
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 34, Number 3, Fall 2004

EXISTENCE RESULTS FOR SEMI-LINEAR
INTEGRODIFFERENTIAL INCLUSIONS

WITH NONLOCAL CONDITIONS

M. BENCHOHRA, E.P. GATSORI AND S.K. NTOUYAS

ABSTRACT. In this paper, we shall establish sufficient con-
ditions for the existence of solutions for semi-linear integrodif-
ferential inclusions in Banach spaces with nonlocal conditions.
By using suitable fixed point theorems we study the case when
the multi-valued map has convex as well as nonconvex values.

1. Introduction. In this paper, we shall prove existence results, for
the following semi-linear integrodifferential inclusions, with nonlocal
conditions, of the form

(1) y′(t)−Ay(t) ∈F
(
t, y(t),

∫ t

0

k(t, s, y(s)) ds
)
, a.e. t ∈J := [0, b]

y(0) + f(y) = y0,(2)

where A : D(A) ⊂ E → E is the infinitesimal generator of a strongly
continuous semigroup T (t), t≥0, F : J×E×E → P(E) a multi-valued
map, k : J×J×E → E a continuous function, f : C(J,E) → E, y0 ∈ E,
P(E) is the family of all subsets of E and E is a real separable Banach
space with norm ‖ · ‖.

The work on nonlocal evolution initial value problems (IVP for short)
was initiated by Byszewski. In [9, 10] Byszewski using the method of
semigroups and the Banach fixed point theorem proved the existence
and uniqueness of mild, strong and classical solution of first order
IVP. For the importance of nonlocal conditions in different fields, the
interested reader is referred to [9, 10] and the references cited therein.

In [5] Benchohra and Ntouyas studied existence results for integrod-
ifferential inclusions on infinite intervals, in the case where the multi-
valued map has bounded, closed and convex values, by using the fixed
point theorem of Ma [18].
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Here we study existence results on compact intervals, when the multi-
valued F has convex or nonconvex values. In the first case a fixed point
theorem due to Martelli [19] is used and in the latter a fixed point
theorem for contraction multi-valued maps, due to Covitz and Nadler
[12].

2. Preliminaries. In this section, we introduce notations, defini-
tions, and preliminary facts from multi-valued analysis which are used
throughout this paper.

C(J,E) is the Banach space of continuous functions from J into E
normed by

‖y‖∞ = sup{‖y(t)‖ : t ∈ J}.
B(E) denotes the Banach space of bounded linear operators from E
into E.

A measurable function y : J → E is Bochner integrable if and only
if ‖y‖ is Lebesgue integrable. (For properties of the Bochner integral,
see Yosida [21].)

L1(J,E) denotes the Banach space of measurable functions y : J → E
which are Bochner integrable normed by

‖y‖L1 =
∫ b

0

‖y(t)‖ dt for all y ∈ L1(J,E).

Let (X, ‖ · ‖) be a Banach space. A multi-valued map G : X → P(X)
is convex (closed) valued if G(x) is convex (closed) for all x ∈ X. G
is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in X for
any bounded set B of X, that is supx∈B{sup{‖y‖ : y ∈ G(x)}} < ∞.
G is called upper semi-continuous (u.s.c.) on X if, for each x0 ∈ X,
the set G(x0) is a nonempty, closed subset of X, and if, for each open
set V of X containing G(x0), there exists an open neighborhood U
of x0 such that G(U) ⊆ V . G is said to be completely continuous if
G(B) is relatively compact for every bounded subset B ⊆ X. If the
multi-valued map G is completely continuous with nonempty compact
values, then G is u.s.c. if and only if G has a closed graph, i.e., xn → x0,
yn → y0, yn ∈ G(xn) imply y0 ∈ G(x0). G has a fixed point if there is
an x ∈ X such that x ∈ G(x).

P (X) = {Y ∈ P(X) : Y 	= ∅}, Pcl(X) = {Y ∈ P (X) : Y
closed}, Pb(X) = {Y ∈ P (X) : Y bounded}, Pcp = {Y ∈ P (X) : Y
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compact} and Pc(X) = {Y ∈ P (X) : Y convex}. A multi-valued map
G : J → Pcl(X) is said to be measurable if, for each x ∈ X, the function
Y : J → R+, defined by

Y (t) = d(x,G(t)) = inf{‖x− z‖ : z ∈ G(t)},

is measurable. For more details on multi-valued maps we refer to the
books of Deimling [13], Gorniewicz [15] and Hu and Papageorgiou [16].

An upper semi-continuous map G : X −→ P(X) is said to be
condensing if, for any bounded subset B ⊆ X with α(B) 	= 0, we
have α(G(B)) < α(B), where α denotes the Kuratowski measure of
noncompactness. For properties of the Kuratowski measure, we refer
to Banas and Goebel [4]. We remark that a completely continuous
multi-valued map is the easiest example of a condensing map.

For properties of semi-groups theory, we refer the interested reader
to the books of Goldstein [14] and Pazy [20].

3. Existence result: The convex case. Assume in this section
that F : J × E × E → P(E) is a bounded, closed and convex valued
multi-valued map.

Let us list the following hypotheses:

(H1) A is the infinitesimal generator of a semi-group of bounded linear
operators T (t) in E such that ‖T (t)‖B(E) ≤M , for some M > 0;

(H2) F : J ×E ×E → Pb,cl,c(E); (t, w, v) �→ F (t, w, v) is measurable
with respect to t for each w, v ∈ E, and u.s.c. with respect to w, v for
each t ∈ J and the set

SF,y :=
{
g ∈L1(J,E) : g(t) ∈F

(
t, y(t),

∫ t

0

k(t, s, y(s))ds
)

for a.e. t ∈J
}

is nonempty;

(H3) f : C(J,E) −→ E is continuous and there exists a constant
L > 0 such that ‖f(y)‖ ≤ L for each y ∈ C(J,E);

(H4) There exists a function α ∈ C(J,R+) ∩ L2(J,R+), such that∥∥∥∥
∫ t

0

k(t, s, y) ds
∥∥∥∥ ≤ α(t)‖y‖ for each t ∈ J and y ∈ E;
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(H5) There exist β ∈ L2(J,R+) such that

‖F (t, y, z)‖ = sup{‖v‖ : v ∈ F (t, y, z)}
≤ β(t)ψ(‖y‖ + ‖z‖) for a.e. t ∈ J and y, z ∈ E,

where ψ : R+ → (0,∞) is a continuous and increasing function with

ψ(α(t)‖y‖) ≤ α(t)ψ(‖y‖) for each t ∈ J and y ∈ E,

and

M

∫ b

0

β(t)(1 + α(t)) ds <
∫ ∞

c

du

ψ(u)
, c = M(‖y0‖ + L).

(H6) For each bounded B ⊂ C(J,E) and t ∈ J the set

{
T (t)y0 − T (t)f(y) +

∫ t

0

T (t− s)g(s) ds : g ∈ SF,B

}

is relatively compact in E, where SF,B = ∪{SF,y : y ∈ B}.

Definition 3.1. A function y ∈ C(J,E) is called a mild solution
of (1) (2) if there exists a function v ∈ L1(J,E) such that v(t) ∈
F (t, y(t),

∫ t

0
k(t, s, y(s)) ds) almost everywhere on J and

y(t) = T (t)y0 − T (t)f(y) +
∫ t

0

T (t− s)v(s) ds.

The following lemmas are crucial in the proof of our main theorem.

Lemma 3.1 [17]. Let I be a compact real interval and X a Banach
space. Let F be a multi-valued map satisfying (H2), and let Γ be a linear
continuous mapping from L1(I,X) to C(I,X). Then the operator

Γ ◦ SF : C(I,X) −→ Pb,cl,c(C(I,X)),
y �−→ (Γ ◦ SF )(y) := Γ(SF,y)
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is a closed graph operator in C(I,X) × C(I,X).

Lemma 3.2 [19]. Let X be a Banach space and N : X → Pb,cl,c(X)
an upper semi-continuous and condensing map. If the set

Ω := {y ∈ X : λy ∈ N(y) for some λ > 1}

is bounded, then N has a fixed point.

Now we are able to state and prove our main theorem in this section.

Theorem 3.1. Assume that hypotheses (H1) (H6) are satisfied.
Then the problem (1) (2) has at least one mild solution on J .

Proof. We transform the problem (1) (2) into a fixed point problem.
Consider the multi-valued map, N : C(J,E) → P(C(J,E)) defined by

N(y) :=
{
h ∈ C(J,E) : h(t) = T (t)[y0 − f(y)]

+
∫ t

0

T (t− s)g(s) ds : g ∈ SF,y

}

where

SF,y =
{
g∈L1(J,E) : g(t)∈F

(
t, y(t),

∫ t

0

k(t, s, y(s)) ds
)

for a.e. t ∈J
}
.

Remark 3.1. It is clear that the fixed points of N are mild solutions
to (1) (2).

We shall show that N is completely continuous with bounded, closed,
convex values and it is upper semi-continuous. The proof will be given
in several steps.

Step 1. N(y) is convex for each y ∈ C(J,E).
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Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ SF,y such
that, for each t ∈ J , we have

hi(t) = T (t)[y0 − f(y)] +
∫ t

0

T (t− s)gi(s) ds, i = 1, 2.

Let 0 ≤ k ≤ 1. Then for each t ∈ J we have

(kh1 + (1 − k)h2)(t) = T (t)[y0 − f(y)]

+
∫ t

0

T (t− s)[kg1(s) + (1 − k)g2(s)] ds.

Since SF,y is convex (because F has convex values) then

kh1 + (1 − k)h2 ∈ N(y).

Step 2. N is bounded on bounded sets of C(J,E).

Indeed, it is enough to show that there exists a positive constant l
such that, for each h ∈ N(y), y ∈ Br = {y ∈ C(J,E) : ‖y‖∞ ≤ r}, one
has ‖h‖∞ ≤ l. If h ∈ N(y), then there exists g ∈ SF,y such that for
each t ∈ J we have

h(t) = T (t)[y0 − f(y)] +
∫ t

0

T (t− s)g(s) ds.

By (H1) and (H4) (H5) we have, for each t ∈ J , that

‖h(t)‖ ≤ ‖T (t)‖B(E)‖y0‖ + ‖T (t)‖B(E)‖f(y)‖ +
∫ t

0

‖T (t−s)g(s)‖ ds

≤M‖y0‖ +ML+M

∫ t

0

β(s)ψ(‖y(s)‖ + α(s)‖y(s)‖) ds

≤M‖y0‖ +ML+M sup
t∈J

ψ(‖y(t)‖)
∫ t

0

β(s)(1 + α(s)) ds.

Then, for each h ∈ N(y), we have

‖h‖∞ ≤M‖y0‖ +ML+M sup
t∈J

ψ(r)
∫ b

0

β(s)(1 + α(s)) ds := l.
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Step 3. N sends bounded sets into equicontinuous sets of C(J,E).

Let t1, t2 ∈ J , t1 < t2 and Br be a bounded set in C(J,E). For each
y ∈ Br and h ∈ N(y), there exists g ∈ SF,y such that

h(t) = T (t)[y0 − f(y)] +
∫ t

0

T (t− s)g(s) ds, t ∈ J.

Thus

‖h(t2) − h(t1)‖
≤ ‖(T (t2) − T (t1))y0‖ + ‖[T (t2) − T (t1)]f(y)‖

+
∥∥∥∥

∫ t1

0

[T (t2−s) −T (t1−s)]g(s) ds
∥∥∥∥ +

∥∥∥∥
∫ t2

t1

T (t2−s)g(s) ds
∥∥∥∥

≤ ‖(T (t2) − T (t1))y0‖ + ‖[T (t2) − T (t1)]f(y)‖

+
∥∥∥∥

∫ t1

0

[T (t2−s) −T (t1−s)]g(s) ds
∥∥∥∥ +M

∫ t2

t1

‖g(s)‖ ds.

As t2 → t1 the righthand side of the above inequality tends to zero.

As a consequence of Step 2, Step 3 and (H6) together with the Arzela-
Ascoli theorem, we can conclude that N is completely continuous, and
therefore, a condensing map.

Step 4. N has a closed graph.

Let yn → y∗, hn ∈ N(yn), and hn → h∗. We shall prove that
h∗ ∈ N(y∗).

hn ∈ N(yn) means that there exists gn ∈ SF,yn
such that

hn(t) = T (t)y0 − T (t)f(yn) +
∫ t

0

T (t− s)gn(s) ds.

We have to prove that there exists g∗ ∈ SF,y∗ such that

h∗(t) = T (t)y0 − T (t)f(y∗) +
∫ t

0

T (t− s)g∗(s) ds, t ∈ J.

Consider the linear continuous operator

Γ : L1(J,E) −→ C(J,E)

g �−→ Γ(g)(t) =
∫ t

0

T (t− s)g(s) ds.
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Clearly we have that

‖(hn−T (t)y0+T (t)f(yn))−(h∗−T (t)[y0−f(y∗)])‖∞−→ 0, as n −→ ∞.

From Lemma 3.1, it follows that Γ ◦ SF is a closed graph operator.

Moreover, we have that

hn(t) − T (t)y0 + T (t)f(yn) ∈ Γ(SF,yn
).

Since yn −→ y∗, it follows from Lemma 3.1 that

h∗(t) − T (t)y0 + T (t)f(y∗) =
∫ t

0

T (t− s)g∗(s) ds

for some g∗ ∈ SF,y∗ .

Step 5. The set

Ω := {y ∈ C(J,E) : λy ∈ N(y), for some λ > 1}

is bounded.

Let y ∈ Ω. Then λy ∈ N(y) for some λ > 1. Thus, there exists
g ∈ SF,y such that

y(t) = λ−1T (t)y0 − λ−1T (t)f(y) + λ−1

∫ t

0

T (t− s)g(s) ds, t ∈ J.

Consequently, by (H1) and (H3) (H5), we have for each t ∈ J that

‖y(t)‖ ≤M‖y0‖ +ML+M

∫ t

0

β(s)ψ(‖y(s)‖+ α(s)‖y(s)‖)ds

≤M‖y0‖ +ML+M

∫ t

0

β(s)(1 + α(s))ψ(‖y(s)‖) ds.

Let us take the righthand side of the above inequality as v(t). Then we
obtain

v(0) = M(‖y0‖ + L), ‖y(t)‖ ≤ v(t), t ∈ J,

and
v′(t) = Mβ(t)(1 + α(t))ψ(‖y(t)‖), t ∈ J.
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Applying the nondecreasing character of ψ we get

v′(t) ≤Mβ(t)(1 + α(t))ψ(v(t)), t ∈ J.

The above inequality implies, for each t ∈ J , that

∫ v(t)

v(0)

du

ψ(u)
≤M

∫ b

0

β(t)(1 + α(t)) ds <
∫ ∞

v(0)

du

ψ(u)
.

Therefore, there exists a constant d such that v(t) ≤ d, t ∈ J , and
hence ‖y‖∞ ≤ d, where d depends only on the functions p and ψ. This
shows that Ω is bounded.

Set X := C(J,E). As a consequence of Lemma 3.2, we deduce that
N has a fixed point, which is a mild solution of (1) (2).

4. Existence result: The nonconvex case. In this section we
consider the problems (1) (2), with a nonconvex valued righthand side.

Let (X, d) be the metric space induced from the normed space
(X, ‖ · ‖).

Consider Hd : P (X) × P (X) → R+ ∪ {∞}, given by

Hd(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)
}
,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b).

Then (Pb,cl(X), Hd) is a metric space and (Pcl(X), Hd) is a general-
ized metric space.

Definition 4.1. A multi-valued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

b) contraction if and only if it is γ-Lipschitz with γ < 1.

c) N has a fixed point if there is an x ∈ X such that x ∈ N(x).
The fixed point set of the multi-valued operator N will be denoted by
FixN .
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Our considerations are based on the following fixed point theorem for
contraction multi-valued operators given by Covitz and Nadler in 1970
[12], see also Deimling [13, Theorem 11.1].

Lemma 4.1. Let (X, d) be a complete metric space. If N : X →
Pcl(X) is a contraction, then FixN 	= ∅.

Theorem 4.1. Assume that:

(A1) F : J ×E ×E −→ Pcp(E) has the property that F (·, u, v) : J →
Pcp(E) is measurable for each u, v ∈ E;

(A2) There exists l ∈ L1(J,R) such that

Hd(F (t, u, v), F (t, ū, v̄)) ≤ l(t)[‖u− ū‖ + ‖v − v̄‖],
for each t ∈ J and u, ū, v, v̄ ∈ E, and

d(0, F (t, 0, 0)) ≤ l(t), for almost each t ∈ J.

(A3) ‖f(y) − f(ȳ)‖ ≤ c‖y − ȳ‖∞, for each y, ȳ ∈ C(J,E), where c is
a nonnegative constant.

(A4) ‖k(t, s, z) − k(t, s, z̄)‖ ≤ K1‖z − z̄‖, for each t, s ∈ J , z, z̄ ∈ E,
where K1 is a nonnegative constant.

Then the IVP (1) (2) has at least one solution on J .

Proof. Transform the problem (1) (2) into a fixed point problem.
Consider the multi-valued operator, N : C([0, b], E) → P(C([0, b], E))
defined by:

N(y) :=
{
h ∈ C([0, b], E) : h(t) = T (t)[y0−f(y)]+

∫ t

0

T (t−s)g(s) ds
}
,

where g ∈ SF,y.

Remark 4.1. (i) It is clear that the fixed points of N are solutions to
(1) (2).

(ii) For each y ∈ C([0, b], E) the set SF,y is nonempty since, by (A1),
F has a measurable selection, see [11, Theorem III.6].



RESULTS FOR INTEGRODIFFERENTIAL INCLUSIONS 843

Consider the following Bielecki-type norm, see [8], on C(J,E) defined
by

‖y‖B = max
t∈J

{‖y(t)‖e−τL(t)},

where L(t) =
∫ t

0
l(s) ds. Since

e−τL(b)‖y‖∞ ≤ ‖y‖B ≤ ‖y‖∞,

the norms ‖y‖B and ‖y‖∞ are equivalent.

We shall show that N satisfies the assumptions of Lemma 4.1. The
proof will be given in two steps.

Step 1. N(y) ∈ Pcl(C[0, b], E) for each y ∈ C([0, b], E).

Indeed, let (yn)n≥0 ∈ N(y) be such that yn −→ ỹ in C[0, b], E). Then
ỹ ∈ C([0, b], E) and

yn(t) ∈ T (t)[y0 − f(y)]

+
∫ t

0

T (t−s)F
(
s, y(s),

∫ s

0

k(s, w, y(w) dw
)
ds for each t ∈ [0, b].

Using the closedness property of the values of F and the second part
of (A2) we can prove that

∫ t

0
T (t − s)F (s, y(s),

∫ s

0
k(s, w, y(w)) dw) ds

is closed for each t ∈ [0, b]. Then

yn(t) −→ ỹ(t) ∈ T (t)[y0 − f(y)]

+
∫ t

0

T (t− s)F
(
s, y(s),

∫ s

0

k(s, w, y(w)) dw
)
ds, for t ∈ [0, b].

So ỹ ∈ N(y).

Step 2. Hd(N(y1), N(y2)) ≤ γ‖y1−y2‖B for each y1, y2 ∈ C([0, b], E),
where γ < 1.

Let y1, y2 ∈ C([0, b], E) and h1 ∈ N(y1). Then there exists

g1(t) ∈ F

(
t, y1(t),

∫ t

0

k(t, s, y1(s)) ds
)
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such that

h1(t) = T (t)[y0 − f(y1)] +
∫ t

0

T (t− s)g1(s) ds, t ∈ [0, b].

From (A2) it follows that

Hd

(
F

(
t, y1(t),

∫ t

0

k(t, s, y1(s)) ds
)
, F

(
t, y2(t),

∫ t

0

k(t, s, y2(s)) ds
))

≤ l(t)[‖y1(t) − y2(t)‖ + bK1‖y1(t) − y2(t)‖].

Hence there is w ∈ F (t, y2(t),
∫ t

0
k(t, s, y2(s)) ds) such that

‖g1(t) − w‖ ≤ l(t)[‖y1(t) − y2(t)‖ + bK1‖y1(t) − y2(t)‖], t ∈ [0, b].

Consider U : [0, b] → P(E), given by

U(t) = {w ∈ E : ‖g1(t) − w‖
≤ l(t)[‖y1(t) − y2(t)‖ + bK1‖y1(t) − y2(t)‖]}.

Since the multi-valued operator V (t) = U(t)∩F (t, y2(t),
∫ t

0
k(t, s, y2(s))

ds) is measurable, see Proposition III.4 in [11], there exists g2(t) a
measurable selection for V . So,

g2(t) ∈ F

(
t, y2(t),

∫ t

0

k(t, s, y2(s)) ds
)

and

‖g1(t) − g2(t)‖ ≤ l(t)[‖y1(t) − y2(t)‖ + bK1‖y1(t) − y2(t)‖],
for each t ∈ J.

Let us define for each t ∈ J

h2(t) = T (t)[y0 − f(y2)] +
∫ t

0

T (t− s)g2(s) ds.
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Then we have

‖h1−h2‖B

= max
t∈J

e−τL(t)

∥∥∥∥T (t)[f(y1) −f(y2)] +
∫ t

0

T (t−s)[g1(s) − g2(s)] ds
∥∥∥∥

≤ max
t∈J

e−τL(t)Mc‖y1−y2‖∞+M max
t∈J

e−τL(t)

∫ t

0

l(s)[‖y1(s)−y2(s)‖

+ bK1‖y1(s)−y2(s)‖] ds
≤MceτL(b)‖y1 − y2‖B

+ max
t∈J

e−τL(t)M(1 + bK1)‖y1 − y2‖B

∫ t

0

l(s)eτL(s) ds

≤MceτL(b)‖y1−y2‖B +M(1+bK1)‖y1−y2‖B
1
τ

max
t∈J

e−τL(t)(eτL(t)−1)

≤MceτL(b)‖y1−y2‖B +M(1+bK1)‖y1−y2‖B
1
τ

(1 − e−τL(b))

≤MceτL(b)‖y1−y2‖B +M(1+bK1)‖y1−y2‖B
1
τ
.

Then

‖h1 − h2‖B ≤
[
MceτL(b) +

M(1 + bK1)
τ

]
‖y1 − y2‖B.

By the analogous relation, obtained by interchanging the roles of y1
and y2, it follows that

Hd(N(y1), N(y2)) ≤
[
MceτL(b) +

M(1 + bK1)
τ

]
‖y1 − y2‖B .

Let τ and c be such that γ = MceτL(b) +(M(1 + bK1))/τ < 1. Then N
is a contraction and thus, by Lemma 4.1, it has a fixed point y, which
is the solution to (1) (2).

5. Applications. As applications of our results, we shall give con-
trollability results for first order semi-linear integrodifferential inclu-
sions of the form

(3) y′(t)∈Ay(t)+F
(
t, y(t),

∫ t

0

k(t, s, y(s)) ds
)

+(Bu)(t), t∈J=[0, b],

y(0) + f(y) = y0,(4)
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where the control function u(·) is given in L2(J, U), a Banach space
of admissible control functions, with U as a Banach space and B a
bounded linear operator from U to E. For recent controllability results
of nonlinear ordinary, functional and neutral functional differential and
integrodifferential systems in Banach spaces, by using different tools
of fixed point arguments, we refer to the papers by Benchohra and
Ntouyas [6, 7] and Balachandran et al. [1, 2] and [3].

Definition 5.1. A function y ∈ C(J,E) is called a mild solution
of (3) (4) if there exists a function v ∈ L1(J,E) such that v(t) ∈
F (t, y(t),

∫ t

0
k(t, s, y(s)) ds) almost everywhere on J, and

y(t) = T (t)y0 − T (t)f(y) +
∫ t

0

T (t− s)(Bu)(s) ds+
∫ t

0

T (t− s)v(s) ds.

Definition 5.2. The system (3) (4) is said to be nonlocally con-
trollable on the interval J, if for every y0, x1 ∈ E, there exists a con-
trol u ∈ L2(J, U), such that the mild solution y(t) of (3) (4) satisfies
y(b) + f(y) = x1.

We will need the following additional assumption:

(H7) The linear operator W : L2(J, U) → E, defined by

Wu =
∫ b

0

T (b− s)Bu(s) ds,

has an invertible operator W̃−1 which takes values in L2(J, U)/ kerW
and there exist positive constants M1 and M2 such that ‖B‖ ≤M1 and
‖W̃−1‖ ≤M2.

Theorem 5.1. Let F : J ×E ×E → P(E) be a bounded, closed and
convex valued multi-valued map. Assume that hypotheses (H1) (H7)
are satisfied. Then the problem (3) (4) is nonlocally controllable on J .

Theorem 5.2. Let F : J × E × E → P(E) be a nonconvex valued
multi-valued map. Assume that hypotheses (A1) (A4) and (H7) are
satisfied. Then the problem (3) (4) is nonlocally controllable on J .
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Using hypothesis (H7), for an arbitrary function y(·), define the
control

uy(t) = W̃−1

[
x1 − f(y) − T (b)y0 + T (b)f(y) −

∫ b

0

T (b− s)g(s) ds
]
(t)

where g ∈ SF,y.

We shall now show that, when using this control, the operator N
defined by

N(y) :=
{
h ∈ C(J,E) : h(t) = T (t)(y0 − f(y))

+
∫ t

0

T (t−s)(Buy)(s) ds+
∫ t

0

T (t−s)g(s) ds : g ∈ SF,y

}

has a fixed point. This fixed point is then a solution of the system
(3) (4).

Clearly x1 − f(y) ∈ N(y)(b).

We shall show that N for Theorem 5.1 is completely continuous with
bounded closed convex values and it is upper semi-continuous and for
Theorem 5.2 that N has closed values and it is a contraction multi-
valued map. The steps for the proofs are parallel to that of Theorems
3.1 and 4.1. So we omit the details.
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