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WARPED PRODUCTS IN REAL SPACE FORMS

BANG-YEN CHEN

ABSTRACT. We prove a general inequality in terms of
scalar curvature, the warping function, and the squared mean
curvature for warped products isometrically immersed in real
space forms. We also determine the warped products in real
space forms which satisfy the equality case of the inequality.

1. Introduction. Let B and F be two Riemannian manifolds
with Riemannian metrics gB and gF , respectively, and f > 0 be a
differentiable function on B. Consider the product manifold B×F with
its projection π : B × F → B and η : B × F → F . The warped product
M = B ×f F is the manifold B × F equipped with the Riemannian
structure such that

(1.1) ‖X‖2 = ‖π∗(X)‖2 + f2(π(x))‖η ∗ (X)‖2

for any tangent vector X ∈ TxM . Thus we have g = gB + f2gF . The
function f is called the warping function of the warped product (cf.
[15]).

For a submanifold N in a Riemannian manifold M̃ we denote by
∇ and ∇̃ the Levi-Civita connections of N and M̃ , respectively. The
Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + h(X, Y ),(1.2)

∇̃Xξ = −AξX + DXξ(1.3)

for vector fields X, Y tangent to N and vector field ξ normal to N ,
where h denotes the second fundamental form, D the normal connection
and A the shape operator of the submanifold.
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The mean curvature vector �H is defined by

(1.4) �H =
1
n

traceh =
1
n

n∑
i=1

h(ei, ei),

where {e1, . . . , en} is a local orthonormal frame of the tangent bundle
TN of N . The squared mean curvature is given by H2 = 〈 �H, �H〉, where
〈 , 〉 denotes the inner product. A submanifold N is called totally
geodesic in M̃ if the second fundamental form of N in M̃ vanishes
identically.

We denote by K(π) the sectional curvature of a plane section π ⊂
TpN , p ∈ N . The scalar curvature τ of N is defined by

(1.5) τ =
∑
i<j

K(ei ∧ ej).

One of the most fundamental problems in submanifold theory is the
following.

Problem 1. Find simple relationships between the main extrinsic
invariants and the main intrinsic invariants of a submanifold.

Many famous results in differential geometry, such as isoperimet-
ric inequality, Chern-Lashof’s inequality, and Gauss-Bonnet’s theorem
among others, can be regarded as results in this respect. In the last
few years, several interesting new results concerning Problem 1 have
been obtained by various authors (see, for example, [2 11, 16]).

According to a well-known theorem of Nash, every Riemannian man-
ifold can be isometrically immersed in some Euclidean spaces with suf-
ficiently high codimension. In particular, Nash’s theorem implies that
every warped product can be isometrically immersed into some Rie-
mannian manifolds of constant sectional curvature. Thus, it is natural
to study Problem 1 for warped products in Riemannian manifolds of
constant sectional curvature.

In this paper we provide a solution to this problem. More precisely,
we prove the following general result for warped products isometrically
immersed in a real space form.
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Theorem 1. Let φ : N1 ×f N2 → Rm(c) be an isometric immersion
of a warped product N1 ×f N2 into a Riemannian manifold of constant
sectional curvature c. Then we have

(1) The scalar curvature τ of the warped product N1 ×f N2 satisfies

(1.6) τ ≤ ∆f

n1f
+

n2(n − 2)
2(n − 1)

H2 +
1
2
(n + 1)(n − 2)c,

where n1 = dimN1, n = dimN1×N2, H2 is the squared mean curvature
of φ and ∆ is the Laplacian operator of N1.

(2) If n = 2, the equality sign of (1.6) holds automatically.

(3) If n ≥ 3, then the equality sign of (1.6) holds identically if and
only if one of the following two cases occurs:

(3a) N1 ×f N2 is a Riemannian manifold of constant sectional cur-
vature c whose warping function satisfies ∆f = cf and N1 ×f N2 is
immersed in Rm(c) as a totally geodesic submanifold, or

(3b) In a neighborhood of each point of the open dense subset where
H2 is positive, the manifold N1 ×f N2 can be locally isometrically
immersed as a rotational hypersurface in a totally geodesic submanifold
Rn+1(c) of Rm(c) with a geodesic of Rn+1(c) as its profile curve.

2. Preliminaries. Let N be an n-dimensional submanifold of a
Riemannian n-manifold Rm(c) of constant sectional curvature c. We
choose a local field of orthonormal frame e1, . . . , en, en+1, . . . , em in
Rm(c) such that, restricted to N , the vectors e1, . . . , en are tangent to
N and en+1, . . . , em are normal to N .

Let {hr
ij}, i, j = 1, . . . , n; r = n +1, . . . , m, denote the coefficients of

the second fundamental form h with respect to e1, . . . , en, en+1, . . . , em.

Denote by R the Riemann curvature tensors of N . Then the equation
of Gauss is given by (see, for instance, [1])

(2.1)
R(X, Y ; Z, W ) = c{〈X, W 〉〈Y, Z〉 − 〈X, Z〉〈Y, W 〉}

+ 〈h(X, W ), h(Y, Z)〉 − 〈h(X, Z), h(Y, W )〉,
for vectors X, Y, Z, W tangent to N .

For the second fundamental form h we define the covariant derivative
∇h of h, with respect to the connection in TN ⊕ T⊥N , by

(2.2) (∇Xh)(Y, Z) = DX(h(Y, Z)) − h(∇XY, Z) − h(Y,∇XZ).
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The equation of Codazzi is given by

(2.3) (∇Xh)(Y, Z) = (∇Y h)(X, Z).

Let ν be a subbundle of the normal bundle T⊥N of N in M̃ . Then
ν is called a parallel normal subbundle if, for each normal vector field
ξ in ν and each vector X tangent to N , we have DXξ ∈ ν.

Let Hn+1(c), c < 0, denote the hypersurface of Rn+2 given by

Hn+1(c) =
{

x ∈ Rn+2 | x2
1 + · · · + x2

n+1 − x2
n+2 =

1
c
, xn+2 > 0

}
.

If we endow Hn+1(c) with the Riemannian metric induced by the
Lorentzian metric

ds2 = dx2
1 + · · · + dx2

n+1 − dx2
n+2

on Rn+2, then Hn+1(c) has constant negative curvature c.

Let Sn+1(c), c > 0, be the hypersurface of radius c−1 of En+2,
centered at the origin, i.e.,

Sn+1(c) =
{

x ∈ En+2 | x2
1 + · · · + x2

n+2 =
1
c

}
.

Then Sn+1(c) has constant positive sectional curvature c.

Next we briefly recall what is a rotation hypersurface of a real space
form M̃n+1(c), c = 0, following [13]. We always consider M̃n+1(c) as
a hypersurface in (Rn+2, ds2). Let P 3 be a three-dimensional linear
subspace of Rn+2 that intersects M̃n+1(c). We denote the intersection
by M̃2(c), if c < 0 we take only the upper part. Let P 2 be any
linear subspace in P 3. We recall that any isometry of M̃n+1(c) is the
restriction to M̃n+1(c) of an orthogonal transformation of (Rn+2, ds2),
and conversely.

Let O(P 2) be the group of orthogonal transformations (with positive
determinant) that leaves P 2 pointwise fixed. We take any curve α in
M̃2(c) which does not intersect P 2. The orbit of α under O(P 2) is
called the rotation hypersurface with profile curve α and axis P 2. The
orbit of α(s) for a fixed s is a sphere, and if c < 0, then this sphere
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is elliptic, hyperbolic or parabolic according to P 2 respectively being
Lorentzian, Riemannian or degenerate.

In order to give a parametrization of a rotation hypersurface of the
different types, we introduce the vector u ∈ P 3 such that P 2 coincides
with u⊥ = {v ∈ P 3 | 〈v, u〉 = 0}. We can always assume that u
has length 1, −1 or 0, according to P 2 respectively being Lorentzian,
Riemannian or degenerate and that 〈u, α′〉 > 0. Let δ = 〈u, u〉. We
define the map Q as the orthogonal projection of P 3 on u⊥ if δ = 0 and
as the identity map of P 3 if δ = 0. Further, let Pn−1 be the orthogonal
complement of P 3 in Rn+2 and let Pn be the linear space, spanned by
Pn−1 and u. If δ = 1, respectively δ = −1, then Pn is Riemannian,
respectively Lorentzian, and we can define a mapping φ of Mn−1(δ)
into Pn by considering Mn−1(δ) as a unit hypersphere in Pn. If δ = 0,
then we can define a mapping φ of Mn−1(0) into Pn by identifying
Mn−1(0) and Pn−1 and defining

(2.4) φ(p) = p − 1
2
〈p, p〉u.

Then a parametrization of the rotation hypersurface with profile curve
α around the axis P 2 is given by

(2.5) f(s, p) = Q(α(s)) + 〈α(s), u〉ϕ(p).

If we assume that s is the arc length of α, then it follows immediately
that the rotation hypersurface Mn is intrinsically the warped product
I ×f Mn−1(δ), where I is an open interval of R and f is defined by
f(s) = 〈α(s), u〉.

The second fundamental form of the rotation hypersurface Mn is
given by

(2.6) h

(
∂

∂s
,

∂

∂s

)
=

f ′′ + cf√
δ − cf2 − f ′2

and

(2.7) h(X, Y ) = −
√

δ − cf2 − f ′2

f
〈X, Y 〉

for X and Y tangent to Mn−1(δ).
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We need the following lemma from [2].

Lemma 2. Let a1, . . . , an, c be n + 1, n ≥ 2, real numbers such that

(2.8)
( n∑

i=1

ai

)2

= (n − 1)
( n∑

i=1

a2
i + c

)
.

Then 2a1a2 ≥ c with equality holding if and only if a1 + a2 = a3 =
· · · = an.

3. Proof of Theorem 1. Let φ : N1 ×f N2 → Rm(c) be an
isometric immersion of a warped product N1 ×f N2 into a Riemannian
manifold of constant sectional curvature c. We denote by n1, n2 and n
the dimensions of N1, N2 and N1×N2, respectively, so that n = n1+n2.

From equation (2.1) of Gauss, we have

(3.1) 2τ = n2H2 − ‖h‖2 + n(n − 1)c.

Let

(3.2) δ = 2τ − n2(n − 2)
n − 1

H2 − (n + 1)(n − 2)c.

Then (3.1) and (3.2) yield

(3.3) n2H2 = (n − 1)‖h‖2 + (n − 1)(δ − 2c).

Let X and Z be two unit local vector fields tangent to N1 and N2,
respectively. We choose an orthonormal frame e1, . . . , em such that
e1 = X, en+1 = Z and en+1 is parallel to the mean curvature vector.
Then (3.3) gives

( n∑
i=1

hn+1
ii

)2

= (n − 1)
{ n∑

i=1

(hn+1
ii )2 +

∑
i �=j

(hn+1
ij )2

+
m∑

r=n+2

n∑
i,j=1

(hr
ij)

2 + δ − 2c

}
.(3.4)
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By applying Lemma 2 to (3.4) we obtain

(3.5) 2hn+1
11 hn+1

n1+1n1+1 ≥
∑
i �=j

(hn+1
ij )2 +

m∑
r=n+2

n∑
i,j=1

(hr
ij)

2 + δ − 2c,

from which we get
(3.6)

K(e1 ∧ en1+1) ≥
m∑

r=n+1

∑
j∈Ω1n1+1

{(hr
1j)

2 + (hr
n1+1j)

2}

+
1
2

i �=j∑
i,j∈Ω1n1+1

(hn+1
ij )2 +

1
2

m∑
r=n+2

∑
i,j∈Ω1n1+1

(hr
ij)

2

+
1
2

m∑
r=n+2

(hr
11 + hr

n1+1n1+1)
2 +

δ

2
≥ δ

2
,

where Ω1n1+1 = {1, . . . , n} \ {1, n1 + 1}.
Since N1 ×f N2 is a warped product, we have ∇XZ = ∇ZX =

(X ln f)Z for unit vector fields X, Z tangent to N1, N2, respectively.
Hence, we find

(3.7)
K(X ∧ Z) = 〈∇Z∇XX −∇X∇ZX, Z〉

=
1
f
{(∇XX)f − X2f}.

Combining (3.2), (3.6) and (3.7) yields

(3.8) τ ≤ 1
f
{(∇e1e1)f − e2

1f} +
n2(n − 2)
2(n − 1)

H2 +
1
2
(n + 1)(n − 2)c.

If the equality sign of (3.8) holds, then all inequalities in (3.5) and
(3.6) become equalities. Thus, we have

(3.9)
hn+1

1j = 0, hn+1
jn1+1 = 0, hn+1

ij = 0, i = j;

hr
1j = hr

jn1+1 = hr
ij = 0, hr

11 + hr
n1+1n1+1 = 0,

i, j ∈ Ω1n1+1, r = n + 2, . . . , m.
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In other words, the shape operators take the following forms:

An+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 · · ·
0
... µIn1−1 0
0

b 0 · · · 0
0

0
... µIn2−1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, a + b = µ;

(3.10)

Ar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hr
11 0 · · · 0 hr

1n1+1 0 · · · 0
0 0
... 0

... 0
0 0

hr
1n1+1 0 · · · 0 −hr

11 0 · · · 0
0 0
... 0

... 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3.11)

for r = n + 2, . . . , m, where Ik denotes the identity matrix of order k.

Similar to (3.8), we also have

(3.12) τ ≤ 1
f
{(∇eαeα)f − e2

αf} +
n2(n − 2)
2(n − 1)

H2 +
1
2
(n + 1)(n − 2)c

for α = 1, 2, . . . , n1. Hence, by summing up α from 1 to n1, we obtain

(3.13) n1τ ≤ ∆f

f
+

n1n
2(n − 2)

2(n − 1)
H2 +

1
2
n1(n + 1)(n − 2)c,

which implies (1.6).

If the equality sign of (1.6) holds identically, then the equality sign of
(3.12) holds for each α ∈ {1, . . . , n1}. Thus, for each α ∈ {1, . . . , n1}
and each t ∈ {n1, . . . , n}, we have

hn+1
αj = 0, hn+1

ij = 0, hn+1
ij = 0, i = j;(3.14)

hr
αj = hr

ij = hr
ij = 0, hr

αα + hr
tt = 0(3.15)
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for i, j ∈ Ωαt = {1, . . . , n} \ {α, t}; r = n + 2, . . . , m.

If n = 2, then n1 = n2 = 1. Thus, by (3.7), we have τ = ∆f . Hence,
the equality sign of (1.6) holds automatically.

Next, suppose that n = n1 + n2 ≥ 3. Then (3.15) implies that
An+2 = · · · = Am = 0. Moreover, from n ≥ 3 and (3.14), we find

(a) An+1 = 0 or

(b) a = 0, b = µ = 0 or a = µ = 0, b = 0.

Case (a). An+1 = 0. In this case N1 ×f N2 is a totally geodesic
submanifold of Rm(c). Hence, N1×f N2 is a real space form of constant
sectional curvature c which implies that the scalar curvature of N1×fN2

is given by τ = n(n − 1)c/2.

Since a totally geodesic submanifold is minimal, the equality sign of
(1.6) and τ = n(n − 1)c/2 imply ∆f = cf . Therefore, f is either a
harmonic function or an eigenfunction of the Laplacian with eigenvalue
c, according to c = 0 or c = 0, respectively.

Conversely, suppose that N1×f N2 is a warped product decomposition
of a real space form Rn(c) such that the warping function f satisfies
∆f = cf . Clearly, for each integer m > n, N1 ×f N2 can be
locally isometrically immersed in a real space form Rm(c) of the same
curvature as a totally geodesic submanifold. It is easy to verify that
such a totally geodesic immersion satisfies the equality case of inequality
(1.6).

Case (b). Either a = 0, b = µ = 0 or a = µ = 0, b = 0. In this
case An+1 has exactly two distinct eigenvalues 0, µ with multiplicities
1, n−1, respectively, on the open subset U = {p ∈ N1 ×f N2 : H2(p) >
0}. The first normal subbundle, Imh is of rank one on U . Without
loss of generality, we may assume that

(3.16)
h(e1, e1) = 0, h(e2, e2) = · · · = h(en, en) = µen+1,

h(ei, ej) = 0, 1 ≤ i = j ≤ n

on U . From (3.16) we find

(3.17)
(∇ek

h)(ej , ej) = (ekµ)en+1 + µDek
en+1,

(∇ej
h)(ej , ek) = −(ωk

j (ej) + ωj
k(ej))en+1



560 B.-Y. CHEN

for j ∈ {2, . . . , n} and k ∈ {1, . . . , n}. Thus, the equation of Codazzi
implies that

(3.18) µDek
en+1 + (ωk

j (ej) + ωj
k(ej) + ekµ)en+1 = 0, j = k, j > 1.

Since DXen+1 is perpendicular to en+1, (3.18) implies that DXen+1 =
0 for X being one of e1, . . . , en. Therefore, the first normal subbundle,
Im h = Span {en+1}, is a parallel normal subbundle on U . Hence,
by applying a result of Erbacher [14], M has essential codimension
one. Thus, in a neighborhood of each point of U , the warped product
N1 ×f N2 is isometrically immersed in a totally geodesic submanifold
Rn+1(c) of Rm(c). Because the shape operator of U has one eigenvalue
of multiplicity n − 1 and the other eigenvalue is zero, it follows from
a result of [13] (see also Section 2 of [12]) that M is a rotation
hypersurface whose profile curve is a geodesic of Rn+1(c). By applying
the continuity of the squared mean curvature H2, we know that U is a
dense open subset of N1 ×f N2.

Conversely, suppose that M is rotation hypersurface in a real space
form Rn+1(c) whose profile curve α is a geodesic of Rn+1(c). Let
us assume that the profile curve α is parametrized by an arc length
function s. Then M is isometric to a warped product I ×f Mn−1(δ),
where I is an open interval of R and the shape operator of M has
exactly two distinct eigenvalues 0 and µ of multiplicities 1 and n − 1,
respectively. Thus, the square mean curvature is given by

(3.19) H2 =
(n − 1)2µ2

n2
.

Moreover, by applying the equation of Gauss, we know that the scalar
curvature of the rotation hypersurface is given by

(3.20) τ =
n(n − 1)

2
c +

(n − 1)(n − 2)
2

µ2.

Because α = α(s) is a geodesic in Rn+1(c) parametrized by arc length
function, equation (2.6) implies that the warping function f satisfies
the differential equation: f ′′(s) + cf(s) = 0. Hence, we get

(3.21) ∆f = cf.
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From (3.19), (3.20) and (3.21), we can easily verify that the rotation
hypersurface I ×f Mn−1(δ) in Rn+1(c) satisfies the equality case of
(1.6) identically.

4. Remarks. In this section we provide some remarks related with
Theorem 1.

Remark 1. In view of Theorem 1, it is interesting to point out that
every Riemannian manifold of constant sectional curvature c can be
locally expressed as a warped product whose warping function satisfies
∆f = cf .

For example, the unit n-sphere Sn(1) is locally isometric to I ×cos x

Sn−1(1) with warped metric g = dx2 + cos2 xg1; the Euclidean n-
space En is locally isometric to I ×x Sn−1(1) with warped metric
g = dx2 + x2g1; and the unit hyperbolic space Hn(−1) is locally
isometric to R ×ex En−1 with warped metric g = dx2 + e2xg0, where
I = (0,∞), g0 is the standard Euclidean metric of En−1 and g1 is the
standard metric on Sn−1(1).

Besides those warped product decompositions of real space form
given above, there are some other warped product decompositions of
real space form whose warping function also satisfies ∆f = cf . For
example, let {x1, . . . , xn1} be a standard Euclidean coordinate system
of En1 and ρ be the function defined by ρ =

∑n1
j=1 ajxj + b where

a1, . . . , an1 , b are real numbers with
∑n1

j=1 a2
j = 1. Then the warped

product En1 ×ρ Sn2(1) is a flat space whose warping function is a
harmonic function.

In fact, one may prove that those warped product decompositions of
flat spaces are the only warped product decompositions of flat spaces
whose warping functions are harmonic functions.

Remark 2. In view of Theorem 1 it is also natural to look for a
complex version of Theorem 1. However, the following proposition
shows that the complex version of Theorem 1 does not occur unless the
warped products are essentially Riemannian products, in which case
the problem has already been investigated in [1].
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Proposition 3. Let N1 ×f N2 be a warped product of two Hermi-
tian manifolds and φ : N1 ×f N2 → M̃ be a holomorphic isometric
immersion of N1 ×f N2 into a Kaehler manifold M̃ . Then the warping
function f must be a constant function.

Proof. Since N1 ×f N2 is a warped product with warping function
f , it is known that, for each u ∈ N1, {u} × N2 is a totally umbilical
submanifold of N1 ×f N2 whose mean curvature vector is given by
−grad (ln f) (cf. [1, 15]) where grad (ln f) is the gradient of ln f .

On the other hand, since M̃ is Kaehlerian and φ is holomorphic and
isometric, we also know that N1, N2 and N1 ×f N2 are also Kaehler
manifolds with respect to their induced Kaehler structures. Hence, for
each u ∈ N1, {u}×N2 is a minimal submanifold of N1×f N2. Therefore,
by the minimality and total umbilicity, we conclude that each {u}×N2

is totally geodesic in N1×f N2 which implies that the warping function
f is a constant function.

Remark 3. Let N1 and N2 be two Hermitian manifolds and let f
be a positive function on N1. Then the warped product N1 ×f N2

is also a Hermitian manifold. On the other hand, from the proof of
Proposition 3, we also have the following.

Proposition 4. The warped product N1 ×f N2 of two Kaehler
manifolds N1 and N2 is Kaehlerian if and only if the warping function
is a constant.
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