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ON THE PRESERVATION OF
DIRECTION CONVEXITY UNDER

DIFFERENTIATION AND INTEGRATION

FRODE RØNNING

ABSTRACT. For functions which are convex in one direc-
tion, we investigate to what extent this property is preserved
under differentiation and integration.

1. Introduction. A domain M ⊂ C is said to be convex in the
direction eiϕ if for every a ∈ C the set

M ∩
{
a + teiϕ : t ∈ R

}

is either connected or empty. We denote by C(ϕ) the family of univalent
analytic functions f in the unit disk D with the property that f(0) = 0
and f(D) is convex in the direction eiϕ. One of the interesting features
about functions that are convex in one direction is that it is not in
general so that f ∈ C(ϕ) implies that f(rz) ∈ C(ϕ), for r < 1. It was
conjectured by Goodman and Saff [2], and later proved by Ruscheweyh
and Salinas [9], that for 0 < r ≤

√
2 − 1 we have that f ∈ C(ϕ)

implies f(rz) ∈ C(ϕ), but for
√

2−1 < r < 1 this is not necessarily the
case. In solving the Goodman-Saff conjecture, Ruscheweyh and Salinas
introduced the class DCP, direction convexity preserving functions [9].

Definition 1.1. A function g, analytic in D, is said to be direction
convexity preserving, DCP, if for every ϕ ∈ R, and every f ∈ C(ϕ) we
have g ∗ f ∈ C(ϕ). (∗ denotes the Hadamard product.)

The problem of finding the largest r for which f ∈ C(ϕ) implies
f(rz) ∈ C(ϕ) can then be formulated as finding the largest r for
which the geometrical series 1/(1 − rz) is in DCP. Since we have
z/(1 − z)2 ∗ f(z) = zf ′(z) and log(1 − z) ∗ f(z) =

∫ z

0
(f(ζ)/ζ)dζ, it

is clear that if we can find the DCP-radius of the Koebe function
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and the logarithm, we will get results about direction convexity for
the derivative and the integral of a given function in C(ϕ). To check
whether a function belongs to DCP we shall use a criterion developed
in [9], but to state this criterion we need a definition.

Definition 1.2. Let u be a real, continuous, 2π-periodic function.
The function u is said to be periodically monotone if there exist
numbers θ1 < θ2 < θ1 + 2π such that u increases on (θ1, θ2) and
decreases on (θ2, θ1 + 2π).

The following result was established in [9].

Theorem 1.1. (Ruscheweyh and Salinas). Let g be nonconstant
and analytic in D, continuous on D with u(θ) = Re g(eiθ) three
times continuously differentiable. Then g ∈ DCP if and only if u is
periodically monotone and satisfies

(1.1) u′′(θ)2 − u′(θ)u′′′(θ) ≥ 0, θ ∈ R.

2. The main results. In [9] it was also shown that ur(θ) =
Re 1/(1− reiθ) satisfies the condition (1.1) for 0 < r ≤

√
2− 1, and for

no larger value of r, which settled the Goodman-Saff conjecture. We
shall prove the following result.

Theorem 2.1. Let f ∈ C(ϕ). Then zf ′(rz) ∈ C(ϕ) for 0 < r ≤
2 −

√
3 = 0.2679 . . . , and the number 2 −

√
3 is best possible.

Proof. The result follows immediately from Lemma 3.1.

There is one interesting observation to be made in connection with
this result. If we denote by C and S∗ the classes of convex and starlike
univalent functions, respectively, it is well known that f ∈ C if and
only if zf ′(rz) ∈ S∗ (Alexander’s theorem [1, Theorem 2.12]). The
radius of convexity in the whole class of normalized univalent functions
is known to be 2 −

√
3, and since this is sharp for the Koebe function

the same number is also the radius of convexity in S∗. This was proved
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by Nevanlinna in 1919 [6]. These two results together give that if f ∈ C
then zf ′(rz) ∈ C for 0 < r ≤ 2 −

√
3, and the number 2 −

√
3 is best

possible. Hence, we have the same number occurring as both radius
of convexity and radius of direction convexity for the derivative of a
function that is convex, respectively convex in one direction. However,
if we turn to the integral the situation becomes different. It is well
known that if f ∈ C then

∫ z

0
(f(ζ)/ζ)dζ is also in C, but the same does

not hold for C(ϕ). In [5], see also [8], it is established that the function
log(1 − rz) belongs to DCP for 0 < r ≤ (4

√
2 −

√
5)/(3

√
3) and for no

larger value of r. This gives the following result which we include here
for completeness.

Theorem 2.2 (Eva-Maria Nash). Let f ∈ C(ϕ). Then
∫ rz

0

(f(ζ)/ζ) dζ ∈ C(ϕ) for 0 < r ≤ (4
√

2 −
√

5)/(3
√

3) = 0.6583 . . . ,

and the number (4
√

2 −
√

5)/(3
√

3) is best possible.

A well-known class of univalent functions is the class of close-to-
convex functions which we shall denote by K. Geometrically close-
to-convexity of a function f means that the domain f(|z| ≤ r < 1)
has the property that there are no parts of its boundary curve where
the tangent turns backward through an angle greater than or equal
to π. An equivalent characterization, due to Lewandowski [3, 4], is
that the domain is linearly accessible, meaning that every point on the
boundary can be reached from the outside by nonintersecting straight
lines. It is clear that domains that are convex in one direction also are
linearly accessible. Therefore the following result fits into the context
of this paper.

Theorem 2.3. Let f ∈ K. Then zf ′(z) ∈ C for 0 < r ≤ 5 −
√

24 =
0.1010. . . . , and the number 5 −

√
24 is best possible.

The proof of Theorem 2.3 is in Section 4.

Corollary 2.4. Let f ∈ C(ϕ). Then zf ′(z) ∈ C for 0 < r ≤ 5−
√

24,
and the number 5 −

√
24 is best possible.
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Proof. That the radius in this case is at least 5 −
√

24 follows from
Theorem 2.3 and the aforementioned relation between K and C(ϕ),
and the sharpness follows from Lemma 3.1, part (2).

3. The Koebe function. For the rotated Koebe function

kα,r(z) = eiα z

(1 − rz)2

we get

uα(ϕ) = Re kα,r(eiϕ) =
cos α(−2r+ (1+r2) cosϕ) − sin α(1−r2) sin ϕ

(1 + r2 − 2r cos ϕ)2
.

In order to find the DCP-radius of kα,r we should check that The-
orem 1.1 can be applied to the function uα(ϕ), compute u′′

α(ϕ)2 −
u′

α(ϕ)u′′′
α (ϕ) and find the largest r = r(α) for which this expression is

positive. This we are not able to do in general due to the fact that the
computations become too involved, so we shall only discuss two cases,
α = 0 and α = π/2. Even these two special cases will involve heavy
computation, and we will to a large extent omit the details.

Lemma 3.1. Let r(α) denote the largest r < 1 for which the function
kα,r belongs to DCP. Then the following holds.

(1) r(0) = 2 −
√

3.

(2) r(π/2) = 5 −
√

24.

Proof. The case α = 0. We easily verify that for r ≤ 2 −
√

3 the
function u0 is periodically monotone, so Theorem 1.1 can be applied.
When we compute u′′

0(ϕ)2 −u′
0(ϕ)u′′′

0 (ϕ) we end up with an expression
which is positive if and only if a polynomial of degree six in x = cos ϕ
is positive. This polynomial is

p1(r, x) = a6(r)x6+a5(r)x5+a4(r)x4+a3(r)x3+a2(r)x2+a1(r)x+a0(r),
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where

a6(r) = 128r4(1 + r2)2

a5(r) = 32r3(1 − 11r2 − 11r4 + r6)
a4(r) = −16r2(1 + r2 + r6 + r8)
a3(r) = −8r(1 − 13r2 + 12r4 + 12r6 − 13r8 + r10)
a2(r) = 16r2(1 − 14r2 + 34r4 − 14r6 + r8)
a1(r) = 8r(1 − 13r2 + 20r4 + 20r6 − 13r8 + r10)
a0(r) = 1 − 18r2 + 175r4 − 380r6 + 175r8 − 18r10 + r12.

We shall find the largest r for which p1(r, x) ≥ 0, x ∈ [−1, 1]. Our
strategy is to compare this polynomial with other polynomials in order
to successively obtain polynomials of lower degree which are easier to
analyze. We see that

p1(r,−1) = (1 + r)8(1 − 4r + r2)2

p1(r, 1) = (1 + r)8(1 + 4r + r2)2;

hence, p1(2 −
√

3,−1) = 0, so the DCP-radius is at most 2 −
√

3. Our
aim is to prove that p1(r, x) ≥ 0 for all r ∈ [0, 2−

√
3] and all x ∈ [−1, 1].

Define

q1(r, x) = p1(r, 1)
(x + 1)2

4
.

Then q1(r,−1) = 0, q1(r, 1) = p1(r, 1) and q1(r, x) ≥ 0, x ∈ [−1, 1].
This means that

p2(r, x) =
p1(r, x) − q1(r, x)

1 − x

will be a polynomial of degree five in x. If we can show that p2(r, x) ≥ 0
for all r ∈ [0, 2 −

√
3] and all x ∈ [−1, 1], we are done. The coefficients
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of p2 are listed below.

b5(r) = −128r4(1 + r2)2

b4(r) = −32r3(1 + 4r − 11r2 + 8r3 − 11r4 + 4r5 + r6)
b3(r) = 16r2(1 − 2r − 7r2 + 22r3 − 16r4 + 22r5 − 7r6 − 2r7 + r8)
b2(r) = 8r(1 + 2r − 17r2 − 14r3 + 56r4 − 32r5 + 56r6 − 14r7

− 17r8 + 2r9 + r10)
b1(r) = (1 + 32r − 18r2 − 512r3 + 511r4 + 1504r5 − 2780r6 + 1504r7

+ 511r8 − 512r9 − 18r10 + 32r11 + r12)/4
b0(r) = (3 − 54r2 − 32r3 + 637r4 + 288r5 − 1940r6 + 288r7

+ 637r8 − 32r9 − 54r10 + 3r12)/4.

Here we see that

p2(r,−1) = (1 + r)8(1 − 4r + r2)2/2
p2(r, 1) = (1 − r)2(1 + 4r + r2)(1 + 14r − 8r2 − 238r3 + 206r4

− 238r5 − 8r6 + 14r7 + r8).

A numerical calculation, using Mathematica, of the roots of p2(r, 1)
shows that the smallest positive root is r = 0.277819 · · · > 2−

√
3. Now

we define

q2(r, x) = p2(r, 1)
(x + 1)3

8
.

Then q2(r,−1) = 0, q2(r, 1) = p2(r, 1) and q2(r, x) ≥ 0, x ∈ [−1, 1] and
r ≤ 2 −

√
3. This means that

p3(r, x) =
p2(r, x) − q2(r, x)

1 − x
will be a polynomial of degree four in x, and again it will be enough to
show that this is positive. The coefficients of p3 are listed below.

c4(r) = 128r4(1 + r2)2

c3(r) = 32r3(1 + 8r − 11r2 + 16r3 − 11r4 + 8r5 + r6)
c2(r) = (1 + 16r − 114r2 + 176r3 + 2751r4 − 4032r5 + 3940r6− 4032r7

+ 2751r8 + 176r9 − 114r10 + 16r11 + r12)/8
c1(r) = (1 − 50r2 + 64r3 + 767r4 − 704r5 − 156r6 − 704r7 + 767r8

+ 64r9 − 50r10 + r12)/2
c0(r) = (5 − 16r − 122r2 + 272r3 + 1467r4 − 1024r5 − 1676r6− 1024r7

+ 1467r8 + 272r9 − 122r10 − 16r11 + 5r12)/8.
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Numerical calculations show that the smallest positive root of c0(r)
is r = 0.73053 · · · > 2 −

√
3, and all the other polynomials ci(r) are

strictly positive for r between 0 and 1. Therefore we can conclude that
p3(r, x) > 0 for x ∈ [0, 1], and the r-values in question. It remains to
investigate x ∈ [−1, 0).

Define

q3(r, x) = p3(r, 1)
(x + 1)4

16
.

Then q3(r,−1) = 0, q3(r, 1) = p3(r, 1) and q3(r, x) ≥ 0, x ∈ [−1, 1] and
r ≤ 2 −

√
3. This means that

p4(r, x) =
p3(r, x) − q3(r, x)

1 − x

will be a polynomial of degree three in x, and we shall proceed to
prove that this is greater or equal to zero for all r ∈ [0, 2−

√
3] and all

x ∈ [−1, 0]. The coefficients of p4 are as follows.

d3(r) = (5 − 218r2 + 480r3 − 3013r4 − 5344r5 − 12492r6 − 5344r7

− 3013r8 + 480r9 − 218r10 + 5r12)/64
d2(r) = (25 − 1090r2 + 352r3 + 1319r4 − 4192r5 − 29692r6 − 4192r7

+ 1319r8 + 352r9 − 1090r10 + 25r12)/64
d1(r) = (47 − 128r − 1486r2 + 1824r3 + 10385r4 − 4000r5 − 37860r6

− 4000r7 + 10385r8 + 1824r9− 1486r10− 128r11 + 47r12)/64
d0(r) = (35 − 128r − 758r2 + 1696r3 + 6557r4 − 2848r5 − 17300r6

− 2848r7 + 6557r8 + 1696r9 − 758r10− 128r11 + 35r12)/64

The smallest positive root of d0(r) is seen to be 0.55922 · · · > 2 −
√

3.
Therefore p4(r, 0) > 0 for the r-values in question. Hence, if we define
the second degree polynomial p5(r, x) by

p4(r, x) − p4(r, 0)(x + 1)2 = −64xp5(r, x)

our result will be established if we can prove that p5(r, x) ≥ 0 for
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x ∈ [−1, 0] and r ≤ 2 −
√

3. The coefficients of p5(r, x) are

e2(r) = −5 + 218r2 − 480r3 + 3013r4 + 5344r4 + 12492r6 + 5344r7

+ 3013r8 − 480r9 + 218r10 − 5r12

e1(r) = 10 − 128r + 332r2 + 1344r3 + 5238r4 + 1344r5 + 12392r6

+ 1344r7 + 5238r8 + 1344r9 + 332r10 − 128r11 + 10r12

e0(r) = 23 − 128r − 30r2 + 1568r3 + 2729r4 − 1696r5 + 3260r6

− 1696r7 + 2729r8 + 1568r9 − 30r10 − 128r11 + 23r12.

We see that p5(r,−1) = 8(1 + r)8(1 − 4r + r2)2 which is greater than
or equal to zero for r ≤ 2 −

√
3. The derivative with respect to x of

p5(r, x) is
p6(r, x) = e1(r) + 2e2(r)x.

We see that

p6(r,−1) = 4(1 + r)2(1 − 4r + r2)U(r)
p6(r, 0) = e1(r),

where

U(r) = 5 − 22r − 40r2 + 374r3 + 262r4 + 374r5 − 40r6 − 22r7 + 5r8.

Both U(r) and e1(r) can be seen to have no real roots. Therefore we
must have p5(r, x) ≥ p5(r,−1) ≥ 0 for −1 ≤ x ≤ 0, 0 < r ≤ 2 −

√
3.

The case α = π/2. It is straightforward to verify that uπ/2 is
periodically monotone, and we omit the details. The expression
u′′

π/2(ϕ)2 − u′
π/2(ϕ)u′′′

π/2(ϕ) gives rise to a polynomial of degree five,

p1(r, x) = a5(r)x5 + a4(r)x4 + a3(r)x3 + a2(r)x2 + a1(r)x + a0(r)

with

a5(r) = 32r3(1 + r2)
a4(r) = 16r2(1 − 7r2 + r4)
a3(r) = 2r(4 − 12r2 − r4 + 4r6)
a2(r) = −16r2(5 − 6r2 + 5r4)
a1(r) = −4r(1 − 29r2 − 29r4 + r6)
a0(r) = 1 + 20r2 − 154r4 + 20r6 + r8.
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Here we get

p1(r,−1) = (1 + r)6(1 − 10r + r2)
p1(r, 1) = (1 − r)6(1 + 10r + r2)

which shows that the DCP-radius is at most 5−
√

24. From Theorem 2.3
and the relation between K and C(ϕ) we know that for f ∈ C(ϕ)
and r ≤ 5 −

√
24 we have zf ′(rz) ∈ C and therefore in particular

izf ′(rz) ∈ C(ϕ). Hence, kπ/2,r ∈ DCP for 0 < r ≤ 5 −
√

24.

4. Proof of Theorem 2.3. Let f ∈ K and set F (z) = zf ′(z). We
shall find the largest r = |z| such that

(4.1) Re
{

1 +
zF ′′(z)
F ′(z)

}
> 0

with

T =
{

1 + xz

(1 − z)3
, |x| = 1, z ∈ D

}

and
V = {f ′ | f ∈ K} .

it is well known [7, Theorem 1.9] that

T ⊂ V ⊂ du(T ),

where du(T ) denotes the dual hull of T . (Here we assume the additional
normalization f ′(0) = 1.) Using the duality principle [7, Corollary 1.1]
we can therefore conclude that if (4.1) holds for F (z) = z(1 + xz)/(1−
z)3, it holds for the whole class K. With z = reiθ and x = eiϕ we find,
after some computation that (4.1) holds for this particular F if and
only if

(4.2)
1 + 16r2 + r4 + 8r(1 + r2) cos θ + 18r2 cos ϕ + 2r2 cos 2θ

+6r(1 + r2) cos(ϕ + θ) + 6r2 cos(ϕ + 2θ) ≥ 0,

θ, ϕ ∈ [0, 2π). With r = 5 −
√

24 we have 1 + r2 = 10r and
1 + 2r2 + r4 = 100r2, in which case (4.2), after cancelling the factor
2r2, turns into

(4.3) 57+40 cos θ+9 cos ϕ+cos 2θ+30 cos(ϕ+θ)+3 cos(ϕ+2θ) ≥ 0.
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Using calculus one can verify that, except for ϕ = 0 and θ = π where
we have equality, strict inequality holds in (4.3). Hence, (4.2) holds for
r ≤ 5 −

√
24.
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