0

(−1)m+pny2m+pn

22m+pnm!(m+ pn)!

)
.

The inner sum in this simplifies to (−1)pnJpn(y) where, again, Jv(y)
denotes the familiar Bessel function. A comparison of (6.4) with (6.2)
then leads to the following integral result

(6.5)

(2π)−1

∫ 2π

0

eqx cos pθ−cos pqθ cos(qx sin pθ − sin pqθ + y sin θ) dθ

=
∞∑

n=0

(−1)pnHq
n(x)Jpn(y)/n!.

(b) A Tchebychev polynomial generator. Take f1(z) = f2(z) =
(1 − 2xz + z2)−1 for |x| ≤ a for some a < 1 and f3(z) = f4(z) =
(1 + z)m. Now f1(z) =

∑∞
n=0 Un(x)zn in which Un(x) is a Tchebychev

polynomial of the second kind. Let p and q be positive integers with
(p, 2q) = 1 and consider the extended Hadamard product

(6.6) (2π)−1

∫ 2π

0

f1(zepiθ)f2(ze−piθ)f3(ze2qiθ)f4(ze−2qiθ) dθ.
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Let us note that

f1(zepiθ)f2(ze−piθ)

=
(
(1 + 4x2z2 + z4) − (xz + xz3) cos pθ + (z2/2) cos 2pθ

)−1

and

f3(ze2qiθ)f4(ze−2qiθ) = (zeqiθ + e−qiθ)m(eqiθ + ze−qiθ)m.

Hence, the integral in (6.6) becomes

(6.7)
1

2π

∫ 2π

0

(zeqiθ + e−qiθ)m(eqiθ + ze−qiθ)m

(1 + 4x2z2 + z4) − (xz + xz3) cos pθ + (z2/2) cos 2pθ
dθ.

Again, if we expand the functions in the integrand of (6.6) in powers
of z following the approaches of Sections 4 and 5 with our bounds on
x, it is not difficult to show that (6.6) can be expressed as

(6.8)
∑

j≥0,k≥0,�≥0
0≤j+pk≤m

(
m

j

)(
m

j + pk

)
U�(x)U�+2qk(x)z2�+2j+2qk+pk.

Then setting z = 1 in (6.7) and (6.8) and equating them, we can obtain
as a final formula

(6.9)
∫ 2π

0

cos2m qθ

4 + 8x2 − 4x cos pθ + cos 2pθ
dθ

=
π

22m
·

∑
j≥0,k≥0,�≥0
0≤j+pk≤m

(
m

j

) (
m

j + pk

)
U�(x)U�+2qk(x).

Using the double angle formula for cos 2pθ, one can show that the
denominator in the integrand of the integral (6.7) can be expressed as
2(cos pθ − x)2 + 3 + 6x2 and this doesn’t vanish for −1 < x < 1. This
shows that the integral in (6.7) exists for all such x. However, the
expansions, integration and evaluation of (6.8) at z = 1 leading to the
right member of (6.9) requires the stronger restriction |x| ≤ a.
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