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HURWITZ SPACES AND
BRAID GROUP REPRESENTATIONS

ERIC P. KLASSEN AND YAACOV KOPELIOVICH

ABSTRACT. We give a new construction of a Hurwitz
space, which is a moduli space of all branched covers of the
Riemann sphere having a given combinatorial description.
The action of the fundamental group of the Hurwitz space
on the homology of the branched cover gives rise to a linear
represenation of a finite index subgroup of the spherical braid
group, or of a finite extension of such a subgroup. We
construct examples of each of these two cases. Using a result
of Fried, we use these representations to extract information
about the dimension of the image of the Hurwitz space in the
genus g moduli space.

0. Introduction. In this paper we investigate certain moduli spaces,
Hurwitz spaces, of branched covers of the Riemann sphere S2 and
representations of finite index subgroups of the spherical braid group
which arise from these Hurwitz spaces. (By spherical braid group, we
mean the group of braids in the two-sphere; we will refer to the more
classical group of braids in the plane as the planar braid group.)

Hurwitz spaces play an important role in realizing groups as Galois
groups, a role which has been explored primarily by Fried and Völklein
in [4, 5, 7, 14, 15], etc. In these works they have given a couple of
constructions of Hurwitz spaces, examined their algebraic structure,
and explored their applications to the inverse Galois problem. In
Section 1 of this paper we give an alternative construction of the
Hurwitz spaces, exhibiting them as homogeneous spaces of Aut (S2),
the group of orientation preserving homeomorphisms of S2. This point
of view enables us to prove that the universal cover of a Hurwitz space is
homotopy equivalent to S3 (see the discussion just after Proposition 4),
which is equivalent to showing that the Teichmuller space of a sphere
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with three or more punctures is contractible. Of course, this is not a
new result, but we believe our rather elementary topological proof is
interesting enough to include.

In [1], Arnol’d described representations, i.e., linear actions, of the
planar braid groups on the homology of hyperelliptic curvs. Later,
Magnus and Peluso [12] analyzed these representations and related
ones obtained from “generalized” hyperelliptic curves in more detail
and expressed them in terms of Burau representations. (Note that
the Burau representation doesn’t satisfy the extra relation it would
need to provide a representation of the spherical braid group.) In [5],
Fried used Hurwitz spaces to describe an action of certain finite index
subgroups of the spherical braid group on the homology of Riemann
surfaces given as branched covers of S2 without automorphisms. (Since
these subgroups have finite index, one may obtain representations of
the whole spherical braid group by inducing.) In Section 1 of this
paper, we describe these representations using the topological point of
view developed in our construction of the Hurwitz spaces. We also
show that, in the case where the original branched cover has nontrivial
automorphisms, instead of obtaining a representation of a subgroup of
the spherical braid group, one obtains a representation of an extension
of this subgroup, where the extension is precisely by the group of
automorphisms of the original covering space of S2.

To compute explicit examples of these representations we give, in
Section 2, an algorithm that enables us to construct a homology basis
of a branched cover of S2 given its combinatorial description. Such
algorithms have been described before, e.g., Tretkoff and Tretkoff [13].
We give one which is different from what we have seen in print, and
seems best suited to our needs.

In Section 3 we use this algorithm to compute explicitly two examples
which illustrate the ideas above, one with automorphisms and one with-
out automorphisms. For the example with automorphisms, we use the
classical example of hyperelliptic curves. This example was discussed
by Arnol’d and by Magnus and Peluso, but they only considered the
planar braid group, not the spherical one; i.e., they didn’t let any non-
infinite branch points pass through infinity and, if infinity was a branch
point, they didn’t let it move around. Since the automorphism group is
Z2 in this case, our general theory shows that one obtains a represen-
tation of a Z2-extension of the spherical braid group. We show that, in
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this case, the representation does not factor through a representation
of the unextended braid group.

Next we explain how the theory developed in Sections 1 and 2 can
be used to attack the following question.

Question. Let σ1 . . . σr be a branch cyclic description of genus g
Riemann surface. What is the moduli dimension of the set of all
Riemann surfaces X admitting the same branch cyclic description,
while allowing the location of the branch points in the Riemann sphere
to vary?

Using a theorem by Fried we indicate how to answer this question
for genus 1 curves for any given branch cyclic description σ1 . . . σr.
We illustrate this approach with our last example in the section. The
authors used a similar approach jointly with Fried to realize An as
a generic monodromy group of genus 1 curves in [6]. We think that
the computational approach rather than the geometric approach of [6]
should improve the analysis of possible monodromy groups occurring
generically in genus 1.

1. A topological construction of Hurwitz spaces. Let φ : Σ →
S2 be an n-sheeted branched cover, and let X = {x1, . . . , xr} denote
the points of S2 over which branching occurs. Suppose one chooses a
new set X ′ = {x′

1, . . . , x′
r} with each x′

i close to its corresponding xi.
One may deform the original branched cover to a new one in which
the branching takes place over X ′ instead of X, and whose structure
over a neighborhood of X ′ corresponds precisely to the old structure
over a neighborhood of X. To be a bit more precise, one may obtain
the new branched cover φ′ : Σ → S2 by letting φ′ = g ◦ φ, where g
is a self-homeomorphism of S2, close to the identity, taking each xi to
x′

i. We will construct a connected moduli space H, called a Hurwitz
space, encoding the above deformations in the sense that each point
of H corresponds to an equivalence class of branched covers, where
φ1 : Σ1 → S2 is equivalent to φ2 : Σ2 → S2 if and only if there is a
homeomorphism h : Σ1 → Σ2 such that φ1 = φ2 ◦ h.

We will see that the construction of this Hurwitz space H is straight-
forward.

Next we would like to construct a total space U which is a bundle
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over H with fiber Σ in which each fiber maps to S2 by the branched
cover corresponding to the point in the base space H over which that
fiber lies, and all of these maps fit together to give a continuous map
Φ : U → S2. One interesting result of this construction, when it is
possible, is a natural action (up to isotopy) of π1(H) on Σ, and hence
a representation of π1(H) on H1(Σ). (In this paper, all homology
will be with integer coefficients unless otherwise indicated.) It turns
out that the construction of U is straightforward if we assume there
are no nontrivial automorphisms, i.e., self-equivalences, of the original
branched cover φ : Σ → S2. However, if we start with a φ that admits
nontrivial automorphisms, then one cannot in general construct U with
the above properties and cannot obtain a natural representation of
π1(H) on H1(Σ) as just described. In this case we will show how
to make a related construction which results in a representation on
H1(Σ) of an extension of π1(H) by Aut (Σ). In Section 3 of this paper,
we will give an example in which this extension is nontrivial and the
representation doesn’t factor through π1(H).

We now turn to the construction of H. As above, fix an n-sheeted
branched cover φ : Σ → S2, and let X = {x1, . . . , xr} denote the points
of S2 over which branching occurs. Let Aut (S2) denote the group
of orientation-preserving homeomorphisms of S2 with the compact-
open topology. The key idea in this construction is to define H as a
homogeneous space of the group Aut (S2). We begin with the following
lemma.

Lemma 1. The inclusion SO(3) → Aut (S2) is a weak homotopy
equivalence, i.e., it induces an isomorphism on all homotopy groups
and, hence, on all homology groups.

Proof. Kirby and Siebenmann [11, p. 254] prove that O(2) →
Homeo (R2) is a homotopy equivalence. Using the 5-lemma to compare
the homotopy exact sequences of the fibrations

O(2) −→ O(3) −→ S2

and
Homeo (R2) −→ Homeo (S2) −→ S2

then proves the lemma.
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Note. The stronger theorem, that SO(3) → Aut (S2) is a homotopy
equivalence, is proved by Haver in [10].

Define the “large diagonal” ∆ ⊂ (S2)r by ∆ = {(y1, . . . , yr) : yi =
yj for some i �= j}. Let Sr denote the symmetric group and define

Π =
(S2)r − ∆

Sr
.

Clearly, (S2)r − ∆ → Π is a covering space. Let P denote the
composition

Aut (S2) −→ (S2)r − ∆ −→ Π,

where the first map is the evaluation f �→ (f(x1), . . . , f(xr)). Define
the following three subgroups of Aut (S2):

G = P−1[x1, . . . , xr]
G0 = the path component of G containing Id
G = {g ∈ Aut (S2) : there exists a homeomorphismh : Σ → Σ

with φ = g ◦ φ ◦ h}.

We now observe that G0 ⊆ G ⊆ G: The second of these inclusions is
easy since, by definition, if g ∈ G, then the branched covers φ and g ◦φ
are equivalent and, hence, have the same branch locus in S2. The first
of these inclusions follows immediately from Lemma 3, below.

We define H = Aut (S2)/G to be our Hurwitz space, where we are
associating to each coset gG the branched cover g ◦ φ : Σ → S2. Note
that, since Π = Aut (S2)/G and G contains the identity component
of G, the map H = Aut (S2)/G → Aut (S2)/G = Π exhibits H as a
covering space of Π. This cover is finite-sheeted since once the images of
the branch points are fixed, there are only a finite number of n-sheeted
branched covers of S2 (up to equivalence). The fundamental group of
Π is the well-known r-strand braid group of S2, which we will denote
Br(S2). Thus, π1(H) is a finite index subgroup of Br(S2).

Comment. We briefly remind the reader of the more conventional
definition of Br(S2). Define an r-strand braid to be a union of r disjoint
polygonal paths in S2× [0, 1] satisfying (i) all the paths are monotonic,
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FIGURE 1. The generator Qk.

i.e., they have no local extrema with respect to the second coordinate,
and (ii) each path begins at a point (xi, 0) and ends at a point (xj , 1)
where i and j may or may not be equal. To form the braid group
Br(S2), first we declare two r-strand braids to be equivalent if we may
take one to the other by a level preserving isotopy of S2 × [0, 1] which
is the identity on S2 × {0} and S2 × {1}. The group operation is then
defined by simply stacking two of the braids on top of each other, i.e.,
identifying S2 × {1} in the first with S2 × {0} in the second, and then
renormalizing the vertical coordinate to have length 1 again. Of course,
the identity element is simply a union of vertical paths joining each xi

to itself. It is easy to see that this group is generated by elements
Q1, . . . , Qr−1 defined by Figure 1.

The relations among these generators are discussed later in this
section, just after the statement of Proposition 4. We leave it to the
reader to see that this definition of the braid group coincides with π1(Π)
as indicated above.

We now pause to prove two lemmas involving G0. One of these lemmas
we have already used; we will also need them in what follows.

Lemma 2. If r ≥ 3, then πi(G0) = 0 for all i.

Lemma 3. Given g ∈ G0, there is a homeomorphism hg : Σ → Σ
such that g ◦ φ = φ ◦ hg. If r ≥ 3, there is a unique way of choosing
each hg such that g �→ hg defines a continuous group homomorphism
G0 → Homeo (Σ) and such that φ is equivariant with respect to the
resulting action of G0 on Σ.
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Proof of Lemma 2. During this proof, we will incorporate the
number r into the notation for G0 and related constructions as a
superscript in order to keep track of which r we are considering. Let
Ḡr = {g ∈ Aut (S2) : g(xi) = xi for 1 ≤ i ≤ r}. Clearly, Gr

0 is the
identity component of Ḡr and Aut (S2)/Ḡr = (S2)r − ∆. It follows
that Q = Aut (S2)/Gr

0 is a covering space of (S2)r − ∆. We will now
show that πi(Gr

0) = 0 for all r and for i ≥ 3. Consider the homotopy
sequence of the fibration

(1) Γ −→ (S2)r − ∆ −→ (S2)r−1 − ∆

where Γ is the complement of r− 1 points in S2 and, hence, homotopy
equivalent to a graph. It immediately follows that πi((S2)r − ∆) →
πi((S2)r−1 − ∆) is an isomorphism for i ≥ 3 and r > 1. By looking
at a sequence of such maps, we see that, for this range of i and r,
πi((S2)r − ∆) ∼= πi(S2). Now consider the commutative diagram

πi(Aut (S2)) � πi(Q)

�

πi((S2)r − ∆)

�

πi(SO(3))

�

� πi(S2)

The two vertical maps on the right are isomorphisms by what we
just proved and because one is induced by a covering map. The
horizontal map on the bottom is an isomorphism by the fibration
S1 → SO(3) → S2. The lefthand vertical map, induced by inclusion,
is an isomorphism by Lemma 1. It follows that the top map is an
isomorphism for i ≥ 3 and for all r ≥ 1. Applying this fact to the
fibration Gr

0 → Aut (S2) → Q and its long exact homotopy sequence

(2)
· · · −→ πi(Q) −→ πi−1(Gr

0) −→ πi−1(Aut (S2)) −→ πi−1(Q) −→ · · ·

proves that πi(Gr
0) = 0 for i ≥ 3 and for all r ≥ 1. Because, in

addition, we know that π2(Aut (S2)) = π2(SO(3)) = 0, it follows that
π2(Gr

0) = 0. To show that, for r ≥ 3, π1(Gr
0) = 0, we observe from the
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long exact sequence (2) that it will suffice to show first that π2(Q) = 0
and secondly that π1(Aut (S2)) → π1(Q) is injective.

For the first, we instead show that π2((S2)r − ∆) = 0 which is
equivalent since Q → (S2)r − ∆ is a covering map. Since PSL(2, C)
acts freely and transitively on (S2)3−∆, it follows that π2((S2)3−∆) ∼=
π2(PSL(2, C)) ∼= π2(SO(3)) = 0. Now assume inductively that r ≥ 4
and π2((S2)r−1−∆) = 0. The inductive step then follows immediately
from the fibration (1) above and its long exact sequence.

We now need to show that π1(Aut (S2)) → π1(Q) is injective for
r ≥ 3. First note that π1(Aut (S2)) → π1((S2)3 − ∆) is injective since
Aut (S2) � SO(3) � (S2)3 − ∆. By applying π1 to the commutative
diagram

Q

�

Aut (S2)
�
�
�
�
���

�
�
���

� (S2)r − ∆

�

(S2)3 − ∆

and, using the fact that π1(Aut (S2)) → π1((S2)3 − ∆) is an isomor-
phism, the desired injectivity follows for r ≥ 3. This completes the
proof of Lemma 2.

Proof of Lemma 3. Let g ∈ G0. Choose a path gt in G0 from the
identity to g. Let y ∈ Σ− φ−1(X). Let α : I → Σ− φ−1(X) be the lift
of the path gt(φ(y)) which starts at y and define hg(y) = α(1). Define
hg to be the identity on φ−1(X). Then hg : Σ → Σ is a homeomorphism
and g ◦ φ = φ ◦ hg. Furthermore, if r ≥ 3, then, since π1(G0) = 0, any
two such paths gt would lead to homotopic paths in S2 − X. Hence,
for r ≥ 3, g �→ hg is a well-defined homomorphism G0 → Homeo (Σ)
making φ equivariant. This completes the proof of Lemma 3.

Clearly the subgroups G, G and G0 are not normal in Aut (S2).
However, G0, being the path component of the identity, is normal in
both G and G. As a result, we know that the covers Q → H and Q → Π
are regular covers, with deck groups G/G0 and G/G0, respectively. The
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question of whether G is normal in G, or, equivalently, whether H → Π
is regular, is more subtle and will depend on the original branched cover
φ : Σ → S2. It is fairly easy to see that, if φ : Σ → S2 is not regular,
then G cannot be normal in G. However, the converse is not true.

By considering the exact sequence (2) introduced in the proof of
Lemma 2, we see that Q is homotopy equivalent to SO(3) (since both
are weakly homotopy equivalent to Aut (S2)). The group PSL(2, C) ⊂
Aut (S2) acts on Q from the left. Since SO(3) → PSL(2, C) → Q is a
homotopy equivalence, we have

Proposition 4. The space PSL(2, C) \ Q is contractible.

Note. This is not a new result, since PSL(2, C) \ Q is just the
Teichmuller space of the r-punctured sphere.

Since π1(Q) = Z2, it follows that Q is not quite the universal cover
of Π. We conclude that the universal cover of Q and, in fact, of all the
spaces H (no matter which branched cover we began with, as long as
r ≥ 3) is homotopy equivalent to S3, the universal cover of SO(3). To
understand more precisely the covering space Q → Π, we will begin by
recalling some basic facts about the braid group Br(S2) = π1(Π). (Our
main reference for these facts is Birman’s book [2].) A presentation
for Br(S2) is given by the generators Q1, . . . , Qr−1 and the following
relations

QiQj = QjQi when |j − i| > 1
QiQi+1Qi = Qi+1QiQi+1 for i = 1, . . . , r − 1

Q1Q2 · · ·Qr−1Qr−1Qr−2 · · ·Q1 = 1.

Note that the first two relations give the classical r-strand braid group
of the disc, while the third is necessary because our braids are in
S2. This presentation may be found in [2, p. 34] but was discovered
originally by Fadell and van Buskirk [3]. The center of this group is
the subgroup of order 2 generated by (Q1 · · ·Qr−1)r. (For a proof, see
[2, p. 154].) This generator is pictured in Figure 2. If one pictures
the r stands as drawn lengthwise on a single ribbon, this generator
corresponds to performing a single full twist of the ribbon.
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FIGURE 2.

Proposition 5. The covering space Q → Π corresponds to the center
of π1(Π).

Proof. Since G0 is contractible, π1Q = π1Aut (S2) = π1SO(3) = Z2.
Furthermore, the generator of this Z2 is a single rotation of S2. The
braid arising from this rotation is precisely the indicated generator of
the center of the braid group, proving the proposition.

We now turn to the construction of the universal bundle U over H.
For the remainder of this section, we assume that r ≥ 3. It is natural
to construct this bundle first over Aut (S2) since H is a quotient of
Aut (S2). Thus, define

Φ : Aut (S2) × Σ −→ S2

by Φ(f, x) = f(φ(x)). For each f ∈ Aut (S2), observe that Φ | {f} ×Σ
is precisely the branched cover f ◦φ. Note that G0 acts on Aut (S2)×Σ
from the right by (f, x) · g = (f ◦ g, h−1

g (x)), where g �→ hg is the
homomorphism defined in Lemma 3. Clearly, (Φ(f, x))·g = Φ((f, x)·g);
in other words, g identifies the fiber over f with the fiber over f ◦ g by
an equivalence between the branched covers obtained by restricting Φ
to these fibers. Define

W = (Aut (S2) × Σ)/G0;

then Φ induces a map, which we continue to call by the same name,
Φ : W → S2. Note that W is a fiber bundle over Q = Aut (S2)/G0 with
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fiber Σ. Because G0 is connected, there is a canonical homeomorphism
(up to isotopy) between any two fibers of W → Q, and hence a
canonical isomorphism between their homology groups.

We have an action of G/G0 on Q with quotient H. Can this action be
covered by an action of G/G0 on W by maps which induce equivalences
between the fibers, with respect to the branched covers induced by Φ?
If so, the quotient will give us the desired space U . The answer to
this question is, in general, no, but depends on the group Aut (φ) of
automorphism (self-equivalences) of the branched cover φ : Σ → S2.
Define

G̃ = {(g, h) : g ∈ G, h : Σ → Σ is a homeomorphism, and g◦φ◦h−1 = φ}.

There is an exact sequence

1 −→ Aut (φ) −→ G̃ −→ G −→ 1.

Clearly G̃ acts on Aut (S2) × Σ from the right by (f, x) · (g, h) =
(f ◦ g, h−1(x)).

For the remainder of this section, we assume that r ≥ 3. Lemma 3
provides a continuous injective group homomorphism G0 → G̃ defined
by g �→ (g, hg). The image of this map is the identity component of G̃

and, hence, a normal subgroup of G̃. Hence we have the exact sequence

(3) 1 −→ Aut (φ) −→ G̃/G0 −→ G/G0 −→ 1.

Furthermore, the group G̃/G0 acts on W in a way that covers the action
of G/G0 on Q (as the group of deck transformations of Q → H). If
Aut (φ) = 1, then G̃/G0 = G/G0 and U = W/(G/G0) is our universal Σ-
bundle over H which, in turn, yields the desired representation of π1(H)
on H1(Σ). In general, however, we obtain such a universal bundle only
if there is a monomorphism G/G0 → G̃/G0 splitting the exact sequence
(3) above.

2. The homology of a branched cover: an algorithm. Since
we now wish to carry out these computations for specific examples,
we will need an algorithm for calculating a basis of the fundamental
group and the first homology of a branched cover of S2. Because this
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procedure will be used more than once in this paper, we give a fairly
detailed explanation in this section.

Let Sn, i.e., the symmetric group, act on {1, . . . , n} from the right.
Let {x1, . . . , xr} be a set of r distinct points in S2; denote by X the
disjoint union of r open discs in S2, one centered at each xi. Let
w1, . . . , wr−1 be based, pairwise disjoint (except at the basepoint)
simple loops in S2 −X such that each wi winds once counterclockwise
around xi but encloses none of the other xj . Hence, w1w2 · · ·wr−1

is a loop which winds once clockwise around xr. It follows that
π1(S2 − X) = Fr−1 = F (w1, . . . , wr−1).

Assume we are given a group homomorphism ρ : Fr−1 → Sn such
that ρ(Fr−1) acts transitively on {1, . . . , n}. Denote ρ(wi) by ρi. Let
φ : Σ0 → S2 − X denote the connected covering space corresponding
to the subgroup ρ−1(Stab (1)). In the natural way, identify φ−1

(basepoint) with the set {1, . . . , n}. Let wij , for 1 ≤ i ≤ r − 1
and 1 ≤ j ≤ n, denote the lift of wi to Σ0 which starts at the
point j, and hence ends at the point (j)ρi. Let φ : Σ → S2 denote
the branched cover obtained by gluing a disjoint union of discs, one
for each component of ∂Σ0, to Σ0, each disc being attached by a
homeomorphism from its boundary to the corresponding component of
the boundary of Σ0. Then φ is extended to Σ as a branched cover in the
obvious way, so that all branch points are contained in φ−1{x1, . . . , xr}.
Following Magnus, we refer to the (r − 1)-tuple (ρ1, . . . , ρr−1) as the
signature of the branched cover. We now give an algorithm for getting
from the signature of Σ to a set of generators of π1(Σ) which is also a
basis of the free abelian group H1(Σ).

Step 1. Denote by Γ the subset of S2 with the following structure as
a graph: its only vertex is the basepoint, and its edges are the closed
loops w1, . . . , wr−1. Let

Γ̃ = φ−1(Γ) = {1, . . . , n} ∪
⋃
i,j

wij .

Let T denote a maximal tree in Γ̃ (probably found using a breadth-first
search) and, for each i = 1, . . . , n, let αi denote the unique simple edge
path in T joining 1 to i. Note that αi should be expressed as a word
in wij . Also, if a breadth-first search is used to find T , the αi may be
recorded virtually as a by-product.
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Step 2. It follows that π1(Σ0, 1) is free, with one generator uij for
each wij /∈ T . To be precise, uij = αjwijα

−1
(j)ρi

. Of course, when
thought of as homology classes, the uij form a basis of the free abelian
group H1(Σ0).

Step 3. Define a matrix A with (r−1)n columns as follows: index the
columns by the ordered pairs (i, j) where 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ n.
Given a cycle (i1, . . . , ik) appearing in ρi, construct a corresponding
row of A to have a 1 in each of the columns (i, i1), (i, i2), . . . , (i, ik)
and a 0 in all other columns. Do this for every cycle in every ρi for
1 ≤ i ≤ r − 1.

Next, let ρr = ρ1ρ2 · · · ρr−1. For each i = 1, · · · , n, let

Ei = {(1, i), (2, (i)ρ1), (3, (i)ρ1ρ2), . . . , (r − 1, (i)ρ1ρ2 · · · ρr−2)}.

Given a cycle C = (i1, . . . , ik) appearing in ρr, let EC = Ei1 ∪ Ei2 ∪
· · ·∪Eik

. (This is a disjoint union.) Then define a new row of A to have
a 1 in column (i, j) for each (i, j) ∈ EC and a 0 in all other columns.
In this manner define one new row of A for each cycle C appearing in
ρr. This completes the construction of A; it has one row for each cycle
in each of the permutations ρ1, . . . , ρr. Clearly, A is the matrix of the
boundary operator from the 2-chains to the 1-chains of Σ, since each
cycle in each ρi corresponds to the boundary of a 2-cell.

Step 4. The purpose of step 4 is to choose a subset of the set {uij}
which will actually be a basis of H1(Σ). Before describing the algebra,
we give a geometric description of this process. First remove a 2-
cell from Σ. (This corresponds to deleting one row of A.) This does
not change the homology of the surface. Next perform a sequence of
elementary collapses on the remaining surface as follows: Choose a 1-
cell which is in the boundary of the now-punctured surface but is not
in the tree T . This is a “free edge,” i.e., it is contained in the boundary
of only one 2-cell. The removal of this edge together with the 2-cell in
whose boundary it appears constitutes an elementary collapse and does
not change the homotopy type of the remaining surface. (The algebraic
version of this process will be the removal of a row and a column of
A.) Continue to perform elementary collapses in this manner (never
collapsing edges in the tree T ) until there are no remaining 2-cells. The



1018 E.P. KLASSEN AND Y. KOPELIOVICH

generators corresponding to those remaining edges which are not in T
are then seen to be a basis of H1(Σ). Meanwhile, note that each time
we perform a collapse we express the generator being eliminated in
terms of the remaining generators using the relation which corresponds
to the boundary of the collapsed 2-cell. Thus, once we are finished, we
have produced a basis and we have also expressed all of the generators
{uij} in terms of that basis.

We now give a strictly algebraic description of Step 4. Delete the
columns of A indexed by those pairs (i, j) for which wij ∈ T . Delete
one row of A (it doesn’t matter which one). Call the resulting matrix
B, and perform the following procedure on it. Find a column of B
containing a single 1 (so that all other entries in that column are
0). Eliminate from B the row and the column containing that 1.
Note that the deleted row gives a relation which enables us to express
the generator corresponding to the deleted column in terms of the
generators corresponding to the other 1’s in the deleted row. Hence the
generator corresponding to the deleted column is superfluous, which is
why we delete it. (It is worth stopping to record the expression of this
generator in terms of the others; this expression will be useful in the
ensuing computations.) Repeat this procedure (finding a column with
only one 1 and then deleting the corresponding column and a row) until
there is only one row remaining. Denote by S̃ the set of those pairs
(i, j) which correspond to the remaining columns of B. Choose a pair
(i0, j0) ∈ S̃ such that the entry indexed by (i0, j0) in the remaining
row of B is 1. Let S = S̃ − {(i0, j0)}. Then the set {uij : (i, j) ∈ S}
generates π1(Σ, 1) (note that the basepoint is the point of the fiber
labeled “1”); in fact, it freely generates the fundamental group of Σ
with one puncture (to be precise, of Σ minus the disc corresponding
to that row of A which was deleted when producing the original B).
Thought of as homology classes, this set of uij also provides a basis of
the free abelian group H1(Σ).

3. Examples. In this section, we work out two examples of the
constructions made in the first two sections. In the first example, a
double branched cover of S2, i.e., hyperelliptic curve, there exists a
nontrivial automorphism of the cover; as the theory predicts, our efforts
to extract from this situation a representation of the spherical braid
group don’t work, and we show the reader precisely what “goes wrong.”
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In the second example, a branched cover with no automorphisms, we
run through the entire procedure outlined in Sections 1 and 2 and arrive
at an interesting representation of an index 12 subgroup of the spherical
braid group.

Example 1. Hyperelliptic surfaces. We consider the hyperelliptic
curve for which n = 2 and the genus is (r − 2)/2 where r (an even
number) is the number of branch points. In this case the moduli space
H is simply ((S2)r − ∆)/Sr, instead of some nontrivial cover of it,
the signature is simply {(12), (12), . . . , (12)}, and π1(H) is the entire
spherical braid group Br(S2). To apply the algorithm from Section 2,
we choose a maximal tree consisting of the single edge w11. Our
algorithm then yields the r − 2 basis elements, for H1(Σ), given by
u22 = w1w2, u32 = w1w3, . . . , ur−1,2 = w1wr−1, and the relations
u11 = u12 = 0 and ui1 = −ui2 for 2 ≤ i ≤ r − 1. It is then easy to
compute the action of Q1, . . . , Qr−1 on the basis as follows:

Q1(u22) = Q1(w1w2) = w2w
−1
2 w1w2 = w21w

−1
21 w11w22 = u22

Q1(ui2) = Q1(w1wi) = w2wi = w21wi2 = −u22 + ui2 for i > 2.

(To help the reader see what we’re doing here, recall that to express
a word in the wij ’s in terms of the basis elements we (1) replace each
wij by uij and (2) apply the relations among the uij ’s given above to
express it in terms of the basis elements. In this last step, we also
change from multiplicative notation to additive notation to emphasize
that H1(Σ) is abelian.)

Similarly, we compute the action of Q2, . . . , Qr−1 on the basis to
obtain the matrices:

Q1 �−→

⎛
⎜⎜⎜⎜⎝

1 −1 · · · · · · · · · · · · · · · −1
0 1 0 · · · · · · · · · · · · 0
0 0 1 0 · · · · · · · · · 0
...

...
...

...
...

...
...

...
0 0 · · · · · · · · · · · · 0 1

⎞
⎟⎟⎟⎟⎠ ,

Qi �−→

⎛
⎜⎝

Ii−2 0 0

0
(

0 −1
1 2

)
0

0 0 Ir−2−i

⎞
⎟⎠
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for 1 < i < r − 1 and

Qr−1 �−→

⎛
⎜⎜⎜⎜⎝

−1
Ir−3 +1

−1
...

...
0 +1

⎞
⎟⎟⎟⎟⎠ .

The careful reader will now ask, “But how can a representation of the
braid group be obtained, since there is a nontrivial automorphism group
Z2 and hence no bundle space?” To address this question note that,
when calculating the action of the Qi’s on the basis elements, we made
a hidden assumption since, after applying the relevant braid, there are
actually two ways of identifying the resulting Riemann surface with the
original one; the two ways differ by the nontrivial automorphism that
interchanges the two leaves. An easy exercise shows that this automor-
phism acts on H1(Σ) by −Id. Hence each of these matrices is only
well defined up to a sign. The reader may verify by direct computation
that these matrices, as computed, do satisfy the planar braid relations
QiQi+1Qi = Qi+1QiQi+1 for all i and QiQj = QjQi for |i − j| > 1.
But when we plug them into the word Q1Q2 · · ·Qr−1Qr−1 · · ·Q1, we
obtain −Id; hence, they do not satisfy the last relation required of the
spherical braid group. Since each Qi appears twice in this word, the
situation cannot be remedied by changing the sign of one or more of
these matrices. Hence our attempt to build a representation of the
spherical braid group in this case is stymied, as the theory predicted
it might be (because of the existence of automorphisms). To get an
actual representation, we would have to use as our domain a certain
Z2-extension of the braid group as indicated in Section 1. Note that
the representation of the planar braid group we constructed here is
identical to the one constructed by Arnol’d in [1]; it arises if we restrict
the branch points from passing through ∞.

Let Mg be the moduli space of Riemann surfaces of genus g. Fol-
lowing Fried [5] for any Hurwitz space H, there is a period map
Ψ : H → Mg defined by taking the branched cover X → S2 to the
point [X]. Fried points out that this is an algebraic map and consid-
ers the problem of computing the dimension of its image, which is a
subvariety of Mg. (This is the formal version of the question from the
introduction.)
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Theorem 3.6 of [5] states that, for g = 1, 2, the image of the mon-
odromy representation of X → S2 is a finite subgroup of Aut (H1(X))
if and only if the map Ψ is constant. Combining this theorem with the
fact that M1 is one-dimensional, we have

Proposition. The map Ψ : H → M1 is generically onto if and only
if the corresponding action of the braid group on the homology basis has
an element of infinite order in it.

In [6] the authors used the last proposition to show that An can
be realized generically as a monodromy group of genus 1 answering a
question raised by [9]. The approach in [6] was more geometrical in
nature. For other cases, however, when more complex groups than An

are involved, a hands-on analysis might be necessary to determine if
Ψ is generically onto. In the example below we illustrate how to carry
out this analysis explicitly for a concrete genus 1 example using the
theory of Section 2. For more complex cases a machine could be used
to analyze the homology action in the same manner we carry out below
by hand.

Our second example is a branched cover φ : Σ → S2 with no auto-
morphisms, i.e., no self-homeomorphisms of Σ covering the identity on
S2. We calculate the subgroup of the braid group and its representa-
tion on H1(Σ) as described in Section 1. In order for the corresponding
representation of the subgroup of the braid group to be nontrivial, we
choose a covering for which Aut (φ) = 1 and genus (Σ) is nonzero. The
example we choose is a three-to-one cover of S2 branched over a set X =
{x1, x2, x3, x4} of four points with branching data over these four points
given by the signature. (ρ1, ρ2, ρ3, ρ4) = ((12), (23), (132), (132)). To
be precise, for each i = 1, . . . , 4, let wi denote a based simple closed
curve in S2 enclosing xi but excluding the other elements of X. Then
π1(S2 − X) = 〈w1, . . . , w4 | w1w2w3w4 = 1〉 = F3 = the free group
on any three of these generators. Our branched cover is defined by the
homomorphism ρ : π1(S2 − X) → S3 which takes each wi to ρi. By
the usual Hurwitz formula, we see that genus (Σ) = 1. The fact that
Aut (φ) = 1 for this example follows from the fact that the subgroup
of S3 generated by the ρi has trivial centralizer (actually, it is all of S3

in this case).
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We begin by calculating a basis for H1(Σ) using the procedure
outlined earlier. As our maximal tree, we choose w11 and w12. Our
procedure then yields generators w−1

12 w22 and w−1
12 w32w

−1
11 as generators

of π1(Σ, 1); the images of these elements give a basis of H1(Σ).

We will now construct the Hurwitz space H, resulting from Σ, as a
cover of Π = ((S2)4 − ∆)/S4. Recall that G = {f ∈ Aut (S2) : f(X) =
X} and G0 = the identity component of G. Let

M4(S2) = G/G0.

By isotopy extension, there is a (surjective) map B4(S2) → M4(S2)
(extend the isotopy of X to all of S2; then look at the final homeomor-
phism of the isotopy); the kernel of this map is the center of B4(S2), a
subgroup of order 2 whose generator we described above (for a proof,
see [2, p. 165]. Given an element Q of B4(S2), we will use the same
symbol for the corresponding element of M4(S2). We wish to describe
the “points” of H lying above [X] ∈ Π. Such a point will correspond
to a branched cover φ′ : Σ′ → S2. These two branched covers will be
related to each other by the commutative diagram

Σ

�

�
F Σ′

�

S2
�

Q
S2

where F is a homeomorphism. We wish to describe Σ′ by giving its
signature (ρ′1, . . . , ρ′4), where ρ′(wi) = ρ′i. To do this, we note that Q
induces a map Q∗ : π1(S2 − X) → π1(S2 − X) and for the map F to
be defined, we must have ρ = ρ′ ◦Q∗, i.e., ρ′ = ρ ◦Q−1

∗ . (Of course, we
could conjugate this ρ′ by any element of S3 and obtain an equivalent
branched cover.) Thus, to describe these branched covers, we need
to write down the action of B4(S2) (with generators {Q1, Q2, Q3}) on
π1(S2 −X) (with generators {w1, w2, w3, w4}). This action is given by
the well-known formulae

Qi(wi) = wi+1

Qi(wi+1) = w−1
i+1wiwi+1

Qi(wj) = wj for j �= i, i + 1.
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It follows that if, for example, Q = Q1 ∈ B4(S2), then the signature of
the corresponding Σ′ is given by (ρ′1, ρ

′
2, ρ

′
3, ρ

′
4) = (ρ1ρ2ρ

−1
1 , ρ1, ρ3, ρ4)

and similarly for the other Qi. This gives us an action of B4(S2)
on the set of signatures (actually an action on the set of equivalence
classes of signatures where two signatures are considered equivalent
if they are conjugate by some element of S3). To enumerate the
points of H lying above [X] ∈ Π, we begin with the original signature
((12), (23), (132), (132)) and repeatedly apply Q1, Q2 and Q3, each time
checking whether the resulting signature is equivalent to any of the ones
we’ve already enumerated. Eventually we arrive at a set of signatures
which is closed (up to conjugate in S3) under application of all of the
Qi. In this case we obtain the following 12 signatures

A = ((12), (23), (132), (132))
B = ((12), (123), (23), (132))
C = ((132), (12), (23), (132))
D = ((12), (12), (123), (132))
E = ((12), (123), (123), (23))
F = ((23), (132), (23), (132))
G = ((132), (12), (123), (23))
H = ((123), (23), (23), (132))
I = ((23), (132), (123), (23))
J = ((132), (132), (12), (23))
K = ((123), (23), (123), (23))
L = ((123), (132), (23), (23))

The reader may check that applying any Qi to any of these signatures
produces a signature which is equivalent to one of these and that no
two of these are equivalent. So each Qi acts as a permutation of these
signatures. These permutations are given as follows

Q1 = (BCFH)(EGIK)
Q2 = (ABDF )(GJKL)
Q3 = (BEFI)(CGHK).

The reader may also check that these three permutations generate a
transitive subgroup of S12.
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By identifying the 12 points of H lying above [X] ∈ Π, and showing
how the generators of π1(Π) permute these points, we have described
completely the covering space H → Π. By the theoretical considera-
tions of the first section, we know that there is a fiber bundle U with
fiber Σ and base H, and a resulting representation of π1(H) on H1(Σ).
To calculate this representation, we must first find generators of π1(H).
We choose the “point” in H corresponding to the signature C as a base-
point. Then π1(H, C) is identified with the subgroup of B4(S2) which
fixes C. To identify generators of this subgroup, we use a procedure
rather analogous with the procedure in Section 2 we used to calculate
generators of π1(Σ), although in this case we use the unbranched cover
H → Π instead of the branched cover Σ → S2.

We construct a 2-complex K with one 0-cell, three 1-cells (which we
call q1, q2 and q3, corresponding to the generators of B4(S2)), and four
2-cells which are attached according to the relations Q1Q3Q

−1
1 Q−1

3 ,
Q1Q2Q1Q

−1
2 Q−1

1 Q−1
2 , Q2Q3Q2Q

−1
3 Q−1

2 Q−1
3 and Q1Q2Q3Q3Q2Q1. We

form the 12 1 covering space K̃ of K corresponding to the stabilizer of
the point C in the homomorphism B4(S2) → S12 given above.

Note. In order to arrange that the action of B4(S2) on {A, B, C, . . . , L}
be from the right instead of the left, we let each qi act on this set as
Q−1

i .

We label the 0-cells of K̃ by A, B, C, . . . , L and denote by qiA the lift
of qi starting at A, by qiB the lift of qi starting at B, etc. We choose
as our maximal tree in K̃ the set

T = {q1B, q1C , q1F , q2B, q2D, q2K , q2L, q3B , q3C , q3E , q3G}.

Using C as our basepoint, we obtain 25 generators of π1(H), one for
each edge of K̃ not included in our tree. Note that K̃ has 48 2-cells. We
may reduce the number of generators of π1(H) using the 48 relations
arising from these 2-cells. We give an example to show how this works.
The edge q1A /∈ T . Since (A)q1 = A, the generator corresponding to
q1A is u1A = αAq1Aα−1

A where αA = q1Cq2B is the unique simple path
in T from C to A. Now consider the lift of q1q3q

−1
1 q−1

3 starting at C.
It is q1Cq3Bq−1

1Kq−1
3C and corresponds to the attaching map of a 2-cell

in K̃. Since q1C , q3B and q3C are in T , this 2-cell induces the relation
u1K = 1 in π1(H), enabling us to throw out this generator. Using 22
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of the 48 relations in this manner, we are able to reduce the number
of generators from 25 to 3. (In most cases, the relations don’t kill
generators directly, but express one in terms of some remaining ones,
enabling us to eliminate one.) For the reader’s convenience, the table
on the following page lists the 22 2-cells we used and, for each, the
generator it eliminated.

The three remaining generators of π1(H) are

u2F = αF q2F α−1
D = q1F q2F q2Dq−1

1C

u2H = αHq2Hα−1
H = q1Cq1Bq2Hq−1

1Bq−1
1C

u3A = αAq3Aα−1
A = q1Cq2Bq3Aq−1

2Bq−1
1C .

Expressing these in terms of the original Qi’s, and inverting them,
produces the following three generators for the image of π1(H, C) in
B4(S2)

Q1Q
−2
2 Q1, Q

2
1Q2Q

−2
1 and Q1Q2Q3Q

−1
2 Q−1

1 .

Our next task is to calculate a basis for H1(ΣC), using the algorithm
of Section 2, and then to calculate the action of the above generators
of π1(H) on H1(ΣC) in terms of this basis. The signature of ΣC is
((132), (12), (23), (132)). As a maximal tree in Γ̃, we select {w11, w12}.
For each wij not in the maximal tree, we obtain a generator uij for
H1(ΣC). The remainder of the algorithm yields the fact that {u22, u32}
is a basis for H1(ΣC). To be precise, the curves in ΣC corresponding
to the basis elements are u22 = w−1

12 w22 and u32 = w−1
12 w32w

−1
11 .

The images of these elements in π1(S2 − {x1, x2, x3, x4}) are simply
u22 = w−1

1 w2 and u32 = w−1
1 w3w

−1
1 . In addition, the algorithm

expresses the other five generators in terms of this basis as follows

u13 = 0, u21 = −u22 u23 = 0, u31 = 0, u33 = −u32.
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2-cell boundary generator eliminated
q1Cq3Bq−1

1Kq−1
3C u1K

q1Gq3Eq−1
1C q−1

3G u1G

q1Cq2Bq1Aq−1
2Bq−1

1C q−1
2C u1A

q1Dq2Dq1Bq−1
2Hq−1

1Bq−1
2D u1D

q2Dq3Bq2Iq
−1
3Bq−1

2Dq−1
3D u2I

q1Eq3Eq2Bq−1
3Aq−1

2Bq−1
3E u2E

q1Bq3Hq−1
1I q−1

3B u3H

q1Eq3Kq−1
1Bq−1

3E u3K

q1F q3Cq−1
1Eq−1

3F u3F

q1Iq3Gq−1
1F q−1

3I u1I

q1F q2Cq1Cq−1
2Dq−1

1Dq−1
2F u2C

q2Cq3Cq2Kq−1
3J q−1

2Kq−1
3C u3J

q2Gq3Lq2Lq−1
3C q−1

2C q−1
3G u2G

q1Bq2Hq3Hq3Gq2Cq1C u3I

q1Cq2Bq3Aq3Aq2Aq1F u2A

q1Jq2Jq3Gq3Cq2Kq1J u2J

q1Bq2Hq1Hq−1
2Aq−1

1Aq−1
2B u1H

q1Lq2Lq1Kq−1
2I q−1

1Kq−1
2L u1L

q1Eq2Kq1Jq−1
2Kq−1

1Eq−1
2E u1J

q2Bq3Aq2Aq−1
3I q−1

2I q−1
3B u3D

q2F q3Dq2Dq−1
3Eq−1

2Eq−1
3F u1E

q1Gq2Eq1Eq−1
2L q−1

1L q−1
2G u3L

To calculate the action of one of our generators Q of π1(H) on H1(ΣC)
we proceed as follows. First, calculate the map F∗ : H1(ΣC) → H1(Σ′

C)
defined by the diagram

ΣC

�

�
F Σ′

C

�

S2
�

Q
S2

where we are thinking of Q as an automorphism of S2 which fixes the set
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{x1, x2, x3, x4} and the map induced by Q on π1(S2 − {x1, x2, x3, x4})
is defined in terms of the generators Qi by

Qi(wi) = wi+1

Qi(wi+1) = w−1
i+1wiwi+1

Qi(wj) = wj for j �= i, i + 1.

The signature of the Riemann surface Σ′
C is calculated using the

action of B4(S2) on the set of signatures described previously.

Next, since Q stabilizes the cover ΣC → S2 up to equivalence,
the signatures of ΣC and Σ′

C are conjugate by an element γ of the
symmetric group S3. This permutation γ gives us an identification
of these two branched covers, and hence a map H1(Σ′

C) → H1(ΣC).
Composing this map with F∗ gives the action of Q.

We now carry this out for the generator Q = Q1Q
−2
2 Q1. Applying Q

to the signature C gives the signature ((132), (23), (31), (132)) for Σ′
C .

Since Q is in the stabilizer of C, these two signatures must be conjugate
by an element of S3. The conjugating permutation is γ = (123), which
induces an equivalence between ΣC and Σ′

C . It is natural to use this
equivalence to transport the computations we have made on ΣC directly
to Σ′

C . Applying γ to the second subscript of each symbol and adding
bars everywhere yields, for Σ′

C , the maximal tree {w̄12, w̄13}, the basis
ū23 = w̄−1

13 w̄23 and ū33 = w̄−1
13 w̄33w̄

−1
12 for H1(Σ′

C), and the expressions

ū11 = 0, ū22 = −ū23, ū21 = 0, ū32 = 0, ū31 = −ū33

for the other natural generators. Using the formulae given just above,
we calculate the effect of Q on π1(S2 − {x1, x2, x3, x4}) to be

Q(w1) = Q1Q
−2
2 Q1(w1) = Q1Q

−2
2 (w2) = Q1Q

−1
2 (w2w3w

−1
2 )

= Q1(w2w3w2w
−1
3 w−1

2 )
= w−1

2 w1w2w3w
−1
2 w1w2w

−1
3 w−1

2 w−1
1 w2.

Similarly, we obtain

Q(w2) = w−1
2 w1w2w3w

−1
2 w−1

1 w2w
−1
3 w−1

2 w−1
1

× w2w1w2w3w
−1
2 w1w2w

−1
3 w−1

2 w−1
1 w2
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and
Q(w3) = w−1

2 w1w2w3w
−1
2 w−1

1 w2.

We calculate the effect of Q on u22 and u32, the basis elements
of H1(Σ). Using the images of these in π1(S2 − {x1, x2, x3, x4}) we
compute

Q(u22) = Q(w−1
1 w2) = w−1

2 w1w2w3w
−1
2 w−1

1 w2w
−1
3 w−1

2 w−1
1 w2.

w−1
2 w1w2w3w

−1
2 w−1

1 w2w
−1
3 w−1

1 w2w1w2w3w
−1
2 w1w2w

−1
3 w−1

2 w−1
1 w2

= w−1
2 w1w2w3w

−1
2 w−2

1 w2w
−1
3 w−1

2 w−1
1 w2w1w2w3w

−1
2 w1w2w

−1
3 w−1

2 w−1
1 w2.

To compute F∗(u22), we need to lift this element up to Σ′
C , which

involves inserting a second subscript into each generator using the
signature obtained by applying Q to C. The resulting lift is

w̄−1
21 w̄11w̄23w̄32w̄

−1
23 w̄−1

11 w̄−1
12 w̄22w̄

−1
31 w̄−1

21

× w̄−1
12 w̄22w̄13w̄22w̄33w̄

−1
21 w̄11w̄23w̄

−1
32 w̄−1

23 w̄−1
11 w̄21.

To express this in terms of the generators ū23 and ū33, we first drop
the edges w̄12 and w̄13 which lie in the maximal tree, then replace each
w̄ij by the corresponding generator ūij , and finally apply the relations
expressing each of these in terms of the two basis elements. The result
is that F∗(u22) = ū−3

23 ū2
33, where the order of the factors doesn’t matter

since H1 is abelian. We identify this element with an element of H1(ΣC)
(using the equivalence between the branched covers ΣC and Σ′

C) by
replacing each second subscript using the inverse of the permutation
γ. The result of this computation is that, under our representation,
Q takes u22 to u−3

22 u2
32. We make similar computations to calculate

the action of Q on u32 and then to calculate the action of Q, for Q
equal to the other two generators of π1(H), on the two basis elements
of H1(ΣC). The results are as follows:

Q1Q
−2
2 Q1 �−→

(−3 1
2 −1

)

Q2
1Q2Q

−2
1 �−→

(−1 −4
1 3

)

Q1Q2Q3Q
−1
2 Q−1

1 �−→
(

1 1
−1 0

)
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Note that the first of these is hyperbolic (hence of infinite order), the
second is parabolic (hence of infinite order) and the third is elliptic,
of order 6. These elements generate an infinite subgroup of SL(2, Z)
which tells us that the period map isn’t constant and the image of Ψ
is generically onto.

Acknowledgments. We thank Allen Hatcher for helpful correspon-
dence and, in particular, for showing us the proof of Lemma 1.
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