
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 34, Number 2, Spring 2004

ON STRONGLY FLAT MODULES
OVER INTEGRAL DOMAINS

S. BAZZONI AND L. SALCE

ABSTRACT. We investigate strongly flat modules over gen-
eral integral domains. More detailed information is obtained
for strongly flat modules over valuation domains, their pure
submodules and on the existence of dense basic submodules.

1. Introduction. The notion of cotorsion abelian group, introduced
by Harrison in 1959 [6], was generalized in various different ways for
modules over any associative ring with unit.

A weak notion of cotorsion modules over commutative integral do-
mains was introduced by Matlis [7]. By slightly modifying his defini-
tion, we say that a module C over a commutative domain R is weakly
cotorsion, or Matlis cotorsion, provided that Ext1R(Q, C) = 0, where Q
denotes the field of quotients of R. Let us denote by WC the class of
weakly cotorsion modules.

An R-module M is strongly flat if Ext1R(M, C) = 0 for every weakly
cotorsion module C. Let us denote by SF the class of strongly flat
R-modules. In the terminology of cotorsion theories (see [9]) the
pair (SF ,WC) is the cotorsion theory cogenerated by Q. Since Q
is a flat module, the class WC contains the class C of the cotorsion
modules in the sense of Enochs, namely, of those modules C such that
Ext1R(F, C) = 0 for all flat modules F . It is well known that also the
pair (F , C) is a cotorsion theory, where F denotes the class of the flat
modules; since the class C is contained in the class WC, the class F
contains the class SF , i.e., every strongly flat module is flat.

The goal of this paper is to provide an initial contribution to the
study of strongly flat modules.
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In Section 2 we give a characterization of strongly flat modules over
general domains, which improves that given by Trlifaj in [10], with
more satisfactory results for Matlis domains and valuation domains.
Furthermore, we show that strongly flat ideals of coherent domains
are necessarily projective, deriving that an ideal of a Prüfer domain is
strongly flat exactly if it is finitely generated. This fact gives evidence
to the failure of the closure property of the class of strongly flat modules
with respect to direct limits. Finally we prove that all the localizations
at maximal ideals of a strongly flat module are strongly flat modules
over the corresponding localized rings and that the converse is true over
h-local domains.

Section 3 is dedicated to study more deeply strongly flat modules
over valuation domains. A satisfactory characterization is obtained
also in the non-Matlis case. Then we prove that the class of strongly
flat modules is closed under taking pure submodules of countable rank
and that a Pontryagin type criterion holds. Counterexamples are also
given to show that this closure property cannot be extended to pure
submodules of higher rank. Finally the question of whether every
strongly flat module has a dense basic submodule is explored and we
show that this happens up to rank ℵ1.

1. Preliminaries and notations. R will always denote a com-
mutative domain which is not a field, Q its quotient field and K the
divisible module Q/R. A torsion divisible module will be called K-free
if it is isomorphic to a direct sum K(α) of copies of K. The projective,
respectively injective, dimension of a module M is denoted by p.d.M ,
respectively i.d.M . Following [5], we say that R is a Matlis domain if
p.d.Q = 1.

We review now some well-known facts which will be used frequently
in the sequel, see [7, 4, 5] for more details. An R-module M is said to
be h-reduced if HomR(Q, M) = 0. If M is torsion-free the sum d(M) of
all the divisible submodules of M is an injective submodule of M and
d(M) = 0 if and only if HomR(Q, M) = 0; in this case, M is said to
be reduced. Any R-module M can be equipped with the R-topology,
namely, the linear topology in which a subbasis of neighborhoods of 0
consists of the submodules rM of M for any nonzero element r ∈ R.
The Hausdorff completion of M , endowed with the R-topology, will be
denoted by M̃ . If M is a torsion-free module, then M is Hausdorff in
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the R-topology if and only if d(M) = 0; moreover, there exists a natural
map ε : M → M̃ such that Ker ε = d(M), εM is RD-pure and dense in
M̃ , i.e., M̃/εM is torsion-free divisible. A torsion-free reduced module
M is complete if and only if Ext1R(Q, M) = 0, and M̃ ∼= Ext1R(K, M);
furthermore, M̃ has a unique structure of R̃-module.

The endomorphism ring of K is the completion R̃ of R and it is
a commutative ring. In case R is a valuation domain, then R̃ is a
valuation domain too and it is an immediate extension of R; hence,
every element ξ ∈ R̃ can be written in the form rη for some r ∈ R and
some unit η ∈ R̃.

Recall that a module is h-divisible if it is an epimorphic image of an
injective module; for torsion-free modules the notion of h-divisibility is
the same as the notion of divisibility. Moreover, the class of h-divisible
modules coincides with the class of divisible modules exactly if R is a
Matlis domain, see [5].

We will also make use of the classical Matlis category equivalence
between torsion h-divisible modules and complete torsion-free modules,
induced by the two functors HomR(K,−) and KR ⊗−.

We recall that a domain R is h-local if every nonzero ideal is contained
in only finitely many maximal ideals and every nonzero prime ideal is
contained only in one maximal ideal, see [7] and [5].

2. Characterization and properties of strongly flat modules.
Let R be a commutative domain. Recall that a module M is strongly
flat if Ext1R(M, C) = 0 for every weakly cotorsion module, i.e., for
every module C satisfying Ext1R(Q, C) = 0. We have recalled in the
introduction that strongly flat modules are flat, whence torsion-free. If
a torsion-free module M decomposes as M = D ⊕ A with D divisible
and A reduced, then M is strongly flat if and only if A is so. Thus,
in order to characterize strongly flat modules, we will always consider
reduced torsion-free modules.

In the next theorem we collect some characterizations of strongly flat
modules. Two of them hold only over Matlis domains. The first one is
an improvement of Trlifaj’s characterization in Proposition 2.8 of [10],
and the implication 4 ⇒ 1, for Matlis domains, appears in Proposition
10.6 of [7].
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Theorem 2.1. Let R be a commutative domain and M a reduced
torsion-free R-module. Consider the following statements.

1. M is strongly flat.

2. M is a summand of a reduced module N such that there is an
exact sequence of the form

0 −→ R(α) −→ N −→ Q(β) −→ 0,

for suitable cardinals α and β.

3. M is flat and Ext1R(M, C) = 0 for every flat weakly cotorsion
module C.

4. M̃ is a summand of the completion of a free module.

5. K ⊗R M is a summand of a K-free module.

Then 1 ⇔ 2 ⇔ 3 ⇒ 4 ⇔ 5, and the five conditions are equivalent if R
is a Matlis domain.

Proof . 1 ⇒ 2. Let M be a strongly flat module and consider a
free presentation of M : 0 → H → R(α) → M → 0. Let H̃ be the
completion of H and consider the following pushout diagram:

0

�

0

�

0 � H

�

� R(α)

�

� M � 0

0 � H̃

�

� N

�

� M � 0

⊕Q

�

⊕Q

�

0 0

Since M is strongly flat, the second row splits; hence M is a summand
of N which is clearly a reduced module. Thus the second column of
the above diagram satisfies condition 2.
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2 ⇒ 1 is obvious since the class SF is closed under extensions and
summands.

1 ⇒ 3 is obvious.

3 ⇒ 1. Let M be a flat R-module such that Ext1R(M, C) = 0 for every
flat weakly cotorsion module C, and let C1 be any weakly cotorsion
module. By the existence of flat covers, see [2], we can consider an
exact sequence

0 −→ Y −→ G −→ C1 −→ 0

where G is a flat module and Y is cotorsion. Since Y is weakly cotorsion
we conclude that G is weakly cotorsion too, thus Ext1R(M, G) = 0 by
hypothesis. The above sequence gives rise to the exact sequence:

0 = Ext1R(M, G) −→ Ext1R(M, C1) −→ Ext2R(M, Y ).

Thus the conclusion follows by the fact that Extn
R(M, Y ) = 0 for every

n provided that M is flat and Y is cotorsion, see for instance [11,
Proposition 3.1.2].

2 ⇒ 5. Assume that M is a summand of a torsion-free module N
which fits in an exact sequence

0 −→ R(α) −→ N −→ Q(β) −→ 0.

Note that the above sequence is pure, since Q(β) is a flat R-module.
Tensoring by K we get K(α) ∼= K⊗RN and thus K⊗RM is a summand
of K(α).

4 ⇔ 5. It is enough to recall that, for every torsion-free module X,
X̃ ∼= HomR(K, K ⊗R X), hence HomR(K, K(α)) ∼= R̃(α) and moreover
K ⊗R R̃(α) ∼= K(α).

Assuming that R is a Matlis domain, we prove 4 ⇒ 1. Let M be such
that M̃ is a summand of R̃(α) for some cardinal α. Then M̃ is strongly
flat by the equivalence 1 ⇔ 2. From the exact sequence

0 −→ M −→ M̃ −→ ⊕Q −→ 0

for any weakly cotorsion module C we obtain the exact sequence

Ext1R(⊕Q, C) −→ Ext1R(M̃, C) −→ Ext1R(M, C) −→ Ext2R(⊕Q, C) −→ 0;
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the first Ext vanishes, since C ∈ Q⊥ and the last Ext vanishes, since
p.d.Q = 1. Thus Ext1R(M, C) ∼= Ext1R(M̃, C) is zero, since M̃ is
strongly flat.

In Theorem 2.1 condition 4 does not imply condition 1 if R is not
a Matlis domain, even if it is a valuation domain as we will see in
proving Proposition 3.6 (1). The obvious question whether condition 4
in Theorem 2.1 can be replaced by the stronger condition that M̃ is
the completion of a projective module has in general a negative answer.
For instance, take the Z-module M = Zp; then M̃ = Jp is a summand
of Z̃, but it is not the completion of a projective Z-module. We will
see in Corollary 2.7 that the answer to the above question is positive if
R is a valuation domain or a local Matlis domain.

As applications of Theorem 2.1 we derive the next three results, which
show that, under suitable hypotheses on the domain R, certain strongly
flat R-modules are projectives.

Proposition 2.2. Let R be a coherent domain. Then an ideal I of
R is strongly flat if and only if it is projective.

Proof . The sufficiency is obvious. Conversely, assume I is strongly
flat; by Theorem 2.1 there exists an exact sequence

0 −→ R(α) −→ I ⊕ X −→ Q(β) −→ 0

that, tensored by K, gives the isomorphism K(α) ∼= (I ⊗R K)⊕ (X ⊗R

K). But I ⊗R K is isomorphic to Q/I, hence K(α) contains a cyclic
module isomorphic to R/I. The annihilator of every nonzero element of
K(α) is a finite intersection of principal fractional ideals, hence, being R
a coherent domain, it is finitely generated. Thus I is finitely generated
flat, hence projective, see [5].

As an immediate consequence we obtain the following corollaries; the
first one shows the abundance of flat modules which are not strongly
flat in Prüfer domains, once one forsakes Dedekind domains.

Corollary 2.3. Let R be a Prüfer domain. An ideal I of R is
strongly flat if and only if I is finitely generated.
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Corollary 2.4. Let R be a domain. Every ideal I of R is strongly
flat if and only if R is a Dedekind domain.

Proof . It is enough to recall that if every, finitely generated, ideal of a
domain R is flat then R is a Prüfer domain and to apply Proposition 2.2.

Note that in general the class of strongly flat modules is not closed
under direct limits; in fact, every flat module is a direct limit of
projectives, hence strongly flat modules. Thus SF is closed under
direct limits if and only if SF = F and if the domain is a Prüfer
domain this happens only if it is Dedekind.

Another application of Theorem 2.1 is the following

Proposition 2.5. Let R be a Matlis domain. Let M be a module
embeddable in a projective R-module with torsion cokernel; then M is
strongly flat if and only if it is projective.

Proof . Only the necessity needs to be proved. Assume M is strongly
flat and let U be a projective module containing M and such that U/M
is torsion. Tensoring by K the exact sequence 0 → M → U → U/M →
0, since TorR

1 (K, X) is isomorphic to the torsion submodule of X for
every module X, we obtain

0 −→ U/M −→ K ⊗R M −→ K ⊗R U −→ 0.

Since M and U are strongly flat modules, K ⊗R M and K ⊗R U are
summands of K-free modules, by Theorem 2.1; hence, p.d(K ⊗R U) =
p.d(K ⊗R M) = 1. Kaplansky’s lemma applied to the above sequence
yields that p.d.(U/M) is at most 1. Thus M has to be projective, since
U is projective.

The next result shows that the notion of strongly flat module is a
local notion, provided the domain R is h-local.

Proposition 2.6. Assume that M is a reduced strongly flat module.
Then every localization of M at a maximal ideal P of R is a strongly
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flat module over the local domain RP . The converse holds provided that
R is a h-local domain.

Proof . By Theorem 2.1, M is a strongly flat module if and only if it
is a summand of a module N such that there is an exact sequence of
the form

0 −→ R(α) −→ N −→ Q(β) −→ 0.

Applying the functor ⊗RRP we immediately get that MP is a strongly
flat RP -module. Conversely, assume R is h-local and M is an R-module
such that MP is a strongly flat RP -module for every maximal ideal
P of R. Since flatness is a local property, M is a flat R-module.
To conclude that M is strongly flat it is enough, by Theorem 2.1
(3), to verify that Ext1R(M, C) = 0 for every torsion-free weakly
cotorsion module C. Moreover we may clearly assume that C is
reduced; thus by Theorem 3.1 in [8], C is isomorphic to

∏
P CP where

CP = HomR(RP , C). CP is a weakly cotorsion RP -module, hence
Ext1RP

(MP , CP ) = 0 for every P . Now the conclusion follows by the
well-known canonical isomoprhisms:

Ext1R(M,
∏
P

CP ) ∼=
∏
P

Ext1R(M, CP ) ∼=
∏
P

Ext1RP
(MP , CP ).

As already noted, one cannot hope to improve the characterizations
of strongly flat modules given by Theorem 2.1 over general domains.
But if we consider local domains, we get more satisfactory results.
These results are quite different, depending on the projective dimension
of Q as we will see more clearly in the next section dealing with
valuation domains. This is not surprising, since strongly flat modules
are intimately related with the completion process, and it is well known
that this is heavily influenced by p.d.Q, see [5, Chapter VIII]. For
valuation domains and local Matlis domains we get from Theorem 2.1:

Corollary 2.7. Let R be a local domain. Consider the following
conditions for a reduced torsion-free R-module M .

1. M is strongly flat.

2. M̃ is the completion of a free module.

3. K ⊗R M is a K-free module.
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Then 2 ⇔ 3 and, if R is a valuation domain, 1 ⇒ 2. If R is a Matlis
domain, the three conditions are equivalent.

Proof . The equivalence between 2 and 3 follows by Matlis equiv-
alence. The implications 1 ⇒ 3 follows by Theorem 2.1 under the
assumption that R is either a valuation domain or a Matlis domain.
In fact, in both cases K is countably small: by [5] if R is a valuation
domain and by a result by Hamsher, see [5], if R is a local Matlis do-
main. Thus the Azumaya-Warfield’s theorem, see [5], applies since the
endomorphism of K is the local ring R̃, so a direct summand of a K-
free module is still K-free. The implication 2 ⇒ 1 for a Matlis domain
follows by Theorem 2.1.

3. Strongly flat modules over valuation domains. We now
study strongly flat modules over valuation domains; in this section, R
denotes a valuation domain.

There are two facts that contribute to obtain in this case more
satisfactory results. The first fact is that the completion R̃ of a
valuation domain R is still a domain, actually an immediate extension
of R. The second one is that K = Q/R is a uniserial R-module; this
fact will play a central role in proving the next Proposition 3.7, which
is crucial in the subsequent developments.

In case R is a Matlis valuation domain, we already obtained in
Corollary 2.7 a characterization of strongly flat modules as modules
whose completion is the completion of free modules. For strongly flat
modules over valuation domains R such that p.d.Q > 1 we have another
characterization, which makes use of the tensor product by R̃ instead
of the completion in the R-topology. We will make free use of the fact
that for valuation domains R such that p.d.Q > 1, a free R̃-module is
complete in the R-topology, see [5].

Theorem 3.1. Let R be a valuation domain such that p.d.Q > 1.

1. A reduced torsion-free R-module M is strongly flat if and only
if M ⊗R R̃ is a direct sum of a free R̃-module and of a torsion-free
divisible R̃-module.

2. A reduced complete strongly flat R-module is a free R̃-module.
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3. If R is complete, an R-module is strongly flat if and only if it is a
direct sum of a free R-module and a torsion-free divisible R-module.

Proof . 1. Let M be a reduced strongly flat R-module. By Theo-
rem 2.1, there exists an exact sequence

0 −→ R(α) −→ M ⊕ X −→ Q(β) −→ 0

for some cardinal numbers α, β. Tensoring by the flat module R̃ we
obtain the exact sequence of R̃-modules and R̃-maps:

0 −→ R̃(α) −→ (M ⊗R R̃) ⊕ (X ⊗R R̃) −→ Q(β) ⊗R R̃ −→ 0.

Q(β) ⊗R R̃ is a divisible torsion-free R-module and R̃(α) is complete,
so the above exact sequence splits. Therefore M ⊗R R̃, as a direct
summand of a free R̃-module and of a torsion-free divisible R̃-module, is
of the same form. For the converse, it is clear that M⊗R R̃ is a strongly
flat R-module; to prove that also M is strongly flat, by Theorem 2.1, it
is enough to show that Ext1R(M, C) = 0 for every torsion-free reduced
weakly cotorsion module C. C has a unique structure of R̃-module,
and Ext1R(M, C) = 0 ∼= Ext1

R̃
(M ⊗R R̃, C), see [7, Proposition 5.7].

But Ext1
R̃
(M ⊗R R̃, C) = 0, since M ⊗R R̃ is a strongly flat R̃-module,

so we are done.

2. Assume that M is a reduced strongly flat complete R-module.
Then the sequence 0 → M → M⊗R R̃ → M⊗R (R̃/R) → 0 splits, since
M⊗R(R̃/R) is a torsion-free divisible R-module. Thus M is isomorphic
to the reduced summand of M ⊗R R̃ so it is a free R̃-module, by 1.

3. Obvious, in view of 1.

Remarks. 1) If R is a Matlis valuation domain, then the statement 1
in Theorem 3.1 holds only in one direction: given a reduced torsion-
free R-module M , if M ⊗R R̃ is a direct sum of a free R̃-module F and
a torsion-free divisible R̃-module, then M is strongly flat, since M is

pure and dense in M ⊗R R̃; hence M̃ ∼= ˜

M ⊗R R̃ ∼= F̃ . The converse
does not hold. Pick the completion B̃ of a free R-module B of infinite
rank; then B̃ is strongly flat, but B̃ ⊗R R̃ is not a direct sum of a free
R̃-module and a torsion-free divisible R̃-module, since its reduced part
is isomorphic to B̃.
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2) In an anti-symmetric way, if p.d.Q > 1, Corollary 2.7 holds only
in one direction: if M is a reduced strongly flat module, then M̃ is the
completion of a free module, since M ⊗R R̃ is a direct sum of a free R̃-
module F and a torsion-free divisible R̃-module, and M̃ ∼= ˜M⊗RR̃ ∼= F̃ .
The converse does not hold, as the proof of the next Proposition 3.6(1)
will show.

We investigate now pure submodules of strongly flat modules, starting
with a particular kind of them, namely, basic submodules. Recall that a
pre-basic submodule B of an R-module M is a direct sum of standard
uniserial submodules, pure in M and maximal with respect to these
properties. Every R-module has a pre-basic submodule, which is unique
up to isomorphism, see [5]. A pre-basic submodule of M which is pure-
essential in M is called a basic submodule.

When M is torsion-free, every pre-basic submodule B turns out to
be basic. Since basic submodules remain basic in any pure-essential
extension, see [5], given a torsion-free reduced module M and a basic
submodule B of M , B is basic also in the completion M̃ . In general
if B and B′ are two basic submodules of M , M/B is not isomorphic
to M/B′. For instance, if J is an ℵ0-generated ideal of R, there exists
an exact sequence 0 → B′ → B → J → 0, where B′ and B are free
modules, and both B and B′ are basic in B. However, we have the
following

Lemma 3.2. Let R be a valuation domain and M a reduced torsion-
free R-module. If B and B′ are two basic submodules of finite rank of
M and M/B is divisible, then M/B ∼= M/B′.

Proof . The rank of M̃ = B̃ as an R̃-module coincides with the rank of
B as an R-module. This implies that M̃ = B̃′, thus M/B′ is divisible,
being a pure submodule of B̃′/B′, necessarily of the same rank as M/B.

The first result is that basic submodules of reduced strongly flat
modules are free.
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Proposition 3.3. Let R be a valuation domain and M a reduced
strongly flat R-module. Then a basic submodule of M is free.

Proof . It is enough to prove that a rank 1 pure submodule N of M is
cyclic. The completion Ñ is a rank 1 pure R̃-submodule of M̃ , which is
the completion of a free R-module, by Corollary 2.7. Hence Ñ ∼= Ĩ for
a nonzero ideal I of R, thus K ⊗R N ∼= Q/I. But K ⊗R M ∼= K ⊗R M̃
is K-free, hence I ∼= R. To conclude, it is enough to note that a rank 1
pure R-submodule of R̃ is cyclic.

Before entering in the discussion of the existence of basic dense
submodules in strongly flat modules, we give some example of strongly
flat modules of finite rank; the situation appears quite different if the
valuation domain R is complete or not, as the following two examples
show.

Example 3.4. Let R be a noncomplete valuation domain such that
rk (R̃) ≥ n ∈ ω. From results by Zanardo [12] we now that there exists
a torsion-free indecomposable R-module M of rank n + 1 with dense
basic submodule isomorphic to R, and a torsion-free indecomposable
R-module M ′ of rank n + 1 with dense basic submodule isomorphic to
Rn, see also [5]. Both M and M ′ are strongly flat modules.

Example 3.5. Let R be a complete valuation domain. Given any
torsion-free reduced indecomposable R-module M of finite rank with
free basic submodule B, M/B is reduced, see [12]. Assume that M is
strongly flat. Then, by Corollary 2.7, M̃ ∼= F̃ for a free module F of
finite rank, so M̃ ∼= B̃ ⊕ ( ˜M/B), which is absurd unless M ∼= R. Thus
the only indecomposable strongly flat modules of finite rank are R and
Q.

The next proposition characterizes different classes of valuation do-
mains in terms of closure properties of the class of strongly flat modules
under taking suitable submodules.

Proposition 3.6. Let R be a valuation domain. The class of strongly
flat R-modules is closed under taking
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1. pure and dense submodules if and only if R is a Matlis domain;

2. pure submodules if and only if R is a Matlis domain with gl.d.R ≤
2;

3. arbitrary submodules if and only if R is a DVR.

Proof . 1. If R is a Matlis domain, then the claim is a trivial
consequence of Corollary 2.7. Conversely, assume that p.d.Q > 1, and
let 0 → H → F → Q → 0 be a free presentation of Q. Then H̃ = F̃
is the completion of a free module. Assume, by way of contradiction,
that H is strongly flat. By Theorem 3.1, H ⊗R R̃ is a free R̃-module,
since it is reduced. From the exact sequence

0 −→ H ⊗R R̃ −→ F ⊗R R̃ −→ Q ⊗R R̃ −→ 0

we derive that the projective dimension of Q ⊗R R̃ as R̃-module is 1.
Thus Q ⊗R R̃ is countably generated as an R̃-module. Using the fact
that every element of R̃ can be written in the form rη for some r ∈ R
and some unit η ∈ R̃, it is straightforward to check that Q is also
countably generated as an R-module, a contradiction.

2. Assume that the class of strongly flat R-modules is closed under
taking pure submodules. Then R is a Matlis domain by 1. If J is an
uncountably generated ideal of R, let 0 → H → F → J → 0 be a free
presentation of J . Then H is not strongly flat, since otherwise from the
exact sequence 0 → H ⊗R K → F ⊗R K → J ⊗R K ∼= Q/J → 0 and,
from Corollary 2.7, we deduce that p.d.Q/J ≤ 2, absurd. Hence all the
submodules of Q are countably generated, so gl.d.R ≤ 2. Conversely,
assume that R is a Matlis valuation domain such that gl.d.R ≤ 2,
and let N be a pure submodule of the strongly flat module M . Then
N ⊗R K is a divisible submodule of M ⊗R K, which is K-free, by
Corollary 2.7; then p.d.(M ⊗R K) = 1, and the hypothesis ensures that
also p.d.(N ⊗R K) = 1; consequently also N ⊗R K is K-free, so N is
strongly flat.

3. If R is a DVR, then the class of strongly flat modules coincides with
the class of torsion-free modules, which is closed under submodules. For
the necessity it is enough to note that every ideal must be strongly flat,
hence principal.



430 S. BAZZONI AND L. SALCE

We remark that the module H in the proof of Proposition 3.6
furnishes the announced example of a nonstrongly flat module over
a valuation domain R with p.d.Q > 1, whose completion is the
completion of a free module.

We give now two crucial results which will be used frequently in the
sequel. The proof of the next proposition, as presented here, is due to
Fuchs.

Proposition 3.7. Let R be a valuation domain. Then, given any
n ∈ ω and any cardinal α, every embedding of Kn into K(α) is splitting.

Proof . It is clearly enough to look at the case n = 1. Consider the
exact sequence

0 −→ K
η−→ K(α) −→ X −→ 0.

Pick a nonzero element x ∈ K; let ηx = xα1 + · · ·+xαn
, where 0 �= xαi

belongs to the ith component of K in K(α) for all 1 ≤ i ≤ n. If
παi

denotes the canonical projection of K(α) onto this component,
x /∈ ∪1≤i≤nKer παi

η and x ∈ Ker παη for all α �= αi. We can assume,
without loss of generality, that Ker πα1η ≤ Kerπαi

η for all 1 ≤ i ≤ n;
hence Ker πα1η ≤ ∩αKerπαη. But then, being ∩αKer παη = 0, πα1η
is an isomorphism, so we can substitute the α1th copy of K by ηK,
which turns out to be a summand of K(α).

Using the Matlis equivalence, we can derive from Proposition 3.7 the
following

Corollary 3.8. Let R be a valuation domain. Then every pure
embedding of R̃n, n ∈ ω, into the completion of a free R-module splits.

Proof . Consider an exact sequence 0 → R̃n → F̃ → X → 0,
where F is a free module, and X is torsion-free. If R is a Matlis
domain, then X is also complete, as one easily checks by applying the
functor Ext1R(Q,−) to the exact sequence. The Matlis equivalent exact
sequence splits, by Proposition 3.7, whence the original sequence splits
too.
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If p.d.Q > 1, then every free R̃-module is complete, see [5]. Every
pure embedding of R̃n in a free R̃-module is a pure embedding of R̃-
modules, so it splits by [4].

Recall that, given a torsion-free R-module H, its completion H̃ is in
a natural way an R̃-module; we shall denote by rank

R̃
(H̃) its rank as

R̃-module, while rank (H̃) denotes, as usual, its rank as R-module.

The next two results are instrumental in proving the subsequent
proposition.

Lemma 3.9. Let R be a valuation domain. Let H be a torsion-free
R-module of finite rank n. Then rank

R̃
(H̃) ≤ n.

Proof . By induction on n. If n = 1, then H̃ = 0 if H ∼= Q, otherwise
H̃ is isomorphic to an ideal of R̃, so rank

R̃
(H̃) ≤ 1. If n > 1, consider

an exact sequence 0 → A → H → J → 0, where A is a pure submodule
of H of rank n − 1 and J is a rank 1 torsion-free module. Passing to
the completions, we obtain the exact sequence of R̃-modules 0 → Ã →
H̃ → J̃ . Thus rank

R̃
(H̃) ≤ rank

R̃
(Ã) + rank

R̃
(J̃) ≤ n − 1 + 1 = n by

the inductive hypothesis.

Lemma 3.10. Let R be a valuation domain and C the completion
of a free R-module. If N is a pure submodule of finite rank of C, then
Ñ is a free R̃-module which is a summand of C.

Proof . Note that Ñ is a pure R̃-submodule of C of finite R̃-rank,
by Lemma 3.9. By Corollary 3.8, it is enough to prove that Ñ is a
free R̃-module. We induct on n = rank

R̃
Ñ . If n = 1, then Ñ ∼= R̃

by Proposition 3.3. If n > 1, then a rank 1 pure R̃-submodule of Ñ
is a summand in C, by Corollary 3.8, hence, in Ñ ; an easy induction
concludes the proof.

The following two results deal with closure properties of the class of
strongly flat modules over arbitrary valuation domains with respect to
pure submodules, under suitable additional conditions.
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Proposition 3.11. Let R be an arbitrary valuation domain.

1. The class of strongly flat R-modules is closed under taking pure
submodules of finite rank.

2. A torsion-free module of countable rank M is strongly flat if and
only if every pure submodule of finite rank is strongly flat.

Proof . 1. Let M be a strongly flat module and N a pure submodule of
finite rank. Without loss of generality, we can assume M to be reduced.
Then Ñ is a pure R̃-submodule of M̃ . If R is a Matlis domain, then M̃
is the completion of a free R-module, so Ñ is a free R̃-summand of M̃
of finite rank, by Lemma 3.10. There follows that N is strongly flat.
If p.d.Q>1, N⊗R R̃ is a pure R̃-submodule of M⊗R R̃, which is a di-
rect sum of a free R̃-module and of a divisible torsion-free R̃-module, by
Theorem 3.1. Hence N⊗RR̃ is of the same shape, so N is strongly flat.

2. Necessity is an immediate consequence of part 1. For the
sufficiency, write M (that we can assume to be reduced) as the union
of a countable ascending chain of pure submodules Mi of finite rank.
Each Mi is strongly flat, by hypothesis. If R is a Matlis domain, from
Corollary 2.7 and Corollary 3.8 we deduce that M̃i+1 = M̃i ⊕ B̃i for all
i, where Bi is a free R-module of finite rank. Thus M̃ = ˜⊕iBi is the
completion of a free R-module, so it is strongly flat by Corollary 2.7. If
p.d.Q > 1, from Theorem 3.1 we know that Mi+1⊗RR̃ = (Mi⊗RR̃)⊕Ci

for all i, where Ci is a direct sum of a free R̃-module and a divisible
torsion-free R̃-module of finite rank. Thus M ⊗R R̃ = ⊕iCi is strongly
flat, by Theorem 3.1.

We remark that the proof of Proposition 3.6 shows that we cannot
extend Proposition 3.11 to submodules of uncountable rank unless
R is a Matlis domain with gl.d.R ≤ 2. Furthermore, part 2 in
Proposition 3.11, that can be viewed as a Pontryagin criterion for
strongly flat modules over valuation domains, has as an immediate
consequence the following extension of part 1 to countable rank.

Corollary 3.12. The class of strongly flat modules over arbitrary
valuation domains is closed under taking pure submodules of countable
rank.
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The rest of this section is devoted to investigating the following
question: does every reduced strongly flat module M over a valuation
domain admit a (free) dense basic submodule or, equivalently, does M
fit in an exact sequence of the form 0 → R(α) → M → Q(β) → 0 for
suitable cardinals α and β?

In view of the results proved up to now, this question has a positive
answer in each one of the following cases: M is complete in the R-
topology, Corollary 2.7, or R is complete and p.d.Q > 1, Theorem
3.1. The next result furnishes two more sufficient conditions for the
existence of dense basic submodules.

Theorem 3.13. A strongly flat module M over a valuation domain
R has a (free) dense basic submodule provided that one of the following
conditions hold:

1. basic submodules of M have finite rank;

2. rank (M) ≤ ℵ0.

Proof . 1. We can assume that M is reduced. Consider the exact
sequence

(1) 0 −→ B −→ M −→ M/B −→ 0

where B is a basic submodule of finite rank of M . B is free, by
Proposition 3.3. If R is a Matlis domain, we have the exact sequence
0 → B̃ → M̃ → ˜M/B → 0. Since M̃ is the completion of a free R-
module, from Corollary 3.8 we obtain that M̃ ∼= B̃⊕ ( ˜M/B) so M/B is
strongly flat. The same conclusion holds in case p.d.Q > 1, tensoring
the exact sequence (1) by R̃, instead of passing to completions, and
using Theorem 3.1.

Now if M/B is not divisible, it contains a pure submodule N/B ∼= R
by Proposition 3.3; therefore, N ∼= B ⊕ R is pure in M , contradicting
the fact that B is basic in M . Thus M/B must be divisible. Note that,
according to Lemma 3.2, this happens for every basic submodule B of
M .

2. If M is of finite rank the claim follows trivially from point 1.
Thus, let us assume that the rank (M) = ℵ0. There exists a countable
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ascending chain of pure submodules of M :

0 < M1 < M2 < · · · < Mn < · · ·

such that ∪Mn = M and Mn+1/Mn has rank 1 for all n. Each
submodule Mn is strongly flat, by Proposition 3.11 and, given any basic
submodule Bn of Mn, Mn/Bn is divisible, by what we have seen before.
Furthermore, passing to Mn+1, Bn extends to a basic submodule Bn+1

of Mn+1 : Bn+1 = Bn ⊕ Cn, where Cn is either isomorphic to R or
equal to 0.

Clearly, setting B1 = C1 and B = ∪Bn, B = ⊕nCn is free and pure
in M . In order to conclude, it is enough to prove that M/B is divisible.
Given any 0 �= r ∈ R, for every x ∈ M there exists an index n such that
x ∈ Mn; from the divisibility of Mn/Bn it follows that x ∈ rMn + Bn,
thus x ∈ rM + B. Consequently, M = rM + B and M/B = r(M/B)
so M/B is divisible.

Our next goal is to extend Theorem 3.13 to modules of rank ℵ1. The
next lemma is crucial.

Lemma 3.14. Let M be a reduced torsion-free module which is the
union of a smooth ascending chain of pure submodules Mσ

0 = M0 < M1 < M2 < · · · < Mσ < · · · (σ < κ)

for some infinite cardinal κ, such that Mσ+1/Mσ has a free dense basic
submodule for all σ < κ. Then M has a free dense basic submodule.

Proof . We will define, by transfinite induction on σ, a family
{Xσ}σ<κ of free modules such that each submodule Mσ has a free
dense basic submodule of the form Bσ = ⊕ρ<σXρ.

The first nonzero submodule M1 has a free dense basic submodule
X0 by hypothesis. Let now σ < κ and Xρ, ρ < σ, already defined, and
assume that Mσ satisfies the desired condition. Since Mσ+1/Mσ is an
extension of a free module Fσ by a torsion-free divisible module Dσ,
we get an exact sequence

0 −→ Mσ −→ Cσ+1 −→ Fσ −→ 0
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where Cσ+1 ≤ Mσ+1. This sequence clearly splits, thus Cσ+1 =
Mσ ⊕ Xσ with Xσ

∼= Fσ free, and Mσ+1/Cσ+1
∼= Dσ. There follows

that Bσ+1 = Bσ ⊕ Xσ is a free submodule of Mσ+1, and we have the
exact sequence

0 −→ Cσ+1/Bσ+1 −→ Mσ+1/Bσ+1 −→ Mσ+1/Cσ+1 −→ 0.

Since Cσ+1/Bσ+1
∼= Mσ/Bσ is divisible torsion-free, we can conclude

that such is Mσ+1/Bσ+1.

Let us assume now that λ < κ is a limit ordinal and that, for all
ordinals σ < λ, the submodule Mσ has a free dense pure submodule
Bσ = ⊕ρ<σXρ. Let Bλ = ⊕ρ<λXρ. Clearly Bλ is a free and pure
submodule of Mλ, and we must only show that Mλ/Bλ is divisible,
i.e., that for every 0 �= r ∈ R the inclusion Mλ ≤ rMλ + Bλ holds.
Pick a ∈ Mλ; then a ∈ Mρ for some ρ < λ; since Bρ is dense in Mρ,
a ∈ rMρ + Bρ ≤ rMλ + Bλ, so we are done.

With the aid of Lemma 3.14 we can extend Theorem 3.13 to the
case of rank ℵ1. The proof of the next theorem reminds the proof of
a classical criterion for projectivity, see [5, XVI.1.2], but it requires a
more delicate modification of the involved filtrations of submodules.

Theorem 3.15. Let R be a valuation domain and M a reduced
strongly flat R-module of rank ℵ1. Then M has a (free) dense basic
submodule.

Proof . Pick a continuous well-ordered ascending chain of pure
submodules of M

0 = M0 < M1 < M2 < · · · < M0 < · · · (σ < ℵ1),

such that Mσ+1/Mσ has rank 1 for all σ. Consider the subset of ℵ1:

E = {σ < ℵ1 | Mτ/Mσ is not strongly flat for some τ}.

If E is not stationary in ℵ1, there is a cub C in ℵ1 such that Mτ/Mσ is
strongly flat for all σ < τ ∈ C. Relabelling indexes, we can assume that
in the initial ascending chain all the quotients Mσ+1/Mσ are of at most
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countable rank and strongly flat; from Theorem 3.13 we know that each
quotient Mσ+1/Mσ has a dense basic submodule, hence Lemma 3.14
ensures that M has a dense basic submodule. To conclude, it is enough
to prove that the subset E cannot be stationary in ℵ1.

Assume, by way of contradiction, that E is stationary in ℵ1. From
the initial ascending chain we can derive a cofinal continuous subchain

0 = M ′
0 < M ′

1 < M ′
2 < · · · < M ′

σ < · · · (σ < ℵ1)

such that M ′
σ+1/M

′
σ is countably generated and not strongly flat for

all σ ≥ 1.

Assume first that R is a Matlis domain. Tensoring by K, we obtain
the strictly ascending chain

0 < M ′
1 ⊗R K < M ′

2 ⊗R K < · · · < M ′
σ ⊗R K < · · ·

whose union is M ⊗R K ∼= M̃ ⊗R K. The module M̃ is the completion
of a free R-module F , which clearly has rank ℵ1, say F = ⊕ρ<ℵ1Rρ,
(Rρ

∼= R for all ρ). Thus F = ∪σ<ℵ1Fσ with Fσ = ⊕ρ<σRρ for all σ.
We derive a continuous ascending chain of pure R̃-submodules of M̃ :

0 = Y0 < Y1 < Y2 < · · · < Yσ < · · · (σ ≤ ℵ1),

where, for λ limit ordinal, Yλ+1 = Ỹλ, and for σ nonlimit Yσ+1 = F̃σ.
Notice that M̃ = ˜∪σYσ, Yσ+1/Yσ

∼= R̃ for all σ nonlimit, and Yτ/Yσ

is strongly flat for all σ < τ < ℵ1. Tensoring also this chain by K, we
obtain the ascending chain

0 < Y1 ⊗R K < Y2 ⊗R K < · · · ≤ Yσ ⊗R K ≤ · · ·

where Yλ ⊗R K = Yλ+1⊗R K for all λ limit and Yσ ⊗R K < Yσ+1⊗R K

for all σ nonlimit. The union of this chain is M̃ ⊗R K. Comparing
the two chains tensorized by K whose union is M̃ ⊗R K, since all the
submodules M ′

σ⊗RK and Yσ⊗RK are countably generated (here we use
the hypothesis that p.d.K = 1), and using the usual zig-zag argument
(see [5, Lemma A.2]) we find a cub C ′ in ℵ1 such that M ′

α ⊗R K
appears in the chain of the Yσ ⊗R K for all α ∈ C ′. Therefore, for
all α < β ∈ C ′, (M ′

β ⊗R K)/(M ′
α ⊗R K) ∼= (M ′

β/M ′
α) ⊗R K equals
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(Yτ ⊗R K)/(Yσ ⊗R K) ∼= (Yτ/Yσ) ⊗R K for suitable σ < τ ∈ ℵ1. But
(Yτ/Yσ)⊗R K is K-free, whence M ′

β/M ′
α is strongly flat, contradicting

our assumption.

Assume now that p.d.Q > 1. Tensoring by R̃ the chain of the
submodules M ′

σ we obtain the pure chain of R̃-submodules of M ⊗R R̃

0 < M ′
1 ⊗R R̃ < M ′

2 ⊗R R̃ < · · · < M ′
σ ⊗R R̃ < · · ·

whose union is M ⊗R R̃. Note that, as an immediate consequence of
Lemma 3.9, for every σ < κ, rank

R̃
(M ′

σ⊗RR̃) ≤ ℵ0. From Theorem 3.1
we know that M ⊗R R̃ ∼= (⊕αR̃) ⊕ (⊕βQ̃) for certain cardinals α, β;
clearly α + β = ℵ1. Therefore M ⊗R R̃ is the union of a continuous
well-ordered ascending chain of R̃-submodules

0 < Z1 < Z2 < · · · < Zσ < · · · (σ < ℵ1)

such that every module Zσ and every factor Zτ/Zσ for all σ < τ < ℵ1

is the direct sum of a free and a divisible R̃-module of countable rank.
Comparing the two above ascending chains whose union is M ⊗R R̃,
we find that there is a cub C ′′ in ℵ1 such that M ′

α ⊗R R̃ appears in
the chain of the Zσ for all α ∈ C ′′. Therefore, for all α < β ∈ C ′′,
(M ′

β ⊗R R̃)/(M ′
α ⊗R R̃) ∼= (M ′

β/M ′
α) ⊗R R̃ equals Zr/Zσ for suitable

σ < τ ∈ ℵ1. Thus (M ′
β/M ′

α) ⊗R R̃ is a direct sum of a free and a
divisible R̃-module, whence M ′

β/M ′
α is strongly flat, again contradicting

our assumption. Thus the subset E of ℵ1 is not stationary and the claim
follows.

The problem of extending Theorem 3.15 to modules of rank > ℵ1

arguing by transfinite induction seems to require the introduction of a
notion of κ-strongly flat modules, which is delicate as the definitions
of the similar notions of κ-free (see [3, p. 83]) or κ-projective (see [5,
p. 537]) modules show. Furthermore, a singular compactness theorem is
needed, analogous to the Shelah’s result for λ-free modules (λ a singular
cardinal; see [3, p. 107]) or its analogous for λ-projective modules, see
[5, p. 536].

We remark that the notion equivalent in Matlis’s sense to κ-strongly
flat modules is that of κ−K-free modules; this notion and the relative
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singular compactness theorem have been already developed in [1] for
Matlis valuation domains R of global dimension 2.

We close this section with an example of a reduced torsion-free
module of rank ℵ1 which is not strongly flat, but which is very close to
being so.

Example 3.16. In [5, XVI.2.2] a module M is constructed over any
valuation domain admitting a non principal countably generated ideal
J , which is the union of a continuous well-ordered ascending chain
{Mσ}σ<ℵ1 of countably generated projective pure submodules, and
such that M is not projective. M turns out to be ℵ1-projective, in
the sense defined in [5, XVI.2]. For any limit ordinal λ < ℵ1, the factor
module Mλ+1/Mλ is isomorphic to J , whence it is not strongly flat. It
follows that the set E = {σ < ℵ1 | Mτ/Mσ is not strongly flat for some
τ} is stationary in ℵ1. From the proof of Theorem 3.15, it follows that
M cannot be strongly flat.

Acknowledgments. We are deeply indebted to the referee who
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