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PDE AND EXTRAFUNCTIONS

MARK BURGIN AND JAMES RALSTON

ABSTRACT. Many natural problems for partial differential
equations (PDE) do not have solutions in the set of differen-
tiable functions. In the development of the theory of PDE, this
led to the introduction of weak solutions and then distribu-
tions. However, many PDE some of them very simple still
do not have solutions in the set of distributions. In this pa-
per we show that the theory of extrafunctions allows one to
find generalized solutions to a much larger set of equations
than those which are solvable in distributions. In a sense, the
approach given here follows the traditional method of solving
PDE by a series of functions. This succeeds because in spaces
of extrafunctions all series of ordinary functions are conver-
gent. There are other approaches, such as theories of general-
ized functions of Colombeau and Egorov, which also allow one
to extend the scope of solvable PDE. However, the function
spaces in which these generalized solutions are constructed do
not even have a T0 topology. In particular, in these spaces
a limit of a sequence is not unique. In contrast to this, the
spaces of extrafunctions have a Hausdorff topology. More-
over, these spaces are maximal with respect to this property.
This makes extrafunctions universal for solving PDE under
appropriate topological conditions.

1. Introduction. Many specialists consider the Schwartz distribu-
tion theory and Sobolev spaces as two of the most important devices
in contemporary mathematical analysis. This is especially true for the
theory of partial differential equations. However, in spite of the suc-
cess of distribution theory, it is not able to solve many problems in
mathematical physics that are related to divergence of certain integrals
and series. Moreover, even “good” linear equations with infinitely dif-
ferentiable coefficients, P (x, D)u = f , may have no solutions in the
space of distributions even if f ∈ C∞(Rn) and the coefficients of P
are analytic. The first such example was discovered by Lewy [32].
In recent years in the works by Fisher, [25 27], Rosinger [38 40],
Colombeau [13 19], Delcroix and Scarpalezos [20], Oberguggenberger
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[34 36], Egorov [22 24], Burgin [4 6] and others, a new theory of gen-
eralized functions has been developed. However, this development of
the theory has been aimed at the development of algebraic structures
on the sets of distributions. Consequently, many problems of PDE
theory have been left out of the scope of these new directions. The ap-
proach considered in this paper is a theory of a new family of extended
functions lying between nonstandard analysis and the theory of distri-
butions. It is based on the theory of hypernumbers and extrafunctions
[7 12].

The theory of hypernumbers and extrafunctions emanated from phys-
ically directed thinking and was derived by a natural extension of the
classical approach to the real number system. Namely, an important
class of problems that appear in contemporary physics and involve infi-
nite values inspired this theory. As is known, many mathematical mod-
els, which are used in modern theories of elementary particles (such as
gauge theories), imply divergence of analytically calculated properties
of physical systems. The simplest example is the case of a free electron
when its interaction with photons changes the energy of the electron
so that the energy becomes infinite (in a model). Mathematical inves-
tigation of various physical problems gives rise to divergent integrals
and series that have, in some sense, infinite values. However, phys-
ical measurements give, as a result, only finite values. That is why
many methods of divergence elimination (regularization), i.e., of elim-
ination of infinity, have been elaborated. Nevertheless, the majority
of these were not well grounded mathematically because they utilized
operations with formal expressions that had neither mathematical nor
physical meaning. Moreover, there are models in physics that con-
tain infinities that cannot be eliminated by methods based on existing
mathematical theories. In the theory of hyperintegration, based on the
theory of hypernumbers, all divergent integrals and series that appear
in the calculations with physical quantities become rigorously grounded
as strict mathematical objects.

In this paper we consider two families of extended functions related
to hypernumbers: compactwise extrafunctions and hyperdistributions.
Compactwise extrafunctions have the topology of uniform convergence
on compact sets. It is possible to define other families of extrafunctions,
for instance, the family of all hypernumber-valued functions with the
topology of pointwise convergence, but the compactwise extrafunctions
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appear to be most useful in applications to differential equations. In the
universe of extrafunctions, it is possible to find very general conditions
for the existence of a solution to the Cauchy problem for systems of
linear differential equations of the form

∂u

∂t
=

n∑
k=1

ak(t, x)
∂u

∂xk
+ a0(t, x)u + f(t, x) = 0.

If we compare the theory of extrafunctions with the theories of
generalized functions of Egorov and Colombeau, we see that each of
them has its advantages. Both the spaces GE of Egorov generalized
functions and GC of Colombeau generalized functions may be projected
onto some subspaces of the space of extrafunctions. When it is
possible to make these projections correlated with differentiation and
other operations utilized in some class of PDE, then from existence
of solutions for these PDE in the subset of extrafunctions that is the
image of GE (or GC), it follows that the same PDE have solutions
in GE (correspondingly, GC). Uniqueness of solutions in GE (or
GC) implies uniqueness of solutions in the corresponding subset of
extrafunctions. However, as is demonstrated in [24], GE is not a
Hausdorff space. This means, for example, that if a sequence has a
limit, then it has many different limits. Besides, there is no standard
inclusion of the space C∞ of smooth functions into GE. The space GC

possesses a standard inclusion of the space C∞, but this inclusion is
not homomorphic, i.e., the inclusion of C∞ into GC does not preserve
products of smooth functions. The space of extrafunctions has neither
of these shortcomings. Moreover, if, for example, GE is projected onto
some Hausdorff space X to get a “good” topology, then the results of
the third section of this paper imply that this projection can be factored
through a projection of GE into extrafunctions. Relations between GE ,
GC and extrafunctions are discussed in Section 6.

Notation.

N is the set of natural numbers;

ω is the sequence of all natural numbers;

R is the set of all real numbers;

R+ is the set of all nonnegative real numbers;
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R++ is the set of all positive real numbers;

C is the set of all complex numbers;

Cω is the set of all sequences of complex numbers;

if a ∈ C, then ‖a‖ = (|a1|2 + · · · + |an|2)1/2;

∅ is the empty set;

if X and Y are topological spaces, then F (X, Y ) and C(X, Y ) are,
respectively, the sets of all mappings of X into Y and the set of all
continuous mappings of X into Y ;

if a = {ai}i∈ω is a sequence of complex/real numbers, then α =
Hn{ai}i∈ω is the complex/real hypernumber determined by a;

Cω is the set of all complex hypernumbers;

KF (D,Cω) is the set of all complex compactwise extrafunctions on
D ⊂ Rn;

if {fi}i∈ω is a sequence of complex/real functions, then f = Ep{fi}i∈ω

is the element of KF determined by {fi}i∈ω and,

if {fi}i∈ω is a sequence of complex/real functions, then f = Ec{fi}i∈ω

is the complex/real compactwise extrafunction determined by {fi}i∈ω.

2. Elements of the theory of hypernumbers. Let Cω =
{{ai}i∈ω : ai ∈ C} be the set of all sequences of complex numbers.

Definition 2.1. For arbitrary a = {ai}i∈ω and b = {bi}i∈ω in Cω

we say a ∼ b if limi→∞ |ai − bi| = 0.

Lemma 2.1. The relation ∼ is an equivalence.

Definition 2.2. The equivalence classes of the equivalence ∼ are
called complex hypernumbers, and we denote the set of complex hy-
pernumbers by Cω.

The equivalence class of a = {ai}i∈ω will be denoted by Hn{ai}.
Real hypernumbers are defined by restricting the preceding definitions
to sequences of real numbers.

The real and complex hypernumbers are equivalence classes of se-
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quences just as rational numbers are sets of equivalent fractions and
real numbers are sets of equivalent Cauchy sequences of rational num-
bers.

Remark 2.1. It is possible to replace the index set ω in the definition
of hypernumbers by more general partially ordered sets. This produces
new sets of hypernumbers. In particular, hypernumbers may be defined
by ω2-sequences, that is, sets of complex numbers that are indexed by
elements from ω2.

Relations on C induce corresponding relations on Cω. For example,
C is ordered by c = a + bi < d = q + ri if and only if a ≤ q and b < r
when a = q. This induces a partial order on Cω as follows:

Definition 2.3. If a, b ∈ Cω, then a ≤ b if and only if there is an
n such that ai ≤ bi for all i ≥ n and a < b if and only if there is an n
such that ai < bi for all i ≥ n.

From Definition 2.3 we proceed to

Definition 2.4. If α, β ∈ Cω, then α ≤ β if and only if a ≤ b for
some a ∈ α and b ∈ β, α < β if and only if a < b for some a ∈ α and
b ∈ β and α �= β.

Lemma 2.2. The relations ≤ and < on Cω are a partial order and
a strict partial order, respectively.

Proof. We begin with the relation <. By the definition, a strict
partial order is a transitive antisymmetric relation. Thus, we have to
test these properties for < on Cω.

1. The relation < is transitive on Cω.

Let α < β and β < δ for some α, β, δ ∈ Cω. Then, by the definition
of <, there are sequences {ai} ∈ α, {bi} ∈ β, {ci} ∈ β and {di} ∈ δ for
which the following conditions are valid: for some natural number n if
i ≥ n, then ai < bi and, for some natural number m, if i ≥ m, then
ci < di. Then let M = max{n, m} and define d′i = di + |bi − ci|. Then
{d′i} ∈ δ and for i ≥ M , ai < d′i. Thus, by definition, α < δ.
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2. The relation < is antisymmetric.

Suppose this is false. Then we have α < β and β < α. By the
definition of the relation <, it follows that we have {ai}, {a′

i} ∈ α and
{bi}, {b′i} ∈ β such that ai < bi for i ≥ n and a′

i > b′i for i ≥ m.
However, this implies that α = β, since we have for i ≥ max{n, m},

ai < bi < a′
i + |bi − b′i|.

By definition, neither of the relations α < β or α > β can hold if α = β,
so we have reached a contradiction.

If one simply changes < to ≤ in all places, the preceding proof shows
that ≤ is also transitive and that α ≤ β and β ≤ α together imply
α = β.

Definition 2.5. Given a sequence {αn} in Cω, we define limn→∞αn =
α by the following. Given ε > 0 and sequences {an

i } = αn and {ai} = α,
there are integers N(ε) and I(ε, n), defined for n ≥ N(ε) such that, for
n ≥ N(ε) and i ≥ I(ε, n), one has |an

i − ai| < ε.

Proposition 2.1. The convergence defined in Definition 2.5 does
not depend on the choices of elements from the equivalence classes.

Proof. Let αn = {an
i } converge to α = {ai}, and assume that

{an
i } ∼ {bn

i }. To prove Proposition 2.1 we have to show that βn = {bn
i }

also converges to α. However, by definition, given ε > 0, for each n
there is a J(n, ε) such that |bn

i −an
i | < ε/2 when i ≥ J(n, ε). In addition,

Definition 2.5 gives us M(ε/2) and L(n, ε/2) such that |ai − an
i | < ε/2

when n ≥ M(ε/2) and i ≥ L(n, ε/2). Thus, taking the N(ε) and
I(n, ε) in Definition 2.5 to be M(ε/2) and max{J(n, ε/2), L(n, ε/2)},
respectively, we see that limn→∞ βn = α.

On Cω one can introduce the function

d({ai}, {bi}) =
lim sup |ai − bi|

1 + lim sup |ai − bi|
with d({ai}, {bi}) = 1 when lim sup |ai − bi| = ∞. Since lim sup |ai =
bi| = 0 ⇔ {ai} ∼ {bi} and d satisfies the triangle inequality, one sees
that d is a metric on Cω.
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Lemma 2.6. The convergence of Definition 2.5 is equivalent to
metric convergence in (Cω, d).

Theorem 2.1. (Cω, d) is a complete metric space.

Proof. Given a Cauchy sequence in the metric d, {αn}, we must show
that it converges. We assume that {αn

i } ∈ αn. Then, for each l ∈ N,
there is an N(l) such that

lim sup
i→∞

|an
i − am

i | < 2−l for n, m ≥ N(l).

Increasing the values of the N(l)s, starting with N(1), we can assume
that {N(l)} is a strictly increasing sequence. From the definition of
“limsup,” it follows that for each l there is an I(l) such that

|aN(l)
i − a

N(l+1)
i | < 2−l+1 for i ≥ I(l).

As before, increasing the values of the I(l)s we can assume that {I(l)}
is also a strictly increasing sequence.

Define the sequence {ai} by ai = 0 for i < I(1) and ai = a
N(l)
i

for I(l) ≤ i < I(l + 1). Letting α denote the equivalence class of
{ai}, we claim that α is the limit of {αn}. Since the limit of any
subsequence of a Cauchy sequence is the limit of the whole sequence,
it will suffice to show that α is the limit of {αN(l)}. Assume that k ≤ l
and I(l) ≤ i < I(l + 1). Then we have

|aN(k)
i − ai| = |aN(k)

i − a
N(l)
i |

≤ |aN(k)
i − a

N(k+1)
i | + · · · + |aN(l−1)

i − a
N(l)
i |

≤ 2−k+1 + · · · + 2−l+2 < 2−k+2.

Since this inequality holds for all i ≥ I(k), lim sup |aN(k)
i −ai| ≤ 2−k+2,

and
lim

k→∞
d(αN(l), α) = 0.

Remark 2.2. For the space of real hypernumbers Rω, the result of
Theorem 2.1 was obtained in [7] for a more general construction of
hypernumbers.
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Theorem 2.2. Cω is a vector space over C.

Proof. We have for a, b ∈ C and α, β ∈ Cω we define aα + bβ to be
the equivalence class of {aai + bbi} where α ∼ {ai} and β ∼ {bi}. One
checks easily that this is independent of the representatives chosen and
satisfies the vector space axioms.

On Cω one can introduce the topology in which a set is open if each
of its points has a neighborhood

Nr({pi}) = {{ai}; d({ai}, {pi}) < r}

for some r > 0, where

d({ai}, {pi}) =
lim sup |ai − pi|

1 + lim sup |ai − pi|
as before. However, this topology does not satisfy any separation
axiom: if {ai} ∼ {bi}, then any open set containing {ai} will contain
{bi}. When one considers Cω with this topology, the space Cω has the
following maximality property.

Theorem 2.3. Cω is the largest Hausdorff quotient space of Cω.

Proof. Since Cω is a Hausdorff space, to prove the theorem, it is
necessary to demonstrate that if a Hausdorff space X is a quotient
space of Cω with the projection q : Cω → X, then there is a continuous
projection v : Cω → X for which q = pv. Let us consider such a
Hausdorff space X with the continuous projection q : Cω → X. Then,
for any points x, y ∈ X, x �= y, we have disjoint neighborhoods Ox

of x and 0y of y. Since q is continuous q−1(Ox) and q−1(Oy) will be
disjoint open sets in Cω. Since these sets are open, each must contain
the entire equivalence class in Cω of each of its elements. In particular,
p−1(p(q−1({x})) ⊂ q−1(Ox) and p−1(p(q−1({y})) ⊂ q−1(Oy). Thus we
can define r by r(x) = p(q−1({x}) for x ∈ X. This makes r well-defined
and continuous and completes the proof.

This theorem shows that the set of complex hypernumbers is a
topological extension of the set of all complex numbers, while the set
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of hypercomplex numbers which is introduced in nonstandard analysis
[37], is a set-theoretical extension of the set of all complex numbers
[11].

3. Extrafunctions and hyperdistributions. To apply the idea
behind the construction of hypernumbers to differential equations, one
needs to have spaces of extended functions based on hypernumbers. We
will consider two such spaces, “compactwise extrafunctions,” denoted
by KF (Rn,Cm

ω ) and “hyperdistributions,” denoted by HD(Rn). In
what follows we will always denote extended functions by capital
letters, U, F, Φ, etc., to help distinguish them from lowercase ordinary
functions, u, f, φ, etc.

The space KF (Rn,Cm
ω ) is the space of sequences {fn} of continuous

functions on Rn with values in Cm with the equivalence relation

{fn} ∼ {gn} ⇐⇒ lim
n→∞max

x∈K
|fn(x) − gn(x)| = 0

for all compact subset sets K of Rn. On KF (Rn,Cm
ω ) we have the

family of pseudo-metrics parametrized by the compact subsets of Rn

dK({fn}, {gn}) =
lim sup{maxx∈K |fn(x) − gn(x)|}

1 + lim sup{maxx∈K |fn(x) − gn(x)|} .

As before, KF (Rn,Cm
ω ) is a Hausdorff space in the topology associated

with this family of pseudo-metrics and, by standard constructions (cf.
[30, Theorem 12, p. 231]) one can introduce a uniformity so that it is
complete as well.

For applications to differential equations one needs to have deriva-
tives. For this one can consider the subsets of KF (Rn,Cm

ω ) corre-
sponding to the sequences {fn} where each fn is infinitely differen-
tiable, and define the partial derivative ∂αF , the “sequential derivative
of F” to be the equivalence class of {∂αf}. This definition has the
drawback that ∂αF is not uniquely determined by F . This led us to
introduce the space of “hyperdistributions,” HD(Rn). This space is
defined in strict analogy to the definition of hypernumbers as follows.
The elements of HD(Rn) are sequences of locally integrable functions
with the equivalence relation

{fn} ∼ {gn} ⇐⇒ lim
n→∞

∫
Rn

(fn − gn)φ dx = 0
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for all φ ∈ C∞
c (Rn). Note that every equivalence class here contains a

sequence of smooth functions: if we choose a sequence of compact sets
{Kn} expanding to Rn and consider the mollifications (fn)ε (cf. [28,
Theorem 8.14]), we can choose a sequence {εn} so that

‖fn − (fn)εn
‖L1(Kn) <

1
n

.

Clearly, {(fn)εn
} is equivalent to {fn}. Now, given F ∈ HD(Rn),

we define ∂αF to be the equivalence class of {∂αfn} where {fn} is an
element of the equivalence class of F consisting of smooth functions.
This definition only depends on the equivalence class of F : if {gn} is
another sequence of smooth functions from the equivalence class of F ,
we have

lim
n→∞

∫
Rn

(∂αfn − ∂αgn)φ dx = lim
n→∞(−1)|α|

∫
Rn

(fn − gn)∂αφ dx = 0.

If we replace Rn by an open set D ⊂ Rn, then we have KF (D,Cm
ω )

and HD(D) defined in the obvious ways.

4. The Cauchy problem for extrafunctions. We will consider
the linear Cauchy problems

(1)
∂U

∂t
=

n∑
k=1

ak(t, x)
∂U

∂xk
+ a0(t, x)U + F (t, x), U(0, x) = Φ(x),

where U and F belong to KF (D,Cm) and ak, k = 0, 1, . . . , n are m×m
matrices of continuous functions on [−1, 1] × Rn. The domains D are
open subsets of Rt ×Rn

x . We require the differential equations to hold
in D and the initial conditions to hold on D∩{t = 0}. The initial value,
Φ, is in KF (Rn,Cm). However, we will assume that Φ and F have
defining sequences consisting of continuous functions. As is well known
(see, for instance, [29]) linear, noncharacteristic Cauchy problems of
arbitrary order can be reduced to the form (1). Note that (1) is well
defined since each of our three spaces is a module over the algebra of
smooth functions. However, since derivatives are not uniquely defined
in the KF spaces, we only require that (1) hold for some choices of the
derivatives in those spaces.



PDE AND EXTRAFUNCTIONS 859

We do not consider the Cauchy problem for hyperdistributions. Note
that for any smooth function a(x) the hyperdistribution U correspond-
ing to the sequence {a(x)(1 − cos jt)}∞j=1 satisfies ∂U/∂t = 0 in the
sense of hyperdistributions and U |t=0 = 0. Since the constant sequence
{a(x)} belongs to the equivalence class of U , it is clear that even in this
simplest case there is no uniqueness in the solution of the Cauchy prob-
lem. On the other hand, one can check easily that the only solution to
∂U/∂t = 0 with U |t=0 = 0 in the sense of compactwise extrafunctions
is U = 0.

The main result of this paper is the following.

Theorem 4.1. The Cauchy problem (1) has a solution U in KF on
a neighborhood of {t = 0} in Rt ×Rn

x. Moreover, the U has a defining
sequence of real-analytic functions.

Proof. By the Weierstrass approximation theorem, we can assume
that we have sequences of matrices with polynomial entries {aj

k},
k = 0, 1, . . . , n such that aj

k converges uniformly to ak on Dl =
[−1, 1] × {|x| ≤ l} for all l. Likewise, since F and Φ are assumed
to have defining sequences {fj} and {φj} of continuous functions, the
Weierstrass approximation theorem implies that we can choose vector-
valued functions with polynomial entries f̂j and φ̂j such that fj − f̂j

converges uniformly to zero on compact subsets of [−1, 1] × Rn and
φj − φ̂j converges uniformly to zero on compact subsets of Rn. Note
that this means that {f̂j} is a defining sequence for F and {φ̂j} is a
defining sequence for Φ in each of our spaces of generalized functions.
We will apply the Cauchy-Kowalewski theorem to the problems

(2j)
∂uj

∂t
=

n∑
k=1

aj
k(x, t)

∂uj

∂xk
+ aj

0(x, t)uj + f̂j(x, t), uj(0, x) = φj(x).

If, for each j, uj satisfies (2j), then U ∼ {uj} is a solution of (1). The
Cauchy-Kowalewski theorem (see [21, 42]) states that (2j) has a unique
real-analytic solution on DR = {(t, x) : |x| ≤ R, |t| ≤ T (R)} for some
T (R) > 0 for each R. Moreover, one can choose T (R), 0 < T (R) ≤ 1,
so that it depends only on n, m and the maximum norms of the entries
in aj

k, k = 0, 1, . . . , n, on [−1, 1]×{x : |x| ≤ R}. By construction these
norms are bounded independently of j for each R ∈ R++. Thus we
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can assume that all the functions in the sequence of solutions {uR
j } is

defined on a fixed domain DR = [−T (R), T (R)]×{|x| ≤ R}. Moreover,
when we change R, the uniqueness of real analytic solutions implies that
uR

j = uR′
j on DR ∩ DR′ . Thus, taking uj to be the unique extension

of the {uR
j : R ≥ 1} to ∪R≥1DR and, defining U ∼ {uj}, the theorem

follows.

If one assumes that the coefficients ak are bounded, then one has a
stronger existence theorem.

Theorem 4.2. If the coefficients ak(x, t), k = 0, 1, . . . , n, are
bounded on [−1, 1] × Rn, then (1) has a solution in KF on DT =
(−T, T ) × Rn for some T > 0.

Proof. In this case the polynomial approximations {aj
k}, k =

0, 1, . . . , n, are converging uniformly on compact subsets to functions
which are globally bounded. Thus, assuming that all entries of the
matrices ak(x, t), j = 0, 1, . . . , n, are bounded by B on [−1, 1] × Rn,
for each R there is a j(R) such that each entry of {aj

k}, k = 0, 1, . . . , n,
is bounded by B + 1 on [−1, 1] × {|x| ≤ R} for j ≥ j(R). Hence, by
the Cauchy-Kowalewski theorem in the form quoted above, there is a
T0 > 0 such that, for all R ≥ 1 and j ≥ j(R), the solution of (2j) is
defined on [−T0, T0] × {|x| ≤ R}. In other words, in this case, instead
of having the solutions uj of (2j) defined on a fixed neighborhood of
{t = 0} as in Theorem 4.1, here they are defined on a sequence of neigh-
borhoods Dj which increase to [−T0, T0]×Rn as j → ∞. Hence, if we
extend the ujs continuously to all of [−T0, T0]×Rn not requiring that
the extensions solve (2j), the resulting generalized function U ∼ {uj}
will nonetheless be a solution of (1) on [−T0, T0]×Rn. This completes
the proof.

5. Relation of extrafunctions to distributions. There are
different equivalent ways to define distributions. The definition of a
distribution as a functional was historically the first [41]. Another
approach is called sequential because in it distributions are defined as
classes of equivalent sequences of ordinary functions [1]. The latter
definition is useful for comparing distributions and extrafunctions, and
we will discuss it here.
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Definition 5.1. A sequence {fj} of functions in C∞(D), D ⊂ Rn,
is called fundamental on D if, for any compact set K ⊂ D, there are
a sequence {Fj} and a multi-index α ∈ Nn such that ∂αFj = fj on K
and Fj converges uniformly on K.

Given a fundamental sequence {fj} for each compact K ⊂ D, we
have the continuous function FK on K, FK = lim Fj on K, and we
associate the functional distribution

l(φ) = (−1)|αK |
∫

F∂αK φ dx, φ ∈ C∞
0 (D) with support in K

with {fj}. We will say two fundamental sequences are equivalent if
they give the same distributions.

If {fj} is a fundamental sequence, then D{fj} denotes the class of all
sequences equivalent to {fj} as well as the corresponding distribution.
Let f = D{fj} be a distribution. Then for any β, ∂βf is defined by
∂βf = D{∂βfj}.

Any sequence of complex functions defines both a compactwise and
restricted pointwise extrafunctions. However, only some of the se-
quences of complex functions define distributions, [1]. In what follows,
we consider only compactwise extrafunctions on Rn. Let KF (Rn) be
the class of complex compactwise extrafunctions Rn. As was observed
in Section 3, this is a linear space over the field C.

Theorem 5.1. There is the linear subspace DKF (Rn) ⊂ KF (Rn)
for which a linear projection p : DKF → D′ exists.

The proof of this theorem is essentially based on the following lemma.

Lemma 5.1. If two fundamental sequences {fj} and {gj} of smooth
complex functions define the same compactwise extrafunction, then they
define the same distribution.

Proof. Let {fj} and {gj} be fundamental sequences defining the same
compactwise extrafunction f . Then limj→∞ supK |fj(x) − gj(x)| = 0
for all compact sets K ⊂ Rn. For any φ ∈ C∞

c (Rn), letting ∂αFj = fj
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and ∂βGj = gj in Definition 5.1, we have

(−1)|α|
∫

F∂αφ dx − (−1)|β|
∫

G∂βφ dx = lim
j→∞

∫
(fj − gj)φ dx = 0.

Proof of Theorem 5.1. Let us take FEE to be the space of all
fundamental sequences of smooth complex functions. On one hand,
there is a morphism q : FEE → KF because any sequence of complex
functions defines some compactwise extrafunction. Let DKF be the
image of FEE, i.e., DKF = q(FEE). On the other hand, there is a
projection r : FEE → D′. By Lemma 5.1, it is possible to factor q
through r, i.e., there is a morphism p : DKF → D′ such that r = qp.
As r and q are linear projections, p is also a linear projection.

The projection p defines an equivalence relation on DKF : f ∼ g
if p(f) = p(g), i.e., f ∼ g if and only if f and g define the same
distribution. The proof of Theorem 5.1 shows that the mapping p
commutes with the operation of differentiation. Thus, we have the
following result.

Theorem 5.2. For any complex compactwise extrafunction f ∈
DKF , the sequential derivative ∂αf defines a distribution g that is
equal to the derivative ∂αp(f) of the distribution p(f).

Thus, when a compactwise extrafunction defines a distribution, its
sequential extraderivatives coincide with the derivatives of the distri-
bution. These results show that it is possible to reduce the problem of
integrating differential equations in the spaces of distributions to the
problem of integrating differential equations in the spaces of extrafunc-
tions.

6. Relation of extrafunctions to the generalized functions of
Colombeau and Egorov. To extend the scope of solvable differential
equations, Egorov [23] constructs an algebra of generalized functions
GE . He begins by defining a space of generalized complex numbers, C̃.
The elements of C̃ are equivalence classes of sequences {ci} from the
one-point compactification, C0, of the complex plane. Two sequences
{ci} and {di} are equivalent if they coincide beyond some point (ci = di
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for i ≥ I). The set C̃ is an algebra but not a field. It is also a topological
space. This topological space is complete in a generalized sense, but
it is not a Hausdorff space. In particular, limits of sequences are not
unique in C̃.

If we compare C̃ with the set of hypercomplex numbers from non-
standard analysis, we see that both sets are constructed as quotients
of the set of sequences of complex numbers. The difference is that C̃
is obtained by factorization by the filter of all cofinite subsets of N,
while the hypercomplex numbers are defined through factorization by
an ultrafilter that contains the filter of all cofinite subsets of N. As
a result, C̃ is only an algebra, but the hypercomplex numbers form a
field.

Let D be a domain in Rn. The algebra of generalized functions GE

on D is defined as follows. The elements of GE are equivalence classes
of sequences of functions in C∞(D). Two sequences {fi} and {gi} are
equivalent if, for each compact set K ⊂ D, there is an integer IK such
that gi = fi on K for i > IK . The set GE is a topological space which
is complete in a generalized sense, but it is not a Hausdorff space.

Some generalized functions determine distributions: if the limit

lim
i→∞

∫
fnφ dx = l(φ)

exists for all φ ∈ C∞
0 (D), then one identifies the generalized function

defined by {fn} with l.

Partial derivatives of generalized functions in GE are determined
by the corresponding sequences of derivatives, i.e., if f ∼ {fi}, then
∂αf ∼ ∂αfi. When f is identified with a distribution l, ∂αf is identified
with ∂αl (Egorov [23]). Hence the projection of GE onto distributions
commutes with differentiation.

Theorem 6.1. There is a homomorphism p of GE as a module
over C∞(D) into KF (D) as a module over C∞(D), and we have
p(∂αf) = ∂αp(f).

Proof. If {fi} is a sequence defining f ∈ GE, we define p(f) to be
the extrafunction defined by {fi}. Since the equivalence relation on
GE is stronger than the equivalence relation on KF , p is well defined.
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Operations on GE (addition, subtraction and multiplication by smooth
functions) are induced by the corresponding operations on sequences
of functions (Egorov [23]). The same is true for KF . Consequently,
p is a homomorphism of the module GE over the algebra C∞(D)
into KF (D). The final statement, p(∂αf) = ∂αp(f), follows since
derivatives are defined sequentially in GE and KF .

Theorem 6.1 has the following corollary.

Corollary 6.1. If a system of linear differential equations Hu = f
has a solution in GE, then one has Hp(u) = p(f) in KF . Thus, any
linear system of differential equations with smooth coefficients with a
solution in GE has a solution in KF .

As Egorov’s theory of generalized functions includes the theory of
Colombeau (Egorov [23]), it follows that linear systems of equations
which are solvable in Colombeau’s generalized functions are solvable in
KF . However, one can explain the relations between extrafunctions
and Colombeau’s generalized functions directly. The basic idea under-
lying Colombeau theory (in its simplest form) is that of embedding the
space of distributions into a factor algebra of C∞(D)I with I = (0, 1]
and D ⊂ Rn, namely, the Colombeau algebra G(D) or GC(D) is the
quotient algebra EM (D)/N(D) where

EM (D) = {{ut}t∈I : ut ∈ C∞(D), and for all compact K ⊂ D

and all multi-indices α there is an integer p such that
sup
K

|∂αut| = O(tp)},
N(D) = {{ut}t∈I : ut ∈ C∞(D), and for all compact K ⊂ D

and all multi-indices α,

sup
K

|∂αut| = O(tq) for all q}.
If we consider the compactwise extra-functions, KF (D, I), based on the
index set I instead of N, then there is a projection of the algebra G(D)
into KF (D, I). This makes it possible to build a differential projection
leading to the same results as in Theorem 6.1 and its corollary for
Colombeau’s generalized functions.

In a more general setting (see Kunzinger and Oberguggenberger [31])
the Colombeau algebra G(D) is a factor algebra of C∞(D)F , where F is
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a set of real-valued functions. However, as compact-wise extrafunctions
may be defined for arbitrary partially ordered sets of indices (Burgin
[8]), we have the same results on the solvability of linear PDE in this
setting as well.

7. Conclusion. Thus we have demonstrated that introducing
extrafunctions makes it possible to “solve” a much larger class of
PDE than can be solved in the space of distributions. Theories of
generalized functions, which appeared as extensions of distributions,
also do not add anything essential to the collection of soluble equations
in comparison with those that are soluble by means of extrafunctions.
With these properties the theory of extrafunctions changes the problem
of integrating differential equations. Instead of seeking to get a solution
in terms of ordinary functions, one would ask what is the class of
extrafunctions defined by a given equation. For example, the class
of extrafunctions that corresponds to the equation of Lewy does not
contain either ordinary functions or distributions.
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