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COREFLECTIVELY MODIFIED DUALITY

FRÉDÉRIC MYNARD

ABSTRACT. This survey paper presents how several (old
and new) results on stability of quotients (of various types) un-
der product, on sequentiality of product of sequential spaces,
on relationships between a topology and the upper Kuratowski
convergence on its closed sets are derived from a general cat-
egorical mechanism of duality. Additional applications in the
category of convergence-approach spaces are provided.

1. Introduction. In this paper C denotes a Cartesian-closed
topological category, and I investigate two specific instances for C,
namely, the category Conv of convergence spaces and the category
CAP of convergence-approach spaces. All the considered categories
are subcategories of C, and they are denoted by bold capitals. If
a subcategory is (co)reflective, the associated (co)reflector will be
denoted by the same (nonbold) capital letter. For example, if J is a
reflective subcategory of Conv, the associated reflector is J : Conv →
J.

The equivalence between the exponentiality of an object X in a
bireflective subcategory L of a Cartesian-closed topological category
C 1 and the commutation problem (1.1) is known from Schwarz [39].

(1.1) ∀Y ∈ Ob (C), X × LY ≥ L(X × Y ).

Moreover, the link between exponentiality of X and quotientness (in
L) of IdX × f for every quotient map f (in L) is well known (see
for example [35]), so that (1.1) applies to problems of preservation of
quotientness under product.

Let X ∈ Ob (C). The coarsest C-object W with the same underlying
set as X for which

(1.2) ∀Y ∈ Ob (C), W × Y ≥ L(X × Y ),

Received by the editors on September 25, 2001, and in revised form on February
19, 2002.

Copyright c©2004 Rocky Mountain Mathematics Consortium

733



734 F. MYNARD

is the reflection of X in the Cartesian-closed topological hull of L. A
common generalization of (1.1) and (1.2) is

(1.3) ∀Y ∈ Ob (C), W × JY ≥ L(X × Y ),

where J is another bireflective subcategory of C.

Applied in the category Conv of convergence spaces, this general
scheme (1.3) allows a unified treatment of many problems concerning
product of classically used types of quotient maps in general topology
(quotient, hereditarily quotient, countably biquotient, biquotient, al-
most open, etc.). Relativizing (1.3) to Y in a bicoreflective subcategory
of C, several problems of preservation under product of many topolog-
ical properties such as sequentiality, Fréchetness, strong Fréchetness,
k-ness, quasi-k-ness and countably bi-k-ness, among others, can be
handled simultaneously. In this way, classical results are unified and
refined, new ones are obtained and some open problems are solved [13,
29, 30]. On the other hand, extending some of the techniques devel-
oped in Conv to CAP, the theory applies in convergence-approach
spaces. In particular, it gives a new point of view on exponential ob-
jects in the category PRAP of pre-approach spaces [31]. The general
categorical results are gathered in the next section. Section 3 illus-
trates how the method applies, with full proofs, in a concrete situation.
Other applications are gathered, without proof, in the last section.
Some variants of classical topological notions such as core-bi-k-ness
or core-contour (J )-compactness are not explicitly defined in order to
avoid nonessential technical aspects. The purpose of this survey paper
is to give an account of applications of the new technique of coreflec-
tively modified duality with the hope that the reader might apply it
in other situations as well. I refer to [1] for categorical terminology, to
[14] and [27] for undefined topological notions and to [13] and [30] for
convergence theory.

2. General scheme.

2.1. Notations. In the Cartesian-closed concrete topological
category C, with | · | as forgetful functor over Set, there is a canonical
Hom-structure [X, Z] on every Hom-set Hom (X, Z). As usual, X ≥ Y
signifies that the two C-objects have the same underlying set |X| = |Y |
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and that the identity carried map IdX,Y : X → Y is a morphism.
Moreover, there always exists initial and final structures. In particular,
given a concrete, i.e., |DX| = |X| for every C-object X, functor D such
that DZ ≥ Z, the map i : X → [D[X, Z], Z] defined by i(x)(f) = f(x)
is a morphism and

Epi Z
DX,

denotes the associated initial C-object, with underlying set |X|. Let L
be a bireflective subcategory of C. If L ≤ D then

EpiLDX =
∨

Z=LZ

Epi Z
DX.

If D is the identity functor, I simply write Epi L, respectively EpiZ .
This last case seems to be the only one classically used. Examples,
within C = Conv, are the reflector on Antoine convergence spaces [7],
when Z is the Sierpiński topology $, and the reflector on c-embedded
convergence spaces [5, 8], when Z is the real line R with its usual
topology.

Given a bireflector J , a map f : X → Y is called J-quotient whenever
Y is finer than the J-reflection of the final C-object, on |Y |, associated
to X and f . If E is a bicoreflector and if J is a bireflector, a C-
object X is said to be a JE-structure whenever the identity carried
map IdEX,X : EX → X is J-quotient; in other words,

X ≥ JEX.

The interest of these concepts will become clear from their use in the
category Conv of convergence spaces in Section 3.1. The preservation
result [10, Theorem 4.2] of JE-structures proved in Conv extends to
topological categories.

Proposition 2.1. Let C be a topological category. If J is a
bireflective subcategory of C and E is a bicoreflective subcategory of
C, then each J-quotient image of a JE-structure is a JE-structure.

2.2. Main results. Recall that a subclass D of a category L is
initially dense in L if for every L-object X there exists DX ⊂ D and
an initial source (fD : X → D)D∈Ob(DX ). Dually D is finally dense
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in L if for every L-object Y there exists DY ⊂ D and a final sink
(fD : D → Y )D∈Ob(DY ). If moreover the objects of DY can be chosen
with the same underlying set as Y , D is called rigidly finally dense
in L.

Theorem 2.2 [31, Theorem 3.1]. Let C be a Cartesian-closed
topological category. J and L are bireflective subcategories of C and
E is a bicoreflective subcategory of C. For two C-objects X ≥ W , the
following are equivalent :

1. For every Y ≥ JEY in Ob (C)

(2.1) W × JY ≥ L(X × Y );

2. Equation (2.1) holds for every Y ∈ Ob (E);

3. IdX,W × f is L-quotient for every J-quotient map f with JE-
domain;

4. For every Y ∈ Ob (E) and every Z ∈ Ob (L),

(2.2) Hom(W × JY, Z) = Hom (X × Y, Z);

5. Equation (2.2) holds for every Y ∈ Ob (E) and every Z in an
initially dense subclass of the category L;

6. For every Z ∈ Ob (L),

(2.3) JE[X, Z] ≥ [W, Z];

7. Equation (2.3) holds for every Z in an initially dense subclass of
L;

8. W ≥ EpiLJEX.

In particular, if E = C, J = L and X = W ∈ Ob (L), we get the
following combination of [35, Theorem 3.1] and [35, Theorem 3.3] of
Schwarz which is proved in the more general context of an epireflector
in a monotopological Cartesian-closed category C.

Theorem 2.3. Let C be a Cartesian-closed topological category, and
let L be a finally dense epireflective subcategory. Let D be an initially
dense subclass of L. If X ∈ Ob (L), the following are equivalent :
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1. X is exponential in L;

2. X × LY ≥ L(X × Y ) for every C-object Y ;

3. X× - preserves coproduct and quotient in L;

4. [X, Z] = L[X, Z] for every Z ∈ Ob (L);

5. [X, Z] = L[X, Z] for every Z ∈ D.

A L-object X verifying one, hence all, of the conditions of Theo-
rem 2.3 is said to be exponential in L. In [35, p. 253], Schwarz addresses
the problem of characterizing C-objects X for which [X, Z] = L[X, Z]
for every Z ∈ Ob (L), dropping the condition that X is a L-object and
notices that little is known about this question. I call such objects C-
quasi-exponential in L and I usually drop C when it is clear from the
context. Theorem 2.2 characterizes quasi-exponential objects when E
is particularized to C, the reflective subcategories J and L coincide and
W = X. For instance, quasi-exponential objects in the category T of
topological spaces were characterized in [13], while quasi-exponential
objects in the category P of pretopological spaces and Pω were char-
acterized in [30]. On the other hand, the use of two different reflective
subcategories J and L and of a proper coreflective subcategory E ap-
pears to be of fundamental interest in applications. It is precisely this
flexibility that allowed to apply the general scheme in [13, 30] and
[29] to a large class of topological problems, including preservation un-
der product of sequentiality, Fréchetness and k-ness, among others, a
unified treatment of product theorems for quotient maps and new links
between a topology and the upper Kuratowski convergence on its closed
sets.

Proposition 2.4 [31, Proposition 4.2]. Let E be a bicoreflective
subcategory, and let L be a bireflective subcategory of a Cartesian-closed
topological category C. Then EpiLE is a (bi)reflector.

Such reflectors play a key role in this method, which is not surprising
because

L(X × Y ) = L(EpiLEX × Y ),

for every Y ∈ Ob (E). One of their particular interests stems from their
behavior under product.



738 F. MYNARD

Theorem 2.5 [31, Theorem 4.3]. Let E and B be two finitely
productive coreflectors in a Cartesian-closed topological category such
that E ≥ B. Then

EpiL E EpiLBX × EpiLEY ≥ EpiLE(X × Y ),

for every B-object Y .

The relevant point in this last result is that

EX × EpiLEY ≥ EpiLE(X × Y ),

for every X and Y , provided that E is finitely productive.

Corollary 2.6 [31, Corollary 4.4]. Let C be a Cartesian-closed topo-
logical category and let L be a bireflective subcategory. The Cartesian
closed hull of the category L is the category EpiL provided that L is
finally dense in EpiL.

Hence, Theorem 2.2 allows to describe both exponential objects
in reflective subcategories of C and Cartesian closed hulls of such
subcategories.

Theorem 2.7 [31, Theorem 4.5]. Let E be a finitely productive
coreflector and let L be a reflector in a Cartesian-closed topological
category. The following are equivalent :

1. X × Y is an LE-structure for every Y in a rigidly finally dense
subclass of the E;

2. X × Y is an LE-structure for every E-object Y ;

3. X × Y is an EpiLEE-structure for every Y ≥ EpiLEY ;

4. X ≥ EpiLEEX.

Theorem 2.8 [31, Theorem 4.6]. Let E be a finitely productive
coreflector and let L be a reflector in a Cartesian-closed topological
category. Let f be a surjective morphism. Then the following are
equivalent :
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1. f is EpiLE-quotient;

2. f×IdY is L-quotient for every Y in a rigidly finally dense subclass
of E;

3. f × IdY is L-quotient for every E-object Y ;

4. f×g is EpiLE-quotient for every EpiL-quotient map g with EpiLE-
range2.

Notice that in case E = C and L is finally dense in C, then, in
view of Corollary 2.6, Theorem 2.8 states that a map is product-stable
in L in the sense of Schwarz [37] if and only if it is quotient in the
Cartesian-closed hull of L. Hence it recovers [37, Theorem 3].

3. A detailed example.

3.1. Convergence-theoretic characterization of topological
notions. Recall that a convergence ξ on a set X is a relation between
X and the set ϕX of filters on X

x ∈ limξF

that fulfills

(CONV1) ∀x ∈ X, x ∈ limξ(x);

(CONV2) G ≥ F =⇒ limξG ⊃ limξF ;

(CONV3) ∀F ,G ∈ ϕX, limξ(F ∧ G) = limξF
⋂

limξG;

where (x) denotes the principal ultrafilter generated by x. I denote the
convergence space (X, ξ) simply by X when no confusion is possible
and will consequently write limX instead of limξ. Let ξ and θ denote
two convergences on the same set. The convergence ξ is finer than
θ, ξ ≥ θ, whenever limξ F ⊂ limθ F for every filter F . If X denotes
the convergence space associated to ξ and Y the convergence space
associated to θ, I will also write X ≥ Y . A map f : X → Y
is continuous if f(limX F) ⊂ limY f(F). The category Conv with
convergence spaces as objects and continuous maps as morphisms is
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a Cartesian-closed topological category. Indeed, the canonical Hom-
structure in Conv on the set Hom(X, Z) of continuous maps from the
convergence space X to the convergence space Z, is the continuous
convergence [X, Z]. A filter F converges to a continuous function
f : X → Z for [X, Z] if and only if f(x) ∈ limZ ev(F × G) for every
x ∈ |X| and every filter G such that x ∈ limX G. See [5] for other
details.

Two families of subsets A and B mesh (A#B) if A∩B �= ∅ for each
A ∈ A and each B ∈ B. If {A}#B, I denote A#B or A ∈ B#. The
adherence of a filter is defined by

(3.1) adhXF =
⋃

H#F
limXH.

The adherence adhXA of a subset A of X is the adherence of the
principal filter of A. A set V is a X-vicinity of x whenever x /∈ adhXV c.
We denote VX(x) the set of all the vicinities of x. A subset A of X is
X-closed whenever for every filter F with A ∈ F , one has limX F ⊂ A.
A set is X-open if its complement is X-closed. The closure clXA is
the least closed set that includes A. A set V is a neighborhood of x if
and only if x /∈ clXV c. The set of all the neighborhoods is denoted by
Nξ(x).

A convergence ξ on X is a topology if x ∈ limξ F amounts to
F ≥ Nξ(x); a pretopology if x ∈ limξ F amounts to F ≥ Vξ(x); a
pseudotopology if and only if

limξF =
⋂

U∈β(F)

limξU ,

where β(F) denotes the set of all the ultrafilters finer than F . Analo-
gously, β(X) denotes the set of ultrafilters on X. The space X is then
said to be topological, respectively pretopological, pseudotopological.

If a class of filters J fulfills J (X) ⊃ J (Y ) whenever X ≥ Y ,
J (AdhJ X) = J (X) and f−H ∈ J (X) 4 provided H ∈ J (Y ) and
f : X → Y , then the map AdhJ defined by

(3.2) limAdhJ XF =
⋂

J�H#F
adhXH
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is a bireflector in Conv. Such bireflectors constitute a very useful
and fundamental tool in convergence theory. Indeed, if J stands
respectively for the class of all filters, countably based filters, principal
filters and principal filters of closed sets, AdhJ is respectively the
reflector S on pseudotopological spaces, Pω on paratopological spaces,
P on pretopological spaces and T on topological spaces [10].

Moreover, when J stands for I, S, Pω, P and T , respectively, then
J-quotientness extends to convergence spaces the topological notions
of almost openess, biquotientness, countable biquotientness, hereditary
quotientness and quotientness respectively [10].

A class J of filters also determines a bicoreflector BaseJ (under
suitable assumptions on J [10]) defined by

limBaseJ XF =
⋃

J�G≤F
limXG.

For instance, if J is the class of countably based filters, BaseJ is
the coreflector on first-countable convergence spaces and is denoted
by First. Analogously, if J is the class of principal filters, BaseJ is
denoted Fin and is the coreflector on finitely generated convergence
spaces. Notice that a pretopological space X is finitely generated in
the sense of [25]5 if and only if X = FinX. As I intensively use those
coreflectors, I write EpiJ instead of EpiBaseJ . Given a bireflector J
and a bicoreflector E, X is a JE-convergence space provided

(3.3) X ≥ JEX.

The table below shows that many topological notions can be charac-
terized as JE-properties. Moreover, Proposition 2.1 takes all its sense
in view of the table below, from [10]: each property of a given row
is preserved by the class of maps corresponding to this row (or to a
higher row). Hence the Conv counterpart [10, Theorem 4.2] of Propo-
sition 2.1 recovers many classical preservation theorems. See [10] and
[27] for further details and precise definitions6.
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E
coreflector First K FirstK FirstKω

J-quotient

almost open first-countable locally point-countable strict-q
I compact type

First K FirstK FirstKω

biquotient bisequential locally bi-k bi-quasi-k
S compact

S First SK S FirstK S FirstKω

countably strongly strongly k′ countably countably
biquotient Fréchet bi−k bi-quasi-k

Pω Pω First PωK Pω FirstK Pω First Kω

hereditarily Fréchet k′ singly singly
quotient bi-k bi-quasi-k

P P First PK P FirstK P FirstKω

quotient sequential k k quasi-k

T T First TK T FirstK T FirstKω

3.2. General scheme applied to AdhJ -reflectors. A conver-
gence space X is called atomic if all its points, but one, are isolated.
Notice that atomic topological spaces form a rigidly finally dense sub-
class of Conv while atomic metrizable topological spaces are rigidly
finally dense in first-countable convergence spaces.

A class J of filters is said to be composable if it contains principal
filters and if HG, the filter generated by {HG : H ∈ H, G ∈ G} 7 is a
(possibly degenerate) J -filter on Y whenever H is a J -filter on |X×Y |
and G a J -filter on |X|. For example, the classes of principal filters and
of countably based filters are composable, while that of filters generated
by sequences and that of principal filters of closed sets are not. If J is
composable, it contains principal filters, so that AdhJ ≥ P . Moreover,
if J is composable, then BaseJ is a finitely productive coreflector [30,
Lemma 2.2].
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Theorem 3.1 [30, Theorem 7.1]. Let J be a composable class of
filters. Then

EpiPJ = AdhJ .

Proof. Consider x ∈ limAdhJ X F , a J -filter G such that y ∈ limY G
and A#F×G. Since J is composable, AG is a J -filter such that AG#F .
Thus, x ∈ adhXAG. There exists an ultrafilter U of AG such that
(x, y) ∈ limX×Y U ×G. Moreover A#U ×G, so that (x, y) ∈ adhX×Y A.
Consequently, AdhJ X×Y ≥ P (X×Y ) for every J -based convergence
space Y .

On the other hand, if W � AdhJ X, there is a filter F with
x0 ∈ limW F and a J -filter H such that H#F and x0 /∈ adhXH.
Let Y be the atomic J -based topological space on |X| defined by
NY (x0) = H ∧ (x0). Then W × Y � P (X × Y ). Indeed, (x0, x0) ∈
limW×Y (F ∨ H × F ∨ H) but (x0, x0) /∈ adhX×Y {(x, x) : x �= x0}.
Indeed G ≥ H whenever (x0, x0) ∈ limX×Y G × G; a contradiction
to x0 /∈ adhXH. Consequently, Theorem 2.2 applies with L = P,
E = BaseJ and J = Conv, to the effect that EpiPJ = AdhJ .

It is well known (e.g., [7, II.2]) that the pretopological space � with
underlying set {0, 1, 2} and with vicinities V�(0) = {{0, 1, 2}}, V�(1) =
{{0, 1, 2}}, V�(2) =

{{0, 1, 2}, {1, 2}} is initially dense in the category
P of pretopological spaces.

Theorem 3.2. Let D and J be two composable classes of filters such
that D ⊂ J . The following are equivalent :

1. W × AdhDY ≥ AdhD(X × Y ), for every Y ≥ AdhDBaseJ Y ;

2. W × AdhDY ≥ P (X × Y ), for every J -based convergence space
Y ;

3. IdX,W × f is AdhD-quotient for every AdhD-quotient map f with
AdhDBaseJ -domain;

4. AdhDBaseJ [X, Z] ≥ [W, Z] for every Z = AdhDZ;

5. AdhDBaseJ [X, �] ≥ [W, �];

6. W ≥ SBaseDAdhJ X.
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Proof. In view of Theorem 2.5 combined with Theorem 3.1, SBaseD ×
AdhJ X × AdhDY ≥ AdhD(X × Y ), for every Y ≥ AdhDBaseJ Y ,
so that 6 implies 1, which obviously implies 2. Assume that W �
SBaseDAdhJ X. Thus, there exists an ultrafilter U such that x0 ∈
limW U\limBaseDAdhJ X U . Hence, for every D-filter H that meshes with
U , there exists a J -filter LH, such that LH#H but x0 /∈ adhXLH. Let
Y denote the atomic convergence space on |X| in which x0 ∈ limY F
if and only if there exists a D-filter H#U such that F ≥ LH ∧ (x0).
The convergence space Y is J -based. On the other hand, (x0, x0) ∈
limW×AdhDY (U × U) but (x0, x0) /∈ limP (X×Y )(U × U). Indeed, if
(x0, x0) ∈ limX×Y (G × G) for G �= (x0), then there exists a D-filter
H#U such that G ≥ LH. Then x0 /∈ limX G because x0 /∈ adhXLH.
Hence W ×AdhDY � P (X×Y ). Consequently, 2 implies 6. The other
equivalences follow immediately from Theorem 2.2.

Notice that Theorem 3.2 combined with Corollary 2.6 applies with
the class D = J of all filters to the effect that

Corollary 3.3 [7, Theorem II.4.1]. The Cartesian-closed hull of the
category P of pretopological spaces is the category S of pseudotopological
spaces.

On the other hand, if J is the class of all filters while D stands for
the class of principal filters, Theorem 3.2 applies to the effect that

Corollary 3.4. X is quasi-exponential in P if and only if X ≥
S FinSX. In particular, a pretopological space X is exponential in P
if and only if it is finitely generated.

Hence [25, Theorem 3.4] is refined. The following table gathers the
topological corollaries of Theorem 3.2 (sometimes via Theorem 2.8)
in terms of product of quotient maps (see [30] for details). The
parentheses mark an equivalent condition.
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for every g f × g is iff f is

hereditarily biquotient with

quotient finitely generated range

biquotient with hereditarily

finitely generated range hereditarily quotient

hereditarily quotient countably biquotient
quotient with with

Fréchet domain finitely generated range

countably biquotient hereditarily biquotient with

quotient bisequential range

countably biquotient (countably countably biquotient
with biquotient) with

strongly Fréchet domain bisequential range

biquotient with countably countably biquotient
bisequential range biquotient

(identity of metrizable

topology)

biquotient hereditarily
(identity) quotient biquotient

(biquotient)

Moreover, some of the above results can be stated in a more general
form when f is an identity map. For instance, Theorem 3.2 applies
with the class D of principal filters and the class J of countably based
filters to the effect that

Corollary 3.5 [30, Corollary 7.11]. Let X be a paratopological space.
The following are equivalent :

1. IdX ×f is hereditarily quotient for every hereditarily quotient map
f (equivalently with Fréchet domain);

2. X × Y is Fréchet for every Fréchet Y (equivalently every atomic
Fréchet topological space);

3. X ≥ SFinX;

4. [X, Z] = P [X, Z] for every Z = PZ;

5. PFirst ([X, �]) ≥ [X, �].
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Analogously, Theorem 3.2 applies with the class D = J of countably
based filters to the effect that

Corollary 3.6 [30, Theorem 7.7, Corollary 7.19]. Exponential objects
in the category of paratopological spaces are bisequential paratopological
spaces. If X is a paratopological space, the following are equivalent :

1. IdX × f is countably biquotient for every countably biquotient map
f ;

2. IdX × f is countably biquotient for every countably biquotient map
f with strongly Fréchet domain;

3. [X, Z] is a paratopological space for every paratopological space Z;

4. [X, �] is a paratopological space;

5. PωFirst [X, �] ≥ [X, �];

6. X is bisequential.

On the other hand, Theorem 2.7 together with Theorem 3.2 in case
D = J is the class of countably based filters leads to the following
extension to convergence spaces of a combination of well-known results
of E. Michael: [27, Proposition 4.D.4] and [27, Proposition 4.D.5].

Theorem 3.7 [30, Theorem 7.10]. The following are equivalent :

1. X is strongly Fréchet;

2. adhXH ⊂ adhFirst XH for each countably based H;

3. X × Y is Fréchet for every first-countable Y ;

4. X × Y is Fréchet for every atomic metrizable topological space Y ;

5. X × Y is strongly Fréchet for every bisequential Y .

3.3. Extension to CAP. Following [20] and [21], I call convergence-
approach limit on X a map λ : ϕX → [0,∞]X which fulfills the prop-
erties:

(CAL1) ∀x ∈ X, λ(x)(x) = 0;
(CAL2) G ≥ F =⇒ λ(F) ≥ λ(G);
(CAL3) ∀F ,G ∈ ϕX, λ(F ∧ G) = λ(F) ∨ λ(G).
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(X, λ), shortly X, is called a convergence-approach space. A map
f : X → Y between two convergence-approach spaces is a contraction
if

λY (f(F)) (f(·)) ≤ λX(F)(·),
for every F ∈ ϕX. The category with convergence-approach spaces as
objects and contractions as morphisms is a Cartesian-closed topological
category denoted CAP [20]. Each convergence space X can be
considered as a convergence-approach space by stating

λX(F)(x) =
{

0 if x ∈ limX F
∞ otherwise.

Moreover, Conv, together with continuous maps, is included both
reflectively and coreflectively in CAP. Indeed, if λ is a convergence-
approach, then its Conv-coreflection is c(λ) defined by x ∈ limc(λ) F
if and only if λ(F)(x) = 0, while its Conv-reflection is r(λ) defined
by x ∈ limr(λ) F if and only if λ(F)(x) < ∞. In CAP the canonical
Hom-structure is described for example in [21]. If X and Z are now
two convergence-approach spaces, the limit λ on the set Hom (X, Z) of
contractions from X to Z is given by

λ(F)(f) =
∧{

α : ∀
G∈ϕ(|X|)

λZ(ev(G × F)) ◦ f(·) ≤ λX(G)(·)
∨

α
}
,

and is called continuous convergence-approach. Since λ coincides with
the continuous convergence in case X and Z are convergences, I extend
to CAP the notation of Conv and use [X, Z] instead of λ.

A convergence-approach λ is a pseudo-approach space [21] if

(PSAP ) ∀F ∈ ϕX, λ(F) =
∨

U∈β(F)

λ(U);

and it is a pre-approach space [20] if (CAL3) is strengthened to

(PRAP ) λ
(∧

j∈J

Fj

)
=

∨
j∈J

λ(Fj), for any family (Fj)j∈J of filters.

The category PSAP of pseudo-approach spaces contains the category
S of pseudotopological spaces and the category PRAP of pre-approach
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spaces contains the category P of pretopological spaces both reflectively
and coreflectively (via the restrictions of c and r).

An approach space is a pre-approach space fulfilling

(AP ) for any F ∈ ϕX and any selection (Fx)x∈X of filters,

λ
( ∨

F∈F

∧
x∈F

Fx

)
(·) ≤ λ(F)(·) +

∨
x∈X

λ(Fx)(x).

The category T of topological spaces (with continuous maps) is a
reflective and coreflective (via the restrictions of r and c) subcategory
of the category AP of approach spaces [23]. There are several other
equivalent descriptions of AP and PRAP (see [24] and [22] for
details). There exists an approach space M which is initially dense
in AP [21, Theorem 3.7]. The associated #-object (in the sense of
[15]) M� is initially dense in PRAP [21, Theorem 4.1].

As observed in [31], the definitions of the reflectors AdhJ and of the
coreflectors BaseJ extend to CAP via

(3.4) AdhJ λ(F)(x) =
∨

J�H#F
adhλH(x) =

∨
J�H#F

∧
U∈β(H)

λ(U)(x);

and

(3.5) (BaseJ λ)(F)(·) =
∧

J�G≤F
λ(G)(·).

When J is respectively the class of all filters and of principal filters,
AdhJ is respectively the reflector on PSAP and on PRAP. This last
fact [31, Theorem 5.7] is in no way obvious and gives a new explicit
description of the reflector on PRAP. Moreover, the category of para-
approach spaces is introduced as the category of fixed points for AdhJ
with the class J of countably based filters.

The main achievement of [31] is that Theorems 3.1 and 3.2 both ex-
tend to CAP.9 Hence all their corollaries also extend to CAP with the
convention that the terminology used in Conv for AdhDBaseJ prop-
erties also extends to CAP. In particular, all the product results for
quotient maps in the table above remain true in CAP. Analogously,
Corollaries 3.5, 3.6 and Theorem 3.7 remain true, just replacing the ini-
tially dense pretopological space � by the intially dense pre-approach
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space M� and the inclusion ⊂ by ≥. In particular, the CAP extension
of Corollary 3.3 characterizes the Cartesian-closed hull of PRAP as
PSAP [21, Corollary 5.10]. Analogously the extension of Corollary 3.4
characterizes exponential objects in PRAP. The characterization of
exponential objects in PRAP obtained by E. Lowen, R. Lowen and
Verbeeck [22, Theorem 3.7] was given in a different language: exponen-
tial objects in PRAP are the pre-metric pre-approach spaces, i.e., the
pre-approach structure λ is determined by a map d : |λ| × |λ| → [0,∞]
which is zero on the diagonal in the following way

λ(F)(x) =
∧

F∈F

∨
y∈F

d(x, y).

To each object (X, λ) in CAP we can associate a pre-metric dλ

defined by dλ(x, y) = λ(y)(x). Conversely, a pre-approach λd can
be associated to each pre-metric d via λd(F)(x) =

∧
F∈F

∨
y∈F

d(x, y).

If λ = Finλ then λ(F)(x) =
∧

F∈F
λ(F )(x) =

∧
F∈F

λ(
∧

y∈F

y)(x). If

moreover λ = Pλ then λ(
∧

y∈F

y)(x) =
∨

y∈F

λ(y)(x) so that λ is a

pre-metric. Conversely, a pre-metric convergence-approach space is
obviously a pre-approach space fixed by Fin. This new viewpoint allows
to see the characterization [25, Theorem 3.4] of exponential objects
in P as a corollary of the characterization of exponential objects in
PRAP. Analogously, exponential objects in para-approach spaces are
the bisequential ones [31, Corollary 7.2].

4. Other applications in Conv.

4.1. Strong sequentiality versus strong Fréchetness. Theo-
rem 3.7 characterizes topological spaces, and more generally conver-
gence spaces, whose product with every first-countable, equivalently
metrizable, topological space is Fréchet. In [40], Y. Tanaka adresses
the similar problem of charaterizing topological spaces whose product
with every first-countable, equivalently metrizable, topological space
is sequential. Contrary to the situation of Theorem 3.7, the problem
had been solved by Tanaka in [40] only for regular Hausdorff Fréchet
spaces. Under these assumptions, the spaces that answer the problem
are once again the strongly Fréchet ones. Thanks to the method of core-
flectively modified duality, I was able to solve the general problem in
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[29]. Indeed, in view of the characterization of sequential topologies as
TFirst-structures (see Table, page 742) the problem extended to Conv
is to find convergence spaces X for which X ×Y ≥ TFirst (X ×Y ), for
every Y = First Y . In other words, the extended problem of Tanaka is
to characterize the convergence spaces X for which

X × Y ≥ T (First X × Y ),

for every Y = First Y . In view of Theorem 2.2, X answers the problem
if and only if

(4.1) X ≥ EpiTFirstFirst X.

I call such a convergence space strongly sequential. The remaining
problem is an explicit description of EpiTFirst. The reflector EpiTJ
is denoted AJ , as a coreflectively modified version of the reflector
A on Antoine convergence spaces, which is obtained when J is the
class of all filters. The closure of points plays a key role in the
classical characterization [7] by Bourdaud of Antoine convergences.
More generally, to describe the reflectors AJ we need:

adXA =
⋃
a∈A

limX(a), adTXA =
⋃

a∈A

clXa.

Let ad�
TXH denote the filter generated by {adTXH : H ∈ H} and let

(J )adT X
denote the class of J -filters H for which H = ad�

TXH.

Theorem 4.1 [29, Theorem 2.3]. If J is a composable class of filters,
then the reflector AJ is given by

(4.2) limAJ XF =
⋂

(J )adT X
�H#F

clX(adhXH).

Notice that Theorem 4.1 gives in particular (when J is the class of all
filters) an explicit description of the reflector on Antoine convergence
spaces. Thus it refines the classical characterization [7, Theorem I.4.4]
of Antoine spaces by Bourdaud.
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Finally, in view of Theorem 2.7, the following answers Tanaka’s
problem.

Theorem 4.2 [29, Theorem 3.1]. The following are equivalent :

1. X is strongly sequential;

2. adhXH ⊂ clFirstX(adhFirstXH) for each countably based H such
that H = ad�

TXH;

3. X × Y is sequential for each first-countable convergence space Y ;

4. X × Y is sequential for each metrizable atomic topological space
Y ;

5. X×Y is strongly sequential for each quasi-bisequential convergence
space Y .

A convergence space X is quasi-bisequential whenever X ≥ AFirst X.
Since AX = SX for each Hausdorff convergence space X (see for ex-
ample [7]) quasi-bisequentiality and bisequentiality coincide for Haus-
dorff convergences. Strongly sequential spaces appear naturally in other
product problems for sequential spaces.

Theorem 4.3 [29, Theorem 5.1]. Let Y be a first-countable regular
T1 topological space. Then X × Y is sequential if and only if X is
strongly sequential or Y is locally countably compact.

Theorem 4.4 [29, Theorem 5.3]. If Xω is sequential, then X is
strongly sequential.

Theorem 4.5 [13, Theorem 12.1]. A topology X is core-contour (First)-
compact and strongly sequential if and only if X × Y is sequential for
each sequential convergence (equivalently, topological) space Y .

4.2. Products of quotient maps. Since the general scheme allows
to derive product theorems for quotient maps from every commutation
result as (1.3), the following corollaries are obtained as byproducts of
the study of the commutation of the topologizer with product in [13]
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and of the following commutation problem in [30, Theorem 6.3]

(4.3) ∀Y = BaseJ Y , W × AdhDY ≥ T (X × Y ).

See [13] and [30] for details and precise definitions.

for every g f × g is iff f is

quotient A-quotient with
core-compact topological range

quotient with Aω-quotient with
sequential domain core-contour (First)-compact

topological range

hereditarily quotient A-quotient with

quotient T -core-compact range

hereditarily quotient Aω-quotient with
with Fréchet domain T -core-countably compact

range

countably biquotient A-quotient with

core-bi-k range

countably biquotient with Aω-quotient

strongly Fréchet domain with core-bi-quasi-k range

A-quotient quotient A-quotient

(identity) (A-quotient)

A-quotient with
quasi-bisequential domain quotient Aω-quotient

(identity of (Aω-quotient)

metrizable topology)

The classes of A-quotient (Antoine-quotient) and Aω-quotient maps
(countably Antoine quotient) maps are characterized as follows.10

Theorem 4.6 [13, Theorem 11.3]. Let f : X → Y be a quotient
map. Then the following are equivalent :

1. f is A-quotient (respectively Aω-quotient);

2. f × IdY is quotient for every convergence space Y (respectively
every first-countable convergence space Y ) equivalently for every atomic
(respectively atomic metrizable) topological space;
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3. f ×g is A-quotient (respectively Aω-quotient) for every A-quotient
map g (respectively A-quotient map with bisequential domain);

4. If y ∈ limY F , then F is Y -compactoid (respectively Y -countably
compactoid) in NY (y) 11;

5. If H = ad�
Y H (respectively and is countably based) and y ∈

adhY H, then
f−(y)

⋂
clW (adhXf−H) �= ∅;

where W is the initial object (in Conv) with respect to f and Y .

6. If y ∈ limY F , V is a Y -open set containing y, and S is a
X-cover (respectively a countable X-cover) of f−V , there exists a
finite subfamily P ⊂ S such that the intersection of all Y -open sets
containing ∪

P∈P
f(P ) is an element of F .

This result generalizes in particular [9, Theorem 2] of Day and Kelly.

4.3. Continuous convergence and upper Kuratowski conver-
gence. Analogously, equivalences between 6, 7 and 8 in Theorem 2.2
lead to new relations between a convergence space and its continuous
duals. In particular, as the Sierpiński (topological) space $ is initially
dense in T, the results of [13] on the commutation of the topologizer
with product and [30, Theorem 6.3] on (4.3) apply to the effect that

[X, $] verifies iff X is

[X, $] = P ([X, $]) T -core-compact
[X, $] = T ([X, $]) core-compact

(if topological)
[X, $] = Pω([X, $]) core-bi-k

PFirst [X, $] ≥ [X, $] T -core-countably compact
PωFirst [X, $] ≥ [X, $] core-bi-quasi-k

See [13] and [30] for details and precise definitions.

Notice that [X, $] is homeomorphic to the upper Kuratowski conver-
gence on the set of X-closed sets and, transposed on open sets, it is
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homeomorphic to the Scott convergence (e.g., [12]). Among the above
results, the first one was only known for a topological space X. The
second one is [18, Proposition 4.2] and the others are new.

On the other hand, variants of the results of [13] contained in [32]
allows to extend [19, Theorem 3.2] from the usual topology of the real
line to every regular topological space12:

Corollary 4.7 [32]. If X is a locally compact convergence space
and if Z is a regular topological space, then the continuous convergence
[X, Z] is a topology.

Moreover, the following new variant is obtained.

Corollary 4.8 [32]. If X is a locally countably compact convergence
space and if Z is a regular topological space, then the continuous
convergence [X, Z] fulfills:

TFirst [X, Z] ≥ [X, Z].

4.4. When does compactness, countable compactness, Lin-
delöfness imply topologicity? Let Ω denote the reflector on com-
pletely regular topological spaces. Notice that EpiRFin = Ω while EpiR

is the reflector on (non-necessarily Hausdorff) c-embedded convergence
spaces in the sense of Binz. In [6], Binz proved

Theorem 4.9. A compact c-embedded convergence is a topology.

Recall that a convergence is compact provided that every ultrafilter
converges. More generally, I call J -compact a convergence for which
adhH �= ∅ for every J -filter H. Notice that J -compactness extends to
convergences the usual notions of compactness, countable compactness
and Lindelöfness respectively, provided J is the class of all, of countably
based and of countably deep13 filters respectively.

In [33], it is proved that for W ≥ ΩX,

W × PY ≥ Ω(X × Y ),
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for every Y = Base J Y provided that W is locally X-J -compact, i.e.,
every W -convergent filter contains a X-J -compact set. Of course, if
X is J -compact, then ΩX is locally X-J -compact. Thus

ΩX × Y ≥ Ω(X × Y ),

for every Y = BaseJ Y . In view of Theorem 2.2, ΩX = EpiRJ . Hence
Theorem 4.9 of Binz is generalized to the following.

Theorem 4.10 [33]. Let J be a composable class of filters. If a
convergence is J -compact, then its EpiRJ -reflection is a (not-necessarily
Hausdorff) completely regular topology.

An explicit description of convergence spaces fixed by EpiRJ that
generalizes the classical characterization of c-embedded convergences
[8, Theorem 4.6] by Bourdaud is given in [33].

ENDNOTES

1. That is, in this context, the existence of canonical Hom-structures on
Hom(X, Y ) for every Y ∈ Ob (C).

2. Notice that EpiLE being a reflector while E is a coreflector, the range of a EpiLE-

quotient map is a EpiLEE-structure whenever the domain is a EpiLEE-structure by
Proposition 2.1.

3. That is, f × IdY is L-quotient for every L-object Y .

4. f− denotes the inverse relation of f and f−H denotes the filter generated by
{f−H : H ∈ H}.

5. Every point has a smallest vicinity.

6. x ∈ limKX F if x ∈ limX F and there exists K ∈ F such that limX U ∩K �= ∅
for every ultrafilter U on K. Analogously, x ∈ limFirstKX F , respectively x ∈
limFirstKω X F , if x ∈ limX F and there exists a countably based filter H ≤ F such

that adhXG ∩H �= ∅ for every G#H, respectively for every countably based G#H.

7. HG = {y : ∃x∈G(x, y) ∈ H}.
8. In [27], Michael uses the term countably bisequential for strongly Fréchet.

9. Moreover, their counterparts in Conv described above are corollaries of the
general versions in CAP.

10. Theorem 4.6 characterizes A-quotient and Aω-quotient maps among quotient
maps. They can also be characterized among continuous surjections. See [13].

11. A filter F is (countably) X-compactoid in A if adhXH#A for every (countably
based) filter H#F .
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12. Beattie and Butzmann give an alternative proof of this result [3, Theorem
1.4.17] for Hausdorff convergences.

13. A filter F is countably deep if ∩A ∈ F for every countable family A ⊂ F .
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