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GEOMETRIC CONSTRUCTIONS ON CYCLES

BORUT JURČIČ ZLOBEC AND NEŽA MRAMOR KOSTA

ABSTRACT. A point, plane or sphere in Rn can be de-
scribed as a point on the Lie quadric Ω ⊂ Pn+2, and a geomet-
ric construction on points, planes and spheres as a map which
associates a point y ∈ Ω to a given k-tuple (x1, . . . , xk) ∈ Ωk.
In this paper the Apollonius construction is described as a
map A : D → Ω, where D is a subset of Ωn+1. A number of
geometric constructions is obtained by composing the map A
with Lie reflections and some other projective transformations
in Pn+2.

1. Introduction. A geometric construction in the space Rn can be
viewed as a map on a set, containing geometric objects described in an
appropriate way. In this paper constructions on points, and oriented
hyperspheres and hyperplanes in Rn are considered. A suitable way
to describe such geometric constructions comes from Lie geometry. In
Lie geometry, oriented planes and spheres of dimension n − 1 in Rn,
which are together called geometric cycles, are described as points on
a quadric surface Ω in the projective space Pn+2, while the angle of
intersection is expressed in terms of the Lie product in Rn+3. In this
setting, a geometric construction on cycles can be thought of as a map
from Ωk to Ω, which associates to a given k-tuple of points, representing
geometric objects in Rn, a point in Ω, representing a solution of the
construction. Lie geometry has been used to study geometric problems
on circles for example in [3, 5, 6] and [7]. A thorough treatment of Lie
geometry can be found in [1] or [2].

A basic example of a construction on cycles is the oriented Apollonius
construction in Rn, which asks for a sphere or plane, tangent to
(n + 1) given spheres and planes. In [7], a solution of an Apollonius
construction is described as a point in the intersections of a projective
line in Pn+2 with Ω, and a classification of Apollonius constructions,
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depending on the position of this projective line in the space Pn+2,
is given. In this paper we think of the Apollonius construction as a
map A, defined on a subset D of Ωn+1 containing all (n + 1)-tuples of
points in Ω which determine constructions with a solution (we call
such constructions consistent). In general, a consistent Apollonius
construction can have more than one solution. To define the single
valued map A, an additional condition is identified. This additional
condition is first described in algebraic terms, and then its geometric
meaning is analyzed.

In addition, we consider Lie reflections, and several other projective
transformations in Pn+2. We describe the geometric effect that such
a transformation on a cycle x ∈ Ω has on the underlying geometric
cycle and show that a wide class of classical geometric constructions
on cycles can be described as compositions of the map A with these
transformations.

In this paper we use the same notation and terminology as in [7].
In Section 3 we introduce the single-valued map A which associates
to an (n + 1)-tuple of points from D the unique solution satisfying an
additional condition. In Section 4 we define some projective transfor-
mations, which we use, in Section 5, to generate a number of geometric
constructions. In order to make the paper easier to read, we begin with
a short description of the terminology and a summary of the basic facts
about Lie geometry.

2. Basic concepts and definitions. An element x, denoted by a
lower case letter, in the (n+2)-dimensional real projective space Pn+2

is called a cycle and is given by a nonzero vector of homogeneous co-
ordinates X = (X0, . . . , Xn+2), denoted by the corresponding capital
letter. The Lie product of vectors of homogeneous coordinates, given
by

(1)
(X | Y ) = X0Y n+1+ X1Y 1+ · · ·XnY n+ Xn+1Y 0− Xn+2Y n+2

= XTAY,

where

(2) A =

⎡
⎢⎣

0 0 1 0
0 I 0 0
1 0 0 0
0 0 0 −1

⎤
⎥⎦
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determines the quadric surface Ω = {x ∈ Pn+2 | (X | X) = 0} in Pn+2,
called the Lie quadric.

Every cycle x ∈ Ω, except the cycle w with homogeneous coordinates
W = (1, 0, . . . , 0), represents an oriented geometric cycle Cx, which
is either an (n − 1)-plane or an (n − 1)-sphere in Rn, as follows.
Let {ϕi : Ui → Rn+2 ⊂ Rn+3} be the standard collection of local
coordinate charts on Pn+2, i.e., Ui = {x ∈ Pn+2 | Xi �= 0}, and

ϕi(x) =
(

X0

Xi
, . . . ,

Xi−1

Xi
, 1,

Xi+1

Xi
, . . . ,

Xn+2

Xi

)

∈ ({Y 0, . . . , Y i−1, 1, Y i+1, . . . , Y n+2
)} ∼= Rn+2.

• If x ∈ Un+1 ∩ Ω, then the local coordinates

ϕn+1(x) = (υ,p, 1, ρ), p ∈ Rn

represent the sphere with center p and radius |ρ|. If ρ > 0 this sphere is
positively oriented (outward normal), if ρ < 0 it is negatively oriented,
and if ρ = 0 it is the point p, a sphere with radius 0.

• If x ∈ Ω \ Un+1 and x �= w, the condition (X | X) = 0 implies
Xn+2 �= 0, so x ∈ Un+2. The local coordinates

ϕn+2(x) = (η,n, ω, 1), ω = 0, n ∈ Rn, |n|2 = 1

represent the plane with normal n, which is a unit vector since the
condition (X | X) = 0 implies that |n|2 − 1 = 0, and η = −n · q where
q is a point on this plane (here ‘·’ denotes the Euclidean product in
Rn).

Thus, every geometric cycle is represented by a point in Ω \ {w} ⊂
Un+1 ∪ Un+2, the complement

(Ω \ {w}) \ Un+1 = (Ω \ {w}) ∩ 〈w〉⊥

consists of cycles representing planes, and the complement

(Ω \ {w}) \ Un+2 = (Ω \ {w}) ∩ 〈r〉⊥,
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where r has homogeneous coordinates R = (0,0, 0, 1), consists of cycles
representing points in Rn.

The involution on Pn+2, which associates to cycle x ∈ Un+2 with local
coordinates ϕn+2(x) = (η,n, ω, 1) the cycle x′ with local coordinates
ϕn+2(x′) = (−η,−n,−ω, 1), corresponds to a change of orientation.
Cycles x ∈ Ω \ Un+2, i.e., cycles representing points, are fixed by this
involution.

The Lie product on homogeneous coordinates of cycles x1, x2 ∈ Ω has
several geometric interpretations.

(L1) If (X1 | X2) = 0, then the corresponding geometric cycles Cx1

and Cx2 are coherently tangent. If both are planes or spheres, this
means that they are tangent with compatible orientations, and if one
is a point, then it lies on the other one (this is true also if one of the
cycles is w, if we interpret w geometrically as the infinite point of Rn).

(L2) For cycles x1, x2 ∈ Un+1 ∩ Ω, i.e., nonplane cycles, the Lie
product expressed in local coordinates in Un+1 is

(X1 | X2) = υ1 + υ2 + p1 · p2 − ρ1ρ2 = −P (x1, x2)
2

,

where P (x1, x2) is the power of x1 to x2. If P (x1, x2) ≥ 0, then it is the
square of the tangential distance between the oriented spheres Cx1 and
Cx2 . If x1 is a point cycle, then P (x1, x2) < 0 implies that the geometric
point Cx1 is in the bounded component of Rn −Cx2 , and P (x1, x2) > 0
implies that Cx1 is in the unbounded component of Rn − Cx2 .

(L3) For cycles x1, x2 ∈ Un+2 ∩ Ω, i.e., nonpoint cycles, the Lie
product expressed in local coordinates in Un+2

(X1 | X2) = η1ω2 + η2ω1 + n1 · n2 − 1 = A(x1, x2)

is the copower of x1 to x2, which is connected to the angle between
geometric cycles in the following way. If A(x1, x2)A(x′

1, x2) ≥ 0, then
Cx1 and Cx2 intersect, and

C(x1, x2) = A(x1, x2) + 1 = cosϕ,

where ϕ is the angle of intersection. If A(x1, x2)A(x′
1, x2) < 0 then Cx1

and Cx2 do not intersect, and

C(x1, x2) =
1

sin(α/2)
,
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FIGURE 1. An Apollonius construction on three circles in the plane.

where α is the angle under which Cx2 is seen from Cx1 . More precisely,
if Cx1 is a sphere, α is the biggest angle between two geometric cycles
that are tangent to Cx2 and intersect Cx1 in a main sphere, and if Cx1

is a plane, α is the biggest angle between two lines, tangent to Cx2 and
intersecting on Cx1 , i.e., the angle under which Cx2 is seen from the
closest point on Cx1 .

The sign of C(x1, x2) is connected to the orientations of Cx1 and
Cx2 . If C(x1, x2) > 0 we say that x1 and x2 are coherent, where two
intersecting cycles x1 and x2 are coherent if the angle of intersection
of Cx1 and Cx2 is acute, and two non-intersecting finite cycles x1 and
x2 are coherent if they induce the same orientation on Rn. In general,
two non-intersecting cycles x1 and x2 are coherent if there exists a
continuous rigid motion of Rn which moves Cx2 within Rn \ Cx1 to a
cycle that is coherently tangent to Cx1 .

3. The Apollonius problem. Given n + 1 oriented spheres and
planes of dimension n − 1 in Rn, the Apollonius problem is to find a
common coherently tangent sphere or plane. In Lie geometry, an Apol-
lonius problem is given by an (n + 1)-frame of points {x1, . . . , xn+1}
on the Lie quadric Ω ⊂ Pn+2.

By (L1), solutions are the intersections of the Lie-orthogonal comple-
ment to this frame and the quadric. Thus, a solution y can be expressed
as a solution of a system of n + 1 homogeneous linear equations and a
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homogeneous quadratic equation

(3) (Y | Xi) = 0, i = 1, . . . , n + 1, (Y | Y ) = 0.

In order to avoid constructions with infinitely many solutions we
require that the homogeneous coordinates X1, . . . , Xn+1 are linearly
independent vectors.

An (n+1)-frame of points X = {x1, . . . , xn+1} ⊂ Ω such that the ho-
mogeneous coordinates X1, . . . , Xn+1 are linearly independent is called
a configuration. The Lie-orthogonal complement to a configuration is
a projective line, which intersects the quadric in two points, in one
point, or it misses the quadric, so the corresponding Apollonius prob-
lem has either two, one or no solutions. We say that a configuration
is consistent if the corresponding Apollonius problem has at least one
solution.

The configuration X is a Steiner configuration if the vectors X1, . . . ,
Xn+1, R are linearly independent, and a cone configuration if the
vectors X1, . . . , Xn+1, W are linearly independent. An Apollonius
construction given by a Steiner configuration cannot have two point
solutions (it cannot consist of cycles which intersect in two common
points), while an Apollonius construction given by a cone configuration
cannot have two solutions that are planes. A classification of Steiner
configurations with respect to the existence and properties of the
solutions is given in [7]. A configuration that is neither Steiner nor
cone determines an Apollonius problem with no solutions, since the
Lie-orthogonal complement is the projective line {λW +µR | λ, µ ∈ R}
spanned by w and r which intersects the quadric only in the point w.

In this section, we will describe a consistent way to choose one
preferred solution of every Apollonius problem with two solutions,
depending on the order of the cycles in the configuration. In this way,
we will be able to look at the Apollonius construction as a single-valued
map A (or as a well-defined algorithm), defined on the set of ordered
consistent configurations X = (x1, . . . , xn+1), with values in Ω.

3.1 Steiner configurations. Let X be an ordered consistent Steiner
configuration. We choose standard homogeneous coordinates Z for
every cycle z ∈ Ω in the following way:
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(i) if z ∈ Un+2, standard coordinates are the local coordinates in
Un+2: Z = (η,n, ω, 1), ω = 1/ρ,

(ii) if ρ = 0, then z ∈ Un+1 and standard coordinates are the local
coordinates in Un+1: Z = (υ,p, 1, 0).

There exists precisely one cycle u, such that U is Lie-orthogonal to
the vectors X1, . . . , Xn+1 and R. Homogeneous coordinates of u can
be computed from the (n + 2)-fold cross product

(4) U = ×(X1, . . . , Xn+1, R) := (−1)n+1A(X1 × · · · × Xn+1 × R)

where A is the matrix of the Lie bilinear form (2). The vector U
depends on the order of the cycles in the configuration. For any vector
Z ∈ Rn+3,

(Z | U) = ZT AU = (−1)n+1ZT (X1 × · · · × Xn+1 × R)
= D(Z, X1, . . . , Xn+1, R)

where D(Z0, . . . , Zn+2) denotes the determinant with columns Z0, . . . ,
Zn+2.

Lemma 3.1. Let X = (x1, . . . , xn+1) be an ordered Steiner config-
uration which generates an Apollonius problem with two different solu-
tions y1 and y2, and let the Di = (Y i | U), i = 1, 2. Then D1 �= D2. If
both D1 and D2 are nonzero, then D1 = −D2.

Proof. First let us assume that (U | U) = 0. Since U is Lie-orthogonal
to all Xi, u ∈ Ω represents a solution of the Apollonius problem. Since
U is Lie-orthogonal to R, this solution is a common point of all cycles
of the configuration. The second solution y2 is not a point, since we
have a Steiner configuration, and it does not contain the point u = y1,
so (Y 2 | U) �= 0 is either positive or negative.

Now let (U | U) �= 0. In this case the problem has two non-point
solutions y1, y2 ∈ Un+2. The vector Y 1 − Y 2 is Lie-orthogonal to all
cycles of the configuration and its last coordinate is zero, so it is a
vector of homogeneous coordinates of u. Let

(5) Y 1 − Y 2 = λU, λ �= 0.
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Since
λ(Y 1 | U) = (Y 1 | Y 1 − Y 2) = −(Y 1 | Y 2)

and
λ(Y 2 | U) = (Y 2 | Y 1 − Y 2) = (Y 2 | Y 1),

it follows that (Y 1 | U) = −(Y 2 | U).

Definition 3.1. If the Apollonius problem is given by a consistent
ordered Steiner configuration X , we define A(X ) = y1, where y1 is
chosen so that D1 ≥ D2.

Thus, if the problem has two solutions, neither of which is a point,
y1 is the one with D1 > 0. If one solution is a point, then the choice of
y1 depends on the sign of the determinant of the non-point solution.

In order to give the choice y1 a geometric meaning, let us first look
at the special case where all cycles xi of the configuration are points.
The two solutions y1,2 represent the unique nonoriented sphere or plane
through these points with both orientations, so Y1,2 = U ± aR where
a =

√
(U | U) > 0. Let us show that Y1 = U +aR. Since Y1 = U/a+R

and

D1 = D(Y1, X1, . . . , Xn+1, R) =
1
a
D(U, X1, . . . , Xn+1, R)

=
(U | U)

a
= a > 0.

The component

(6) Un+1 = (AU)1 =
∣∣∣∣p1 . . . pn+1

1 . . . 1,

∣∣∣∣
is the volume of the simplex spanned by the points pi. Since

ϕn+1(y1) = (υ1,p1, 1, ρ1) =
1

Un+1
(U + aR),

it follows that ρ1 = a/Un+1 is of the same sign as Un+1. Therefore,
Cy1 is oriented consistently with the simplex spanned by the points of
the configuration.
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FIGURE 2. An ordered configuration on points.

On the other extreme, let X be an ordered configuration with no
point cycles. For every i = 1, . . . , n + 1, and for every j, such that yj

is not a point cycle, the vector Pi,j = Xi − Y j is Lie-orthogonal to Xi,
to Yj , and to R, and (Pi,j | Pi,j) = 0, so it is a vector of homogeneous
coordinates of the point of tangency of Cxi

and Cyj
. If

V ′
j = ×(X1 − Y j , . . . , Xn+1 − Y j , R),

then
(Y j | V ′

j ) = D(Y j , (X1 − Y j), . . . , (Xn+1 − Y j), R)

= D(Y j , X1, . . . , Xn+1, R) = (Y j | U).

The standard homogeneous coordinates of Pi,j are

P i,j =
1

si,j
Pi,j , si,j = (Pi,j)n+1 =

1
ρxi

− 1
ρyj

.

The orthogonal vector corresponding to the point-configuration (p1,j , . . . ,
pn+1,j) is thus

Vj = ×(P 1,j , . . . , Pn+1,j , R) =
1

s1,j · · · sn+1,j
V ′

j ,

and

(7) (Y j | U) = (Y j | V ′
j ) = s1,j · · · sn+1,j(Y j | Vj).
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The sign of Dj = (Y j | U) thus depends on the sign of (Y j | Vj) and
on the signs the coefficients si,j .

By (6), the sign of (Vj | Y j) is positive if the orientation of the
solution Cyj

coincides with the orientation of the simplex spanned by
the points of tangency pi,j , i = 1, · · · , n + 1. The sign of

si,j =
1

ρxi

− 1
ρyj

depends on the position of Cyj
with respect to Cxi

and is positive when
the solution Cyj

lies in the negative side of the oriented geometric cycle
Cxi

.

In general, if the configuration X contains point cycles xi, then the
corresponding coefficients si,j in (7) are substituted by 1.

Thus we have proved:

Proposition 3.1. If a Steiner configuration determines an Apol-
lonius problem with two nonpoint solutions, then the chosen solution
y1 = A(X ) is either oriented consistently with the simplex spanned by
the points of tangency and an even number of cycles in the configura-
tion are on its positive side, or it is oriented nonconsistently, and an
odd number of cycles in the configuration are on its positive side. This
is true also if y2 is a point. On the other hand, if one solution is a
point, and the only nonpoint solution does not have this property, then
y1 is the point solution.

The sign of (U | U) is connected to the angle between the two
solutions in the following way.

Proposition 3.2. Assume that the Apollonius problem has two non-
point solutions, i.e., that (U | U) �= 0. Then the copower A(y1, y2) =
(Y 1 | Y 2) is of opposite sign as (U | U). Thus,

• If (U | U) > 0, then C(y1, y2) = A(y1, y2) + 1 < 1. This implies
that either Cy1 and Cy2 intersect, when |C(y1, y2)| < 1, or they have
opposite orientations when C(y1, y2) ≤ −1.

• If (U | U) < 0, then A(y1, y2) > 0 and C(y1, y2) > 1 and the
geometric solutions do not intersect and are coherent.
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Proof. By (5), (U | U) = 1/λ2(Y 1 − Y 2 | Y 1 − Y 2) = −2/λ2(Y 1 |
Y 2) = −2/λ2A(y1, y2).

Proposition 3.3. The collinearity factor λ in (5) is of the same sign
as (U | U).

Proof. D1 = (Y 1 | U) = (Y 1 −Y 2 | U)+ (Y 2 | U) = λ(U | U)+D2 >
D2, so λ(U | U) > 0.

3.2 Cone configurations. A consistent ordered non-Steiner con-
figuration X determines an Apollonius problem that has only point
solutions. In order to choose the preferred point y1, we treat such a
configuration as a cone configuration. We choose standard homoge-
neous coordinates Z for every cycle z ∈ Ω in the following way:

(i) if z ∈ Un+1, then we use local coordinates in Un+1: Z =
(υ,p, 1, ρ),

(ii) if ω = 0, then z ∈ Un+2 and we use local coordinates in Un+2:
Z = (η,n, 0, 1).

In this case there exists precisely one cycle u, such that U is Lie-
orthogonal to the vectors X1, . . . , Xn+1 and W . Homogeneous coordi-
nates of u can be computed from the (n + 2)-fold cross product

(8) U = ×(X1, . . . , Xn+1, W ) := (−1)n+2A(X1 × · · · × Xn+1 × W ).

For any vector Z ∈ Rn+3,

(Z | U) = ZT AU = (−1)n+2ZT (X1 × · · · × Xn+1 × W )
= D(Z, X1, . . . , Xn+1, W ).

Lemma 3.2. Let X = (x1, . . . , xn+1) be an ordered cone configura-
tion which generates an Apollonius problem with two different solutions
y1 and y2, and let the Di = (Y i | U), i = 1, 2. Then D1 �= D2. If both
D1 and D2 are nonzero, then they are of opposite sign.

Proof. We first assume that (U | U) = 0. In this case u ∈ Ω is a
plane-solution of the Apollonius problem. The second solution y2 is
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not a plane, since we have a cone configuration, and it is not tangent
to the plane u = y1 (if it were, the problem would have infinitely many
solutions, since every cycle in the projective line spanned by u and y2

would be a solution), so (Y 2 | U) �= 0 is either positive or negative.

Now let (U | U) �= 0. In this case the problem has two non-plane
solutions y1, y2 ∈ Un+1. The vector Y 1−Y 2 is a vector of homogeneous
coordinates of u, so Y 1 − Y 2 = λU , λ �= 0. Since

λ(Y 1 | U) = (Y 1 | Y 1 − Y 2) = −(Y 1 | Y 2)

and
λ(Y 2 | U) = (Y 2 | Y 1 − Y 2) = (Y 2 | Y 1),

it follows that (Y 1 | U) = −(Y 2 | U).

Definition 3.2. If the Apollonius problem is given by a consistent
ordered non-Steiner configuration X , we define A(X ) = y1, where y1 is
chosen so that D1 ≥ D2.

Remark 1. A generic configuration is both Steiner and cone. Here
we have chosen to treat such a configuration as a Steiner configuration.
We can just as well treat such a configuration as a cone configuration.
In this case, standard coordinates of a cycle in Un+1 ∩ Un+2 are the
local coordinates in Un+1 and not in Un+2, and the algorithm for the
choice y1 is similar. This approach is better suited for example for
studying continuous families of Apollonius problems consisting only of
cone configurations but containing also Steiner configuration.

4. Transformations of cycles. The goal of this paper is to provide
the tools for symbolic solutions of as many geometric constructions on
cycles as possible. This can be achieved by combining the map A with
some other projective transformations on Pn+2. These are divided into
two classes. Projective transformations, arising from linear transforma-
tions on homogeneous coordinates preserving the Lie product, preserve
the Lie quadric. All such transformations are generated by Lie reflec-
tions, which we describe first. Among these, certain transformations
preserve either angles or powers. On the other hand, projective trans-
formations arising from linear transformations that do not preserve the



GEOMETRIC CONSTRUCTIONS ON CYCLES 1577

Lie product generally move cycles from the quadric off the quadric, and
deform angles and powers.

4.1 Lie reflections. For any cycle z ∈ Pn+2 \Ω, the projective map

L[z] : Pn+2 → Pn+2

given by

(9) L[z](X) = X − 2
(X | Z)
(Z | Z)

Z

is a Lie reflection. The name ‘reflection’ is justified by the fact that
the corresponding matrix

L[z] = I− 2
(Z | Z)

(AZ)ZT

has det(L[z]) = −1 and L[z]2 = I. Since

(L[z](X1) | L[z](X2)) = (X1 − 2
(X1 | Z)
(Z | Z)

Z | X2 − 2
(X2 | Z)
(Z | Z)

Z)

= (X1 | X2),

a Lie reflection L[z] preserves the Lie quadric,

L[z] : Ω → Ω.

Actually, Lie reflections generate the group OA(n+3) of Lie-orthogonal
transformations in Rn+3, [2, Theorem 2.3]. A simple computation
shows that the Lie reflection L[z] fixes the cycle z as well as any cycle
x, Lie-orthogonal to z.

Here are some interesting special cases.

• The Lie reflection L[r] is fixed on point cycles x. If x is a nonpoint
cycle, then L[r] changes the orientation, i.e.,

L[r](X) = X − 2
(X | R)
(R | R)

R = X + 2(X | R)R, L[r](x) = x′.
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• If (Z | R) = 0, then the Lie reflection L[z] preserves copowers. Lie
reflections L[z] with this property generate a subgroup of the group
OA(n + 3) which is called the Möbius group. If (Z | Z) > 0, then the
two cycles z̃, z̃′ with homogeneous coordinates Z̃, Z̃ ′ = Z ±√

(Z | Z)R
are in Ω. The Lie reflection L[z] corresponds to geometric inversion
in Rn with respect to the underlying nonoriented geometric cycle. If
(Z | Z) < 0, then the cycles z̃, z̃′ ∈ Ω with homogeneous coordinates
Z̃, Z̃ ′ = Z ± √−(Z | Z)R represent a sphere with both orientations,
since (Z | Z) < 0 is possible only if Zn+1 �= 0. The Lie reflection L[z]
in this case corresponds to the composition of geometric inversion over
this sphere and over its center.

• If (Z | W ) = 0 then L[z] preserves powers. All such reflections
generate a subgroup of OA(n + 3) called the Laguerre group.

Let X be an ordered Steiner configuration with two nonpoint tangent
cycles, and let u be the orthogonal cycle with homogeneous coordinates
given by (4). Then (U | U) �= 0 so the orthogonal cycle u is not on
the quadric and the Lie reflection L[u] is defined. Since (U | Xi) = 0,
i = 1, . . . , n + 1, the cycles of the configuration are fixed by L[u].

Proposition 4.1. If y and y′ are two different nonpoint solutions of
the Apollonius problem determined by a Steiner configuration X , then
L[u](y) = y′.

Proof. Since (U | R) = 0, the Lie reflection L[u] preserves angles, so
it maps a solution of the Apollonius problem to a solution. Thus the
two solutions y and y′ are either both fixed by L[u], or L[u](y) = y′.
Assume that y is a fixed point of L[u]. Then y ∈ 〈u〉⊥ and it is easy to
see that the system (3) has only one solution [7, Case 2.a], so y = y′

which contradicts our assumptions. Therefore L[u](y) = y′.

Let y be a solution of an Apollonius problem given by a Steiner
configuration and let

V = ×(P 1, . . . , Pn+1, R)

be the orthogonal cycle of the configuration consisting of the points of
tangency. Then (V | V ) > 0 and Vn+1 is the volume of the simplex
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spanned by the points Cpi
in Rn. Since L[u] preserves tangency,

L[u](P i) = P ′
i , i = 1, . . . , n + 1

where p′i represent the points of tangency of the second solution y′. Let
U = ϕn+1(U). Then it follows from Definition 9 that

(P ′)n+1 = 1 − (U | P i)
(U | U)

=
λ2

i

(U | U)
,

where

λ2
i =

n∑
1

(U
k − (P i)k)2.

The standard homogeneous coordinates of P ′
i are

P
′
i =

P ′
i

(P ′
i )n+1

=
P ′

i (U | U)
λ2

i

.

If V ′ = ×(P
′
1, . . . , P

′
n+1, R) is the orthogonal cycle of the configuration

of tangent points of the second solution, then

(L[u](V ) | V ′) =
(U | U)n+1D(L[u](V ),L[u](P 1), . . . ,L[u](Pn+1), R)

λ2
1 · · ·λ2

n+1

=
(U | U)n+1 det(L[u])D(V, P 1, . . . , Pn+1, R)

λ2
1 · · ·λ2

n+1

= − (U | U)n+1(V | V )
λ2

1 · · ·λ2
n+1

Since (V | V ) > 0,

sign (L[u](V ) | V ′) = −sign (U | U)n+1.

What does this tell us? If (U | U) > 0, and if y the solution to the
Apollonius problem which is oriented consistently with the simplex
on the points of tangency Cp1 , . . . , Cpn+1 , then the second solution
y′ = L[u](y) will not be oriented consistently with the simplex on the
points of tangency Cp′

1
, . . . , Cp′

n+1
. If (U | U) < 0, then the situation
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depends on the dimension n of the problem. If n is even, for example
in the plane, Lie reflection across U preserves the consistency of
orientations, which implies that the parity of the number of coefficients
si,j that are positive has to change). If n is odd, for example in the space
R3, Lie reflection across U does not preserve consistency of orientations
of the solution with the simplex on the point of tangency.

4.2 Angle and power deforming transformations. The map A
on cycles from the Lie quadric gives solutions of the classical Apollonius
construction on these cycles. In order to solve generalized Apollonius
constructions which ask for a geometric object that intersects given
(n + 1) geometric objects under prescribed angles or powers, we
introduce several projective transformations which, in general, do not
preserve the Lie product, and thus deform angles and powers.

These angle deforming transformations are special cases of the fol-
lowing general projective transformation. For a triple of cycles z, z1

and z2, such that (Z | Z1) �= 0, (Z | Z2) �= 0, let

H[z, z1, z2](X) = X − (Z1 | Z2)(Z | X)
(Z1 | Z)(Z2 | Z)

Z.

In order to simplify notation, we will use the same symbol for the
linear transformation on homogeneous coordinates as for the induced
projective transformation on cycles.

The following special cases of this general transformation are particu-
larly interesting from the geometric point of view, and can be used for
solving generalized Apollonius constructions and other constructions
which involve non-zero angles and powers between geometric objects.

• For any cycle x �= r,

H[r, r, r](X) = (X0, . . . , Xn+1, 0),

so H[r, r, r] is the projection in Pn+2−{r} onto the projective subspace
〈r〉⊥.

• Let Z = R, and let z1, z2 ∈ Un+2 be nonpoint cycles with Z1, Z2

their local coordinates in Un+2. Define

H̃[z1, z2](X) = H[r, z1, z2](X) = X − (Z1 | Z2)(X | R)R
= X − A(z1, z2)(X | R)R.
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Every point cycle x /∈ Un+2 is fixed by H̃[z1, z2]. If x ∈ Un+2 is a
nonpoint cycle, and c ∈ Un+2 is Lie-orthogonal to H̃[z1, z2](X), then

0 = (H̃[z1, z2](X) | C) = (X | C) − A(z1, z2)(X | R)(R | C),

so A(x, c) = A(z1, z2). A nonpoint cycle c is thus Lie orthogonal to
H̃[z1, z2](X) precisely when the copower A(x, c) equals the copower
A(z1, z2).

• Let Z = W and z1, z2 ∈ Un+1 be nonplane cycles with local
coordinates Z1, Z2 in Un+1. Define

Ĥ[z1, z2](X) = H[w, z1, z2](X)
= X − (Z1 | Z2)(X | W )W

= X +
1
2
P (z1, z2)(X | W )W

If x ∈ Un+1 is a nonplane cycle, and c ∈ Un+1 is Lie-orthogonal to X,
then

0 = (Ĥ[z1, z2](X) | C) = (X | C) +
1
2
P (z1, z2)(X | C),

so
P (z1, z2) = − 2(X | C)

(X | W )(C | W )
= P (x, c).

• For a given a ∈ R, let

H̃a(X) = X + (1 − a)(X | R)R.

The transformation H̃a fixes all cycles x ∈ 〈r〉⊥. The map R →
PGL(n + 3) which maps a to H̃a is equivariant with respect to
multiplications in R, since

H̃a1H̃a2 = H̃a1a2 .

If x, y ∈ Un+2, and (Y | H̃a(X)) = 0, then

(Y | H̃a(X)) = (Y | X) − (a − 1)(X | R)(Y | R) = 0,

so A(x, y) = (a − 1) and C(x, y) = a. A cycle y is thus Lie-orthogonal
to H̃a(X) precisely when C(x, y) = a.
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• For a given p ∈ R, let

Ĥp(X) = X +
p

2
(X | W )W.

The transformation Ĥp fixes all cycles x ∈ 〈w〉⊥. Since

Ĥp1Ĥp2 = Ĥp1+p2 ,

the map R → PGL(n + 3) which maps p to Ĥp is equivariant with
respect to addition in R, so {Ĥp, p ∈ R} is a one-parametric subgroup
of the group of projective transformations PGL(n+ 3). If x, y ∈ Un+1,
and (Y | Ĥp(X)) = 0, then

(Y | Ĥp(X)) = (Y | X) +
p

2
(X | W )(Y | W ) = 0,

so P (x, y) = p, and Cy has power p with respect to Cx.

5. Geometric constructions. Let D ⊂ Ω × · · · × Ω be the set of
ordered consistent configurations. Let

A : D → Ω

be the map which associates to a given configuration the solution y1.
The map A is continuous on the set of Steiner configurations with no
point cycles. A continuous deformation of a small positively oriented
sphere in the configuration to a small negatively oriented sphere may
cause a switch in the choice of the solution y1, and therefore a jump
in the value of A(X ). The map A, restricted to the closed subset of
D consisting of non-Steiner, i.e., cone, configurations, is continuous on
the subset of configurations with no plane cycles, while configurations
containing plane cycles are points of discontinuity.

In this section we give examples of classical geometric constructions
on spheres and planes, which are generated as compositions of Lie
reflections, the transformations Ĥ and H̃, and the map A.

Apollonius constructions. 1. An (n+1)-tuple of points {p1, . . . ,pn+1}
in Rn determines a nonoriented (n− 1)-sphere precisely when the cor-
responding point cycles xi = (υi,pi, 1, 0) ∈ Pn+2, i = 1, . . . , n+1 form
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a Steiner configuration. The oriented (n − 1)-sphere with orientation
consistent with the simplex 〈p1, . . . ,pn+1〉, is given by

s = A(x1, . . . , xn+1).

2. An n-tuple of points p1, . . . ,pn in Rn spans an n − 1-plane
in Rn precisely when the configuration X = (x1, . . . , xn, w), xi =
(υi,pi, 1, 0), i = 1, . . . , n is Steiner. The plane is given by

Π = A(X ).

3. If x1, x2 ∈ P4 represent two nonpoint geometric cycles in the
plane, then these cycles intersect precisely when the configuration
X = (x1, x2, r) is consistent, and one intersection is given by

p = A(X ).

4. Let ϕ1, . . . , ϕn+1 be given angles and let ai = cos ϕi, i =
1, . . . , n + 1. The cycle, intersecting n + 1 given nonpoint geometric
cycles Cx1 , . . . , Cxn+1 under these angles, is

y = A(H̃a1(x1), . . . , H̃an+1(xn+1)).

5. Let l1, l2, l3 ∈ P4 represent lines in the plane. The line Cl,
intersecting Cl1 in the point represented by p under the angle of
intersection of Cl2 and Cl3 , is given by

l = A(H̃[l1, l2](l3), p, w)

6. Let q1, . . . , qn+1 be given powers and x1, . . . , xn+1 given nonplane
cycles. The geometric cycle which has power qi with respect to
Cxi

, i = 1, . . . , n + 1 is given by

y = A(Ĥq1(x1), . . . , Ĥqn+1(xn+1)).

7. Figure 3 shows the solution of the following problem. Given a
power and three cycles in the plane, we are looking for the cycle which
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FIGURE 3. A general Apollonius problem.

has given power with respect to the first cycle, is tangent to the second,
and orthogonal to the third cycle.

y1 = A(H[r, r, r]x1, x2, H([w, q1, q2])x3)

Constructions with spheres. 1. For a given ρ ∈ R, let

Ξ(ρ) =
(

ρ2

2
,0, 0, ρ

)
.

The cycle Ξ(ρ) has the function of a compass, since it is used to
construct the sphere Cs with radius ρ and center in a given point p.
Let x = (υ,p, 1, 0) be the cycle corresponding to p. Then

s = L[Ξ(ρ)](x).

2. For a given cycle s representing a sphere Cs, the center c of this
sphere is represented by

c = L[s0](w), s0 = H[r, r, r](s).
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3. A cycle s represents a sphere with radius ρ if s is Lie-orthogonal
to r(ρ) = L[Ξ(ρ)]r.

4. Let x1, x2 ∈ P4 represent two points in the plane. The circle with
these two points as endpoints of a diameter is given by

s = A(x1, x2, r(ρ)), r(ρ) = L[Ξ(ρ)](r)

where ρ is the distance between the points x1 and x2.
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