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A LIOUVILLE-GELFAND EQUATION FOR
k-HESSIAN OPERATORS

JON JACOBSEN

ABSTRACT. In this paper we establish existence and mul-
tiplicity results for a class of fully nonlinear elliptic equations
of k-Hessian type with exponential nonlinearity. In particu-
lar, we characterize the precise dependence of the multiplicity
of solutions with respect to both the space dimension and the
value of k. The choice of exponential nonlinearity is motivated
by the classical Liouville-Gelfand problem from combustible
gas dynamics and prescribed curvature problems.

1. Introduction. Let Ω denote a bounded domain in RN . If
k ∈ {1, . . . , N} and u ∈ C2(Ω), then the k-Hessian operator is defined
by

(1) Sk(D2u) = Sk(λ[D2u]) =
∑

1≤i1<···<ik≤N

λi1 · · ·λik
,

where λ[r] = (λ1, · · · , λN ) denotes the eigenvalues of the symmetric
matrix r and Sk is the kth elementary symmetric polynomial in N
letters. Alternatively, Sk(D2u) is the sum of all principal k × k
minors of the Hessian matrix D2u. For instance, S1(D2u) = ∆u
and SN (D2u) = detD2u. The k-Hessian operators form a discrete
collection of partial differential operators which includes both the
Laplace and the Monge-Ampère operator.

In this note we are concerned with solutions of the following k-Hessian
equation

(2)
{

Sk(D2u) = λe|u| x ∈ Ω,
u = 0 x ∈ ∂Ω,

for λ > 0. The choice of |u| is motivated by the fact that, for
k > 1, solutions of elliptic k-Hessian equations, with Dirichlet boundary
conditions, are negative (in fact, subharmonic) in Ω.
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Equations of Monge-Ampère type have enjoyed considerable atten-
tion recently for numerous reasons, including their many applications
to both pure and applied geometry, e.g., wear due to contact with an
abrasive plane [17, 2], Gauss curvature flow [2, 44, 45, 32], meteo-
rology and oceanography [13, 6], geometric optics [23], and reflector
antenna design [9]. The recent monograph [10] is devoted to applica-
tions of Monge-Ampère equations to geometry and optimization.

Beginning with Ivočkina [24, 25], Caffarelli, Nirenberg and Spruck
[8] and Krylov [28], the Monge-Ampère equation was also studied as
a special case of a more general class of nonlinear elliptic equations
defined by functions of the eigenvalues of the Hessian matrix, including
(1). This connection between the Laplacian and the Monge-Ampère
operator raises many interesting questions. For instance, it is known
that there is no critical exponent for the Monge-Ampère operator,
thus one may wonder for which k does a critical exponent exist?
This question was answered by Tso [43], who employed a variational
identity due to Pucci and Serrin [33] to establish a critical exponent
of (N + 2)k/(N − 2k), when 1 ≤ k < N/2. He also includes a
complementary existence result to show there is no critical exponent
when N/2 ≤ k ≤ N . It is in this same spirit that we investigate the
Liouville-Gelfand problem (2).

The classical Liouville-Gelfand problem is concerned with positive
solutions of the equation

(3)
{

∆u + λeu = 0 x ∈ Ω,
u = 0 x ∈ ∂Ω,

for λ > 0, which arises in the study of combustible gas dynamics [5,
20, 18] and prescribed curvature problems [4, 3]. If Ω = B1(0) is the
unit ball in RN , then by the classical result of Gidas, Ni and Nirenberg
[21], all positive solutions of (3) are radially symmetric, reducing (3)
to the boundary value problem

(4)
{

u′′ + (N − 1)/ru′ + λeu = 0 r ∈ (0, 1),
u′(0) = u(1) = 0,

for the profile u(r) = u(|x|). As one might expect, for λ > 0 sufficiently
small, equation (4) has at least one solution. The multiplicity of such
solutions is however surprising varied according to the value of the (now
continuous) parameter N .
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FIGURE 1. Global continua for (4) depend on N .

For N = 1 this equation was first solved by Liouville in 1853 [31],
using reduction of order methods. Indeed, multiplying (4) by u′ one
may show that, for the free parameter u(0) = α > 0, the boundary
conditions u′(0) = u(1) = 0 are satisfied, provided

(5) λ = λ(α) =
1

2eα
[log(2eα + 2

√
eα(eα − 1) − 1)]2.

It follows that there exists λ∗ ≈ 0.88, for which (4) has a unique solution
and for each λ ∈ (0, λ∗), (4) has precisely two solutions. In 1914, Bratu
[7] found an explicit solution of (4) when N = 2, which obeys the
same multiplicity as Liouville’s result (now with λ∗ = 2). Elusive
to analytical solutions when N = 3, numerical progress was made in
1934 by both Frank-Kamenetskii [18] in his study of combustion theory
and Chandrasekhar [11] in his study of isothermal gas stars. In 1963,
Gelfand [20] published a comprehensive paper that included a review of
(4) for N = 1, 2 and 3. Curiously, unlike the one- and two-dimensional
cases, Gelfand showed that, when N = 3, there exists a value of λ for
which (4) has infinitely many nontrivial solutions. Approximately ten
years later Joseph and Lundgren [27] determined the multiplicity of
solutions for all N . Let us briefly recall their main result concerning
(4), see Figure 1.

Case 1. 1 ≤ N ≤ 2. There exists λ∗ > 0 such that (4) has exactly
one solution for λ = λ∗ and exactly two solutions for each λ ∈ (0, λ∗).

Case 2. 2 < N < 10. Equation (4) has an unbounded continuum
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of solutions which oscillates around the line λ = 2(N − 2) with the
amplitude of oscillations tending to zero, as u(0) = ‖u‖ → ∞.

Case 3. N ≥ 10. Equation (4) has a unique solution for each
λ ∈ (0, 2(N−2)) and no solutions for λ ≥ 2(N−2). Moreover, ‖u‖ → ∞
as λ → 2(N − 2).

For more on the Liouville-Gelfand problem, we refer the reader to [5,
16, 35, 18, 36].

If k is odd, then the mapping u �→ −u defines a correspondence
between negative solutions of (2) and positive solutions of

(6)
{

Sk(D2u) + λeu = 0 x ∈ Ω,
u = 0 x ∈ ∂Ω.

In particular, all positive solutions of (3) are captured by (2), and our
setup includes the original Liouville-Gelfand problem.

From the viewpoint of the k-Hessian operators, the results of Joseph
and Lundgren provide a complete description for (2) when k = 1 and
Ω is a ball in RN . For k > 1, only fragmentary information is known.
In [12], the authors consider, among other topics, a variant of (2)
with Ω a ball in R2n and k = n. Surprisingly, they find the two-
fold multiplicity (e.g., k = n = 1) holds for all n. In [26], the author
considers (2) in the Monge-Ampère case, k = N , and finds qualitative
results similar to the case N = 1. However, unlike the Joseph and
Lundgren result, it is shown that, regardless of the space dimension,
all continua eventually tend to infinity at the origin, even for nonradial
domains (some geometric restrictions on Ω apply, see Section 2). This
result depends on the a priori convexity of solutions to Monge-Ampère
equations.

The work to date concerning (2) paints an interesting picture. The
papers [26] and [27] essentially cover the extreme cases k = N and
k = 1. For the Monge-Ampére case the multiplicity of solutions is
independent of N , in contrast to the Joseph-Lundgren result for k = 1.
The result of [12] fills in the middle where, like the Monge-Ampère
case, the multiplicity is independent of N . Intuitively, one would expect
the cases k ≥ N/2 to all share the two-fold multiplicity. On the other
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hand, it is not clear how the lower Hessian operators, i.e., 1 < k < N/2,
interpolate to the case k = 1.

Our purpose here is to extend and unify these results to the general
k-Hessian equation (2). For k > N/2 we obtain qualitative results
assuming only the natural restriction on the domain Ω required by
elliptic k-Hessian equations (see Section 2). For general k we obtain
precise existence and multiplicity results when Ω is the unit ball. In
particular, we demonstrate that, in some sense, the situation described
by Figure 1 still captures all possible behavior for (2) (see Figure 3).

This paper is organized as follows. Section 2 collects some preliminary
results concerning k-Hessian equations. In Section 3 we prove that (2)
has a global continuum of nontrivial solutions that is unbounded in the
Banach space E = C(Ω). For general domains, with k > N/2, we show
that all continua satisfy λ → 0+ as ‖u‖ → ∞. Finally, in Section 4, we
determine the precise structure of the continuum for all k, when Ω is
the unit ball.

2. Preliminaries. In this section we recall some fundamental results
concerning the equation

(7)
{

Sk(D2u) = f(x) x ∈ Ω,
u = 0 x ∈ ∂Ω.

A function u ∈ C2(Ω) is called k-convex, or k-subharmonic, in Ω if
λ[D2u] ∈ Γk for each x ∈ Ω, where

(8) Γk = {λ ∈ RN : Sj(λ) > 0 for each j = 1, . . . , k}.
The set Γk is a closed convex cone which corresponds to the connected
component of the set {λ ∈ RN : Sk(λ) ≥ 0} that contains (1, 1, . . . , 1).
For example, 1-convex functions satisfy ∆u ≥ 0, hence subharmonic.
Similarly, N -convex functions satisfy detD2u ≥ 0, . . . , ∆u ≥ 0, and
are convex.

The k-convex functions play a distinguished role in the theory of k-
Hessian equations in that, for k > 1, the linearized operators ∂Sk/∂rij

are elliptic precisely on this class of functions, i.e., if λ[D2u] ∈ Γk for
all x ∈ Ω, then

(9)
∂Sk

∂rij
(D2u)ξiξj > 0, for all ξ ∈ RN \ {0} and x ∈ Ω.
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By using the notion of viscosity solutions one may extend these
definitions to include upper semi-continuous functions [40, 41, 42].
More precisely, an upper semi-continuous function u : Ω → [−∞,∞)
is called k-convex on Ω if, whenever φ is a quadratic polynomial that
touches u from above (i.e., there exists x0 ∈ Ω such that φ(x0) = u(x0)
and u−φ has a local maximum at x0), then Sk(D2φ) ≥ 0. A k-convex
function is proper if it is not identically equal to ∞ on any component
of Ω. We shall denote the class of proper k-convex functions on Ω
by Φk(Ω). As before, u ∈ Φ1(Ω) if and only if it is subharmonic and
u ∈ ΦN (Ω) if and only if it is convex. Notice Φk(Ω) ⊆ Φl(Ω) for l ≤ k
and, in particular, elements of Φk(Ω) are subharmonic for each k.

The value k = N/2 defines a notable border in the theory of k-convex
functions. One way to discover this frontier is by looking for solutions
of the form φ = rα to the equation

(10) Sk(D2u) = 0.

In an appropriate coordinate system (e.g., see (22)) the Hessian matrix
A = D2φ is diagonal with nonzero entries a11 = α(α − 1)rα−2 and
aii = αrα−2 for i > 1. Applying (1) and cancelling the common factor
αrα−2, one finds Sk(A) = 0 provided

(11)
(

N − 1
k − 1

)
(α − 1) +

(
N − 1

k

)
= 0.

In particular, if k > N/2, then (11) has the positive solution α =
(2k − N)/k. In other words, when k > N/2, equation (10) has Hölder
continuous fundamental solutions φ = r2−N/k. For 1 ≤ k ≤ N/2 the
fundamental solutions have a singularity at the origin (φ = log r if
k = N/2 and r2−N/k otherwise [41]).

Heuristically, one can expect that when k < N/2, k-convex functions
behave more like subharmonic functions, whereas for k > N/2, k-
convex functions behave more like convex functions. This point is
further emphasized by the following regularity result of Trudinger and
Wang [41].

Lemma 2.1. For k > N/2, Φk(Ω) ⊂ Cα(Ω) for α = 2 − N/k.

Certain restrictions on the geometry of the domain are necessary
when working with k-convex functions. For instance, it is shown in
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[8] that if u ∈ Φk(Ω) solves (7), with f > 0 and C2 on Ω, then
necessarily ∂Ω is (k − 1)-convex, namely, if κ = κ(x) = (κ1, . . . , κN−1)
denotes the vector of principal curvatures of ∂Ω at x, then Sk−1(κ) ≥
0. Equivalently, a domain is (k − 1)-convex provided the jth mean
curvatures of ∂Ω are nonnegative for each j = 1, . . . , k − 1. If
Sk−1(κ) ≥ ε > 0 for all x ∈ ∂Ω, then we say Ω is uniformly (k − 1)-
convex. For instance, a uniformly (N − 1)-convex domain is strictly
convex.

The following fundamental existence theorem is due to Trudinger.

Theorem 2.2 (Trudinger [39]). Let Ω be a uniformly (k− 1)-convex
domain in RN where k ∈ {2, . . . , N}. For any nonnegative f ∈ Lp(Ω)
with p > N/2k, there exists a unique u ∈ Φk(Ω) ∩ C(Ω) solving

(12)
{

Sk(D2u) = f(x) x ∈ Ω,
u = 0 x ∈ ∂Ω.

Furthermore, u ∈ Cα(Ω) for any exponent α < 1 such that α ≤
2 − N/kp.

Let Fk = (Sk)1/k and Fij = (∂Fk/∂rij). In [8], Caffarelli, Nirenberg
and Spruck show how an inequality due to G̊arding [19] implies that Fk

is concave on the set of N × N symmetric matrices whose eigenvalues
lie in Γk, implying the following lemma.

Lemma 2.3. If k ∈ {1, . . . , N} and w ∈ Φk(Ω), then the linear
operator

Lk =
N∑

i,j=1

Fij(D2w)Dij ,

is elliptic. Moreover, if u, v ∈ Φk(Ω), then Lk(u − v) ≥ Fk(D2u) −
Fk(D2v).

Proof. The inequality follows from the concavity of Fk on Φk(Ω):

Lk(u− v) =
N∑

i,j=1

Fij(D2w)(Diju− Dijv) ≥ Fk(D2u)− Fk(D2v).



672 J. JACOBSEN

3. Global solution continuum. In this section we prove the
equation

(13)
{

Sk(D2u) = λe|u| x ∈ Ω,
u = 0 x ∈ ∂Ω,

has an unbounded global continuum of solution pairs (λ, u) ∈ [0,∞)×
C(Ω). We demonstrate that the allowable values of λ remain bounded,
implying that the continuum is unbounded in C(Ω). It follows that
there exists λ∗ > 0 such that (13) has at least one nontrivial solution
u ∈ Φk(Ω) for each λ ∈ (0, λ∗] and no solution for λ > λ∗. Finally, if
k > N/2 we prove that λ → 0 as ‖u‖ → ∞.

We begin by recalling an abstract result concerning global solution
continua:

Theorem 3.1 (Global solution theorem [37, 34]). Let O be an
open bounded subset of the real Banach space E and assume that
F : R × E → E is completely continuous. If for λ = λ0, the equation

(14) u − F (λ, u) = 0

has a unique solution u0, and

(15) d(I − F (λ0, ·),O, 0) �= 0,

then for
S+ = {(λ, u) ∈ [λ0,∞) × E : u = F (λ, u)}

there exist a continuum C+ ⊆ S+, such that

1. C+ ∩ {λ0} × O = {u0};
2. Either C+ is unbounded or else C+ ∩ {λ0} × E \ O �= ∅.

Here d(I−F,O, 0) is the Leray-Schauder degree defined for completely
continuous perturbations of the identity (see, e.g., [14]). The reader
may view Theorem 3.1 as a degree theoretic globalization of the
implicit function theorem, where the nonzero degree condition (15)
effectively replaces the requirement that a Fréchet derivative be a
homeomorphism. In return, we are no longer guaranteed that locally
solutions are described by a function.
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Let us now apply Theorem 3.1 to equation (13). For a fixed k ∈
{1, . . . , N}, let Ω ⊂ RN denote a uniformly (k−1)-convex domain and
E = C(Ω). For each f ∈ E, it follows from Theorem 2.2 that there
exists a unique u ∈ Φk(Ω) ∩ E such that

(16)
{

Sk(D2u) = |f | x ∈ Ω,
u = 0 x ∈ ∂Ω.

In this way we may define the solution operator Tk : E → E; i.e.,
Tk(f) = u, where u solves (16). It is established in [26, Proposition 3.2]
that Tk is a completely continuous operator. Define Gk : R × E → E
by

Gk(λ, f) = |λ|1/k(Tk ◦ N)(f),

where N : E → E is a Nemystkĭı operator defined by N(f) = e|f |. The
operator Gk, being the composition of a bounded continuous map with
a completely continuous map, is completely continuous on R × E.

If (λ0, u) ∈ R × E such that u − Gk(λ0, u) = 0, then u solves (13)
with λ = |λ0|. Since Gk(0, u) = 0 for all u ∈ E, it follows that

d(I − Gk(0, ·), Br(0), 0) = d(I, Br(0), 0) = 1,

for any r > 0. Therefore, by Theorem 3,1 there exists a global
continuum C ⊂ [0,∞)×E whose components satisfy (13). Since u = 0
is the unique solution corresponding to λ = 0, the continuum must be
unbounded in (0,∞) × E. Moreover, for λ > 0, the function u = 0 is
not a solution of (13), thus the solutions obtained are nontrivial. The
behavior of the continuum is further refined by the following lemma.

Lemma 3.2. If (λ, u) is a solution of (13) with λ > 0, then
λ < k!λk

1 where λ1 is the principal eigenvalue associated with the k-
Hessian operator for the domain Ω.1

Proof. Assume that there exists a solution (λ, u) of (13) with
λ ≥ k!λk

1 . Let φ be an eigenfunction for λ1. By scaling, if necessary,
we may assume u(x) < φ(x) for all x ∈ Ω. Let δ∗ > 0 be maximal such
that (u−δ∗φ)(x) ≤ 0 for all x ∈ Ω and consider the linear second order
elliptic operator

L = Fij(D2w)Dij ,
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where w = δ∗φ. As w ∈ Φk(Ω), we may apply Lemma 2.3 to conclude

(17)
Lk(u − w) ≥ Fk(D2u) − Fk(D2w)

= [λe−u]1/k − [|λ1w|k]1/k.

Since −u(x) ≥ −w(x) ≥ 0 on Ω, it follows that

e−u ≥ e−w ≥ |w|k
k!

.

Therefore,
|λ1w|k ≤ k!λk

1e−u ≤ λe−u,

which, combined with (17), implies Lk(u − w) ≥ 0. By the maximum
principle we conclude u = w for all x ∈ Ω. It follows that

λe−u = |λ1w|k = |λ1u|k,

which is impossible unless u = w is a constant, however w < 0 in Ω
and w = 0 on ∂Ω. This completes the proof.

Thus we have established the following theorem.

Theorem 3.3. Equation (13) has an unbounded continuum of
solutions (λ, u) ∈ C ⊂ [0, k!λk

1) × E.

In particular, it follows that there exists a constant λ∗ > 0 such that
(13) has at least one nontrivial solution u ∈ Φk(Ω) for each λ ∈ (0, λ∗]
and no solution when λ > λ∗. A possible continuum is drawn in
Figure 2.

If k > N/2, we can deduce one further property of the solution
continuum.

Theorem 3.4. If N/2 < k ≤ N , then λ → 0+ as ‖u‖ → ∞.

Proof. Suppose {(λn, un)} is a sequence of solutions to (13) such that
‖u‖ → ∞ and λ → µ �= 0. From this we may produce a sequence of
unit vectors vn = un/‖un|| satisfying the equation

(18) Sk(D2vn) = λn
e|un|

‖un‖k
, x ∈ Ω,
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‖u‖

λλk
1k!

FIGURE 2. Possible continuum of solutions to (13).

which we may rewrite as

(19) Sk(D2vn) = λn
e|un|

|un|k |vn|k, x ∈ Ω.

Let Ω′ ⊂⊂ Ω. From Lemma 2.1 it follows that |un| → ∞ uniformly
on Ω′.2 In particular, the functions vn → 1 uniformly on Ω′, implying
Sk(D2vn) → 0 for each x ∈ Ω′. On the other hand, from (19) and
the fact that the values of λn and |vn| are bounded away from zero on
Ω′, we conclude that Sk(D2vn) → ∞ for each x ∈ Ω′, a contradiction.
Therefore, λ → 0 as ‖u‖ → ∞, and the proof is complete.

A value µ ∈ R is said to be an asymptotic bifurcation point of the
equation F (λ, u) = 0 if there exists a sequence of solutions {(λn, un)}
such that (λn, ‖un‖) → (µ,∞). In this terminology Theorem 3.4 may
be restated as “if k > N/2, then 0 is the only asymptotic bifurcation
for (13).” For instance, 0 is the only asymptotic bifurcation point for
the Monge-Ampère equation

(20)
{

detD2u = λe|u| x ∈ Ω,
u = 0 x ∈ ∂Ω.



676 J. JACOBSEN

Theorem 3.4 remains true when k = N/2 and Ω is a ball (see
Theorem 4.1).

4. The radial case. In this section we assume Ω = B1(0) is the
unit ball in RN . In this case, the method of moving planes due to
Alexandrov [1] and Serrin [38] extends to (2) (see [15] for the Monge-
Ampère case) reducing (2) to the boundary value problem

(21)
{

r1−N (rN−k(u′)k)′ − λe−u = 0 0 < r < 1,
u′(0) = u(1) = 0,

for the profile u(r) = u(|x|). Indeed, if u : Ω → R is radially symmetric,
then a calculation shows

∂u

∂xi
= u′(r)

xi

r
(22)

and

∂2u

∂x2
= u′′(r)

xixj

r2
+ u′(r)

[
r2δij − xixj

r3

]
,

for i, j = 1, . . . , N . At the point x = (r, 0, . . . , 0) the Hessian matrix
D2u is diagonal with u11 = u′′(r) and uii = u′(r)/r for i > 1. Since
the operator Sk is invariant with respect to rotations, it follows that

Sk(D2u) = u′′
(

N − 1
k − 1

)
u′

r
+

(
N − 1

k

)
u′

r

=
(

N − 1
k − 1

)
r1−N

k
(rN−k(u′)k)′,

where
( n

k

)
is the binomial coefficient. It follows from regularity results

of [46, 22] that any solution to (13) is at least C1(Ω), implying the
symmetric boundary condition u′(0) = 0 is satisfied.

It follows from Theorem 3.3 that (21) has an unbounded solution
continuum C ⊂ [0, k!λk

1)×E. To determine the precise structure of this
continuum we employ a change of variables that essentially dates back
to Emden and Fowler, e.g., see [11]. Consider the transformation

(23)

⎧⎨
⎩

s = k ln r r ∈ (0, 1),
v = (du/ds),
w = λe2se−u,
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for λ > 0. A calculation shows

(24)

dv

ds
=

d

ds

[
u′(r)

es/k

k

]
=

1
k2

[r2u′′(r) + ru′(r)]

=
1
k2

[r2u′′(r) + kv]

and

(25)
dw

ds
=

d

ds
[λe2se−u] = 2w + w(−v) = w(2 − v).

In developed form, (21) is

(26)
{

kr1−k(u′)k−1u′′ + (N−k)r−k(u′)k − λe−u = 0, 0 < r < 1,
u′(0) = u(1) = 0.

Multiplying (26) by rk+1 and simplifying one finds

r2u′′ =
k − N

k
ru′ +

λ

k(u′)k−1
rk+1e−u,

which coupled with (24) yields

(27)
dv

ds
=

[
2k − N

k2

]
v +

λ

kk+2vk−1
r2ke−u.

From (25) and (27) we obtain the main system

(28)
{

(dw/ds) = w(2 − v),
(dv/ds) = [(2k − N)/k2]v + (1/kk+2)wv1−k,

with the additional conditions

w(0) = λ(29)
v(0) = u′(1)/k,(30)

w(−∞) = 0,(31)
v(−∞) = 0.(32)



678 J. JACOBSEN

Notice that when k = 1 we obtain a system equivalent to the Joseph
and Lundgren system (see [5]):

(33)
{

dw/ds = w(2 − v)
dv/ds = (2 − N)v + w.

An element (λ, u) ∈ C, therefore, corresponds to an integral curve
of (28) which emanates from (0, 0) = (w(−∞), v(−∞)) and passes
through (λ, β) = (w(0), v(0)). In particular, each crossing of this
integral curve with the line w = λ0 corresponds to a solution of (21)
with λ = λ0, u′(1) = kβ and u(0) = α =

∫ 0

−∞ v(s) ds. We may
therefore determine the multiplicity of solutions to (21) through an
analysis of the first order system (28) in the w-v plane.

The system (28) has a critical point at

(34) (w, v) = ((2k)k(N − 2k), 2).

For 1 ≤ k < N/2, this critical point lies in the first quadrant while, for
k > N/2, it lies in the second quadrant. If k = 1, then the origin is also
a critical point, otherwise it is a singular point. When k = N/2 > 1,
the v axis is comprised of singular points.

We may now state the main theorem characterizing the multiplicity
of solutions to (2) in the radial case:

Theorem 4.1. Let k ∈ {1, . . . , N}. Equation (21) has the following
properties:

Case I. N ≤ 2k. There exists a λ∗ > 0 such that (21) has one solution
for λ = λ∗ and two solutions for 0 < λ < λ∗.

Case II. 2k < N < 2k+8. Equation (21) has a continuum of solutions
which oscillates around the line λ = (2k)k(N − 2k), with the amplitude
of oscillations tending to zero, as ‖u‖ → ∞.

Case III. N ≥ 2k + 8. Equation (21) has a unique solution for each
λ ∈ (0, (2k)k(N − 2k)) and no solutions for λ ≥ (2k)k(N − 2k).

Proof. It follows from Theorem 3.3 that (28) has an integral curve
which emanates from the origin and is confined in the strip [0, λk

1k!]×R
in the w-v plane. It is evident from (28) that this curve is confined to the
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first quadrant. The multiplicity of solutions depends on the behavior
of the curve as s → ∞, which falls into two cases.

Case I. N/2 ≤ k ≤ N . In this case one can see from (28) that
dv/ds > 0 for all s, whereas dw/ds > 0 for v < 2 and negative for
v > 2. These observations determine the behavior of the curve: it
leaves the origin with both w and v increasing, when v reaches 2 the
dynamics of w shift from increasing to decreasing. Since the curve
has already passed the level v = 2, it cannot reach the critical point
and therefore proceeds asymptotically to the v axis. We conclude the
multiplicity in this case behaves as described. Note that this case is in
harmony with the more general result of Theorem 3.4.

Case II. 1 ≤ k < N/2. In this case, more complicated dynamics
are allowed since the sign of dv/ds can change. In particular, for v
sufficiently large (28) implies dv/ds < 0. It follows that the curve
remains bounded for all s > 0 and must either converge to the critical
point or a periodic limit cycle as s → ∞. However, the nature of the
vector field allows us to rule out a periodic orbit. Indeed, if a periodic
orbit γ exists, then on this orbit w′(s) dv − v′(s) dw = 0, or

w′(s)
w(s)

dv − v′(s)
w(s)

dw = 0.

By Green’s theorem,

0 =
∮

γ

w′

w
dv − v′

w
dw

=
∮

Γ

(
w′

w

)
w

+
(

v′

w

)
v

dw dv

=
∫

Γ

N − 2k

k2w
+

1 − k

kk+2vk
dw dv

< 0,

a contradiction. Therefore, there are no periodic limit cycles to (28) and
the solution curve must converge to the critical point (34) as s → ∞.

To determine the multiplicity of solutions we consider the lineariza-
tion at the critical point ((2k)k(N−2k), 2). The trace and determinant
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λ∗

‖u‖

(2k)k(N-2k) (2k)k(N-2k)

(a) N ≤ 2k (b) 2k < N < 2k + 8 (c) 2k + 8 ≤ N

FIGURE 3. Global continua for (21) depend on k and N .

of the Jacobian matrix are given by the equations

tr J =
(2k − N)

k
, detJ = −2(2k − N)

k2
= −2

k
trJ.

The eigenvalues of the linearized system at the critical point (34) are
given by the equation

λ =
tr J

2
±

√
(trJ)2 − 4det J

2
.

In particular, the eigenvalues will be complex with negative real part
when

(35) 2k < N < 2k + 8.

For N = 2k + 8, the eigenvalue is a unique negative number, and for
N > 2k + 8 the eigenvalues are distinct negative numbers, thus the
critical point is a stable attracting node. This completes the proof.

Theorem 4.1 completes the picture for the generalized Liouville-
Gelfand problem defined by (2). It extends the previously known cases
of k = 1 [27], k = N/2 [12] and k = N [26], and affirmatively answers
the conjecture from [26] for k > N/2.

It is tempting to conclude from Figure 3 that each k-Hessian operator
has exactly seven oscillatory dimensions; however, this is false due to
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the inability to identify the k-Hessian operator without also knowing
N . For instance, for the Monge-Ampère operator k = N , thus
the multiplicity is always as in Figure 3(a). In fact, all k-Hessian
operators close to the Monge-Ampère operator (in the sense k ≥ N/2),
obey the multiplicity of Figure 3(a). As another example illustrating
Theorem 4.1, if N > 2 even, say N = 2n, then the (n − 1)-Hessian
always has infinitely many nontrivial solutions for λ = 2n(n − 1)n−1.

ENDNOTES

1. The existence of a principal eigenvalue for Sk is due to P.L. Lions [30] for
k = N and X.-J. Wang [46] for 2 ≤ k < N . See also [26].

2. See [29, 42] for an interesting development of a capacity theory when k ≤ N/2.
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2a2 = 0,

J. Math. Pures Appl. 18 (1853), 71 72.



A LIOUVILLE-GELFAND EQUATION 683

32. V. Oliker, Evolution of nonparametric surfaces with speed depending on
curvature, I. The Gauss curvature case, Indiana Univ. Math. J. 40 (1991), 237 257.

33. P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math.
J. 35 (1986), 681 703.

34. P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J.
Funct. Anal. 7 (1971), 487 513.

35. D. Sattinger, Topics in stability and bifurcation theory, Lecture Notes in
Math., vol. 309, Springer-Verlag, Berlin, 1973.

36. K. Schmitt, Positive solutions of semilinear elliptic boundary value problems,
Topological methods in differential equations and inclusions (Montreal, PQ, 1994),
Kluwer Acad. Publ., Dordrecht, 1995, pp. 447 500.

37. K. Schmitt and R. Thompson, Nonlinear analysis and differential equations:
An introduction, Lecture Notes, University of Utah, 1998.

38. J. Serrin, A symmetry problem in potential theory, Arch. Rational Mech.
Anal. 43 (1971), 304 318.

39. N.S. Trudinger, Weak solutions of Hessian equations, Comm. Partial Differ-
ential Equations 22, (7&8) (1997), 1251 1261.

40. N.S. Trudinger and X.-J. Wang, Hessian measures I, Topol. Methods Non-
linear Anal. 10 (1997), 225 239.

41. , Hessian measures II, Annals of Math. (2) 150, (1999), 579 604.

42. , Hessian measures III, Austral. National University, Math. Research
Report (ANU MRR)016-00, 2000.

43. K. Tso, Remarks on critical exponents for Hessian operators, Ann. Inst. H.
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