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INTERVAL OSCILLATION CRITERIA
FOR SECOND ORDER NONLINEAR
DELAY DIFFERENTIAL EQUATIONS

QIGUI YANG AND RONALD M. MATHSEN

ABSTRACT. New oscillation criteria established in this
paper for the second order nonlinear equations

(r(t)ψ(x(t))x′(t))′ + F (t, x(t), x′(t), x(τ(t)), x′(τ(t))) = 0

are different from most known ones in the sense that they are
based on the information only on a sequence of subintervals
of [t0,∞) rather than on the whole half-line. Our results
are more general and sharper than some previous results and
handle the cases which are not covered by known results.
Several examples that show the generality of our results are
also included.

1. Introduction. We are concerned here with the oscillatory
behavior of solutions of the second order nonlinear differential equation
(1)

(r(t)ψ(x(t))x′(t))′ + F (t, x(t), x′(t), x(τ (t)), x′(τ (t))) = 0, t ≥ t0

where F : [t0,∞) × R4 → R is a continuous function. In what follows,
we always assume without mention that

(A1) r : I = [t0,∞) → (0,∞) is continuously differentiable;

(A2) ψ : R → R is continuously differentiable and ψ(x) > 0 for x �= 0;

(A3) τ : I → R is continuously differentiable with τ ′(t) > 0 for all
t ∈ I, τ (t) ≤ t for t ≥ t0 and limt→∞ τ (t) = ∞;

(A4) there exist functions q, f0, f and g such that

F (t, x(t), x′(t), x(τ (t)), x′(τ (t)))sgnx
≥ q(t)f0(x(t))f(x(τ (t)))g(x′(t), x′(τ (t)))sgnx
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where the functions q, f0, f and g satisfy the following assumptions:

(B1) q : I = [t0,∞) → (0,∞) is continuous and q(t) �≡ 0; that means
that there exists a sequence {tk} of real numbers tk → ∞ as k → ∞
such that q(tk) �= 0;

(B2) f0, f : R → R are continuous, xf(x) > 0 for x �= 0 and
f0(x) ≥ K0 > 0 where K0 is a constant;

(B3) g : R×R→ R is continuous and g(x, y) ≥ C for some constant
C > 0.

Let χ : [τ (t0), t0] → R. By a solution of equation (1), we mean
a continuously differentiable function x(t) : [τ (t0),∞) → R such
that x(t) = χ(t) for τ (t0) ≤ t ≤ t0, r(t)ψ(x(t))x′(t) is continuously
differentiable on [t0,∞) and x(t) satisfies equation (1) for t ∈ [t0,∞).

We restrict our attention to proper solutions of equation (1), i.e.,
nonconstant solutions which exist on some ray [T,∞), where T ≥ t0,
and satisfy supt≥T {|x(t)|} > 0. A proper solution x(t) of equation (1)
is called oscillatory if it has arbitrarily large zeros; otherwise, it is called
nonoscillatory. Finally, equation (1) is called oscillatory if all its proper
solutions are oscillatory.

Oscillation for equation (1) and the nonlinear delay equation

(2) (r(t)x′(t))′ + q(t)f(x(τ (t)))g(x′(t)) = 0, t ≥ t0,

as well as for the nonlinear ordinary differential equation

(3) (r(t)x′(t))′ + q(t)f(x(t))g(x′(t)) = 0, t ≥ t0,

and the linear ordinary differential equation

(4) (r(t)x′(t))′ + q(t)x(t) = 0, t ≥ t0,

have been discussed by numerous authors. Some results can be found in
[1 16] and the references therein. On the one hand, the recent paper
by Rogovchenko [12] contains various conditions for nonlinear delay
equations obtained by use of an integral averaging technique similar to
that exploited in [10]. On the other hand, the results in [1, 2, 4, 6,
10 12, 14] and the references therein as well as most known oscillation
criteria involve integrals of r and q and hence require the information
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of r and q on the entire half-line [t0,∞). However, from the Sturm
separation theorem, we see that oscillation for equation (4) is the only
interval property, i.e., if there exists a sequence of subintervals [ai, bi]
of [t0,∞), as ai → ∞, such that for each i there exists a solution of
equation (4) that has at least two zeros in [ai, bi], then every solution
of equation (4) is oscillatory, no matter how “bad” equation (4) is (or
r and q are) on the remaining part of [t0,∞).

In 1993, El-Sayed [3] established an interval criteria for oscillation
of a forced second order equation. But the result is not very sharp
because a comparison to equations with constant coefficient is used in
the proof.

In 1997, Huang [5] presented the following results for interval oscil-
lation of the linear ODE (4) with r(t) = 1.

Theorem 1.1 [5]. If there exist t0 > t0 such that for every n ∈ N

∫ 2n+1t0

2nt0
q(s) ds ≥ 3 − 2

√
3

2n+1t0
,

then every solution of equation (4) with r(t) = 1 is oscillatory.

But Huang’s oscillation criterion fails to apply to Euler’s equation

x′′(t) +
β

t2
x(t) = 0,

see Li and Agarwal [8]. Of course, we know that Euler’s equation is
oscillatory if β > 1/4 and is nonoscillatory if β ≤ 1/4.

We remark that Kong [7] employed the technique from the work of
Philos [10] to obtain several interval oscillation results for the second
order linear ODE (4). However, these results do not apply to the
nonlinear ODE (3). In [8] Li and Agarwal further studied interval
oscillation criteria for nonlinear ODEs. We note that the results of
El-Sayed [3], Huang [5], Kong [7], Li and Agarwal [8, 9] cannot be
applied to the nonlinear delay differential equation (1).

Motivated by the ideas of Rogovchenko [12] and Yang, et al. [15]
in this paper, by using the generalized Riccati technique and an
averaging technique and by considering the function H(t, s)k(s) which
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may not have a nonpositive partial derivative on D0 with respect to
the second variable, we relax the usual assumption (∂H(t, s)/∂s) ≤ 0
on D0 = {(t, s) : t > s ≥ t0} in [10, etc.], and we extend to delay
differential equations an idea of Li and Agarwal [8] on interval criteria
for oscillation of solutions of second order nonlinear ODEs.

This paper is organized as follows. In Section 2 we obtain some
oscillation theorems for equation (1) when the function f(x) is smooth.
New interval oscillation criteria of equation (1) are obtained by making
use of the technique similar to that exploited by Philos [10] and Kong
[7] for second order linear ordinary differential equations. The interval
oscillation criteria established in this section for second order nonlinear
delay differential equations (1) are different from most known ones in
the sense that they are based on the information only on a sequence of
subintervals of [t0,∞) rather than on the entire half-line.

Further, in Section 3 we obtain interval oscillation criteria for equa-
tion (1) when the function f(x) is not smooth. Our results (see Theo-
rems 2.1 2.12 and Theorems 3.1 3.6) complement a number of existing
results and handle the cases that are not covered by known criteria in
[1 16] and others. Further, several examples that show the sharpness
of our results are also included.

By choosing appropriate functions H, k and ρ, we derive a series of
explicit oscillation criteria which extend, improve and unify a number
of existing results.

2. Oscillation results for smooth f(x). In this section we
consider oscillation of equation (1) when the function f(x) is smooth.
Throughout this section we use the notation

D0 = {(t, s) : t > s ≥ t0}; D = {(t, s) : t ≥ s ≥ t0}.

Theorem 2.1. Suppose that for x �= 0

(H1
0 ) there exist constants K and L−1 such that

f ′(x) ≥ K > 0; 0 < ψ(x) ≤ L−1.

Let functions H ∈ C(D;R), h1, h2 ∈ C(D0;R), k, ρ ∈ C1([t0,∞); (0,∞))
satisfy the following conditions:
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(H1) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0;

(H2) ∂(H(t, s)k(t))/∂t + H(t, s)k(t)ρ′(t)/ρ(t) = h1(t, s), for all
(t, s) ∈ D0;

(H3) ∂(H(t, s)k(s))/∂s+H(t, s)k(s)(ρ′(s)/ρ(s)) = −h2(t, s), for all
(t, s) ∈ D0.

Assume also that for each sufficiently large T0 ≥ t0, there exist
increasing divergent sequences of positive numbers {an}, {bn}, {cn} with
T0 ≤ an < cn < bn such that

(5)

CK0

H(cn, an)

∫ cn

an

H(s, an)k(s)ρ(s)q(s) ds

+
CK0

H(bn, cn)

∫ bn

cn

H(bn, s)k(s)ρ(s)q(s) ds

>
1

4KL
1

H(cn, an)

∫ cn

an

ρ(s)r(τ (s))
τ ′(s)H(s, an)k(s)

h2
1(s, an) ds

+
1

4KL
1

H(bn, cn)

∫ bn

cn

ρ(s)r(τ (s))
τ ′(s)H(bn, s)k(s)

h2
2(bn, s) ds.

Then equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1). Without
loss of generality, we may assume that x(t) > 0 and x(τ (t)) > 0
for t ≥ T1 ≥ t0 because a similar analysis holds for x(t) < 0 and
x(τ (t)) < 0. Then, by (A4) and (1), we obtain that

(6) (r(t)ψ(x(t))x′(t))′ ≤ 0 for t ≥ T = max{T0, T1}.
Define

(7) v(t) = ρ(t)
r(t)ψ(x(t))x′(t)
f(x(τ (t)))

.

Differentiating (7) and making use of (1) and the assumptions of the
theorem, it follows that for all t ≥ T0,

(8)
v′(t) =

ρ′(t)
ρ(t)

v(t) − ρ(t)
F (t, x(t), x′(t), x(τ (t)), x′(τ (t)))

f(x(τ (t)))

− f ′(x(τ (t)))x′(τ (t))τ ′(t)
f(x(τ (t)))

v(t).
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By (6) and (A3), we conclude that

r(τ (t))ψ(x(τ (t)))x′(τ (t)) ≥ r(t)ψ(x(t))x′(t).

Consequently, by (H1
0 ), (A3) and (8) for t ≥ T1, we obtain

(9) v′(t) ≤ ρ′(t)
ρ(t)

v(t) − CK0ρ(t)q(t) − KLτ ′(t)
r(τ (t))ρ(t)

v2(t).

Next we multiply (9) with t replaced by s, by H(t, s)k(s) and integrate
from t1 to t, bn ≥ t2 ≥ t > t1 ≥ cn ≥ T . After some simple
computations, we get
(10)∫ t

t1

H(t, s)k(s)CK0ρ(s)q(s) ds

≤ H(t, t1)k(t1)v(t1) +
∫ t

t1

[
∂

∂s
(H(t, s)k(s)) +H(t, s)k(s)

ρ′(s)
ρ(s)

]
v(s) ds

−
∫ t

t1

H(t, s)k(s)
KLτ ′(s)
r(τ (s))ρ(s)

v2(s) ds

= H(t, t1)k(t1)v(t1) −
∫ t

t1

h2(t, s)v(s) ds

−
∫ t

t1

H(t, s)k(s)
KLτ ′(s)
r(τ (s))ρ(s)

v2(s) ds

= H(t, t1)k(t1)v(t1) +
∫ t

t1

ρ(s)r(τ (s))
4KLτ ′(s)H(t, s)k(s)

h2
2(t, s) ds

−
∫ t

t1

[√
KLH(t, s)k(s)τ ′(s)

r(τ (s))ρ(s)
v(s)

+
1
2

√
r(τ (s))ρ(s)

KLH(t, s)k(s)τ ′(s)
h2(t, s)

]2

ds.

From (10), we conclude that

(11)
∫ t

t1

CK0H(t, s)k(s)ρ(s)q(s) ds

≤ H(t, t1)k(t1)v(t1) +
1

4KL

∫ t2

t1

ρ(s)r(τ (s))
τ ′(s)H(t, s)k(s)

h2
2(t, s) ds.
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Now put t1 = cn and let t = t2 − b−n in (11). Dividing both sides by
H(bn, cn) gives

(12)
1

H(bn, cn)

∫ bn

cn

CK0H(bn, s)k(s)ρ(s)q(s) ds

≤ k(cn)v(cn) +
1

4KLH(bn, cn)

∫ bn

cn

ρ(s)r(τ (s))
τ ′(s)H(bn, s)k(s)

h2
2(bn, s) ds.

Next go back to (9) and repeat the calculations multiplying first by
H(s, t)k(s) instead of by H(t, s)k(s) and then integrating from t to t2,
bn ≥ t2 > t ≥ t1 ≥ cn ≥ T . The result is

(13)
∫ t2

t

CK0H(s, t)k(s)ρ(s)q(s) ds

≤ −H(t2, t)k(t2)v(t2) +
1

4KL

∫ t2

t

ρ(s)r(τ (s))
τ ′(s)H(s, t)k(s)

h2
1(s, t) ds.

Let t = t1 → a+
n and put t2 = cn. Then divide both sides in (13) by

H(cn, an) to get

(14)
1

H(cn, an)

∫ cn

an

CK0H(s, an)k(s)ρ(s)q(s) ds

≤ −k(cn)v(cn) +
1

4H(cn, an)

∫ cn

an

ρ(s)r(τ ′(s))
τ ′(s)H(s, an)k(s)

h2
1(s, an) ds.

Now we claim that every nontrivial solution of equation (1) has at
least one zero tn > an for an > T1. This follows since x(t) > 0 and
x(τ (t)) > 0 for t > T1. Adding (12) and (14), we get the inequality

CK0

H(cn, an)

∫ cn

an

H(s, an)k(s)ρ(s)q(s) ds

+
CK0

H(bn, cn)

∫ bn

cn

H(bn, s)k(s)ρ(s)q(s) ds

≤ 1
4KL

1
H(cn, an)

∫ cn

an

ρ(s)r(τ (s))
τ ′(s)H(s, an)k(s)

h2
1(s, an) ds

+
1

4KL
1

H(bn, cn)

∫ bn

cn

ρ(s)r(τ (s))
τ ′(s)H(bn, s)k(s)

h2
2(bn, s) ds,
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which contradicts the assumption (5). Thus the claim holds, i.e., no
nontrivial solution of equation (1) can be eventually positive. Hence,
equation (1) is oscillatory.

The following result gives the possibility of considering new classes
of equations in which ψ(x) is unbounded.

Theorem 2.2. Suppose that for x �= 0

(H2
0 ) there exists a constant γ such that f ′(x)/ψ(x) ≤ γ.

Let functions H ∈ C(D;R), h1, h2 ∈ C(D0;R), k, ρ ∈ C1([t0,∞);
(0,∞)) satisfy the conditions (H1) (H3) in Theorem 2.1. Assume also
that for each sufficiently large T0 ≥ t0, there exist increasing divergent
sequences of positive numbers {an}, {bn}, {cn} with T0 ≤ an < cn < bn
such that

(15)

CK0

H(cn, an)

∫ cn

an

H(s, an)k(s)ρ(s)q(s) ds

+
CK0

H(bn, cn)

∫ bn

cn

H(bn, s)k(s)ρ(s)q(s) ds

>
1
4γ

1
H(cn, an)

∫ cn

an

ρ(s)r(τ (s))
τ ′(s)H(s, an)k(s)

h2
1(s, an) ds

+
1
4γ

1
H(bn, cn)

∫ bn

cn

ρ(s)r(τ (s))
τ ′(s)H(bn, s)k(s)

h2
2(bn, s) ds.

Then equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1). As in
Theorem 2.1, without loss of generality, we may assume that x(t) > 0
and x(τ (t)) > 0 for t ≥ T0 ≥ t0, so that (6) holds. Again define the
function v(t) by (7). Then differentiate to obtain (8). By (6) and (H2

0 ),
for t ≥ T1, we conclude from (8) that

(16) v′(t) ≤ ρ′(t)
ρ(t)

v(t) − CK0ρ(t)q(t) − γτ ′(t)
r(τ (t))ρ(t)

v2(t).

Therefore, starting with the inequality (16), by (1) and (16), we can
proceed as in the proof of Theorem 2.1.
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As immediate consequences of Theorems 2.1 and 2.2 we get the
following theorems.

Theorem 2.3. Let condition (5) in Theorem 2.1 be replaced by

(17)

lim sup
t→∞

∫ t

l

[
CK0H(s, l)k(s)ρ(s)q(s)− ρ(s)r(τ(s))

4KLτ ′(s)H(t,l)k(s) h
2
1(s, l)

]
ds > 0

and
(18)

lim sup
t→∞

∫ t

l

[
CK0H(t, s)k(s)ρ(s)q(s)− ρ(s)r(τ(s))

4KLτ ′(s)H(t,s)k(s) h
2
2(t, s)

]
ds > 0

for each sufficient large l ≥ T0 ≥ t0 with the other conditions un-
changed. Then equation (1) is oscillatory.

Proof. For any T ≥ T0 ≥ t0, let an = T . In (17) we choose l = an.
Then there exists cn > an such that
(19)∫ cn

an

[
CK0H(s, an)k(s)ρ(s)q(s)− ρ(s)r(τ(s))

4KLτ ′(s)H(t,an)k(s) h
2
1(s, an)

]
ds > 0.

In (18) we choose l = cn. Then there exists bn > cn such that

(20)∫ bn

cn

[
CK0H(bn, s)k(s)ρ(s)q(s)− ρ(s)r(τ(s))

4KLτ ′(s)H(bn,s)k(s) h
2
2(bn, s)

]
ds > 0.

Combining (19) and (20) we obtain (5). The conclusion thus comes
from Theorem 2.1.

Theorem 2.4. Let condition (15) in Theorem 2.2 be replaced by

(21)

lim sup
t→∞

∫ t

l

[
CK0H(s, l)k(s)ρ(s)q(s)− ρ(s)r(τ(s))

4γτ ′(s)H(t,l)k(s) h
2
1(s, l)

]
ds > 0

and
(22)

lim sup
t→∞

∫ t

l

[
CK0H(t, s)k(s)ρ(s)q(s)− ρ(s)r(τ(s))

4γτ ′(s)H(t,s)k(s) h
2
2(t, s)

]
ds > 0
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for each sufficient large l ≥ T0 ≥ t0 with the other conditions un-
changed. Then equation (1) is oscillatory.

Proof. Similar to the proof of Theorem 2.3.

If h1(t, s) and h2(t, s) are replaced by h1(t, s)
√
H(t, s)k(s) and

h2(t, s)
√
H(t, s)k(s), respectively, in Theorems 2.1 2.4, we have the

following theorems. The proofs are quite similar, so we omit the de-
tails.

Theorem 2.5. Suppose that condition (H1
0 ) in Theorem 2.1 holds.

Let functions H∈C(D;R), h1, h2∈C(D0;R), k, ρ∈C1([t0,∞); (0,∞))
satisfy the following conditions:

(H1) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0;

(H2)
∂

∂t
(H(t, s)k(t)) + H(t, s)k(t)

ρ′(t)
ρ(t)

= h1(t, s)
√
H(t, s)k(t), for

all (t, s) ∈ D0;

(H3)
∂

∂s
(H(t, s)k(s))+H(t, s)k(s)

ρ′(s)
ρ(s)

= −h2(t, s)
√
H(t, s)k(s), for

all (t, s) ∈ D0.

Assume also that for each sufficiently large T0 ≥ t0, there exist
increasing divergent sequences of positive numbers {an}, {bn}, {cn} with
T0 ≤ an < cn < bn such that

(23)

CK0

H (cn, an)

∫ cn

an

H(s, an)k(s)ρ(s)q(s) ds

+
CK0

H(bn, cn)

∫ bn

cn

H(bn, s)k(s)ρ(s)q(s) ds

>
1

4KL
1

H(cn, an)

∫ cn

an

ρ(s)r(τ (s))
τ ′(s)

h2
1(s, an) ds

+
1

4KL
1

H(bn, cn)

∫ bn

cn

ρ(s)r(τ (s))
τ ′(s)

h2
2(bn, s) ds.

Then equation (1) is oscillatory.
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Theorem 2.6. Suppose that condition (H2
0 ) in Theorem 2.2 holds.

Let functions H∈C(D;R), h1, h2∈C(D0;R), k, ρ∈C1([t0,∞); (0,∞))
satisfy the conditions (H1) (H3) in Theorem 2.5. Assume also that for
each sufficiently large T0 ≥ t0, there exist increasing divergent sequences
of positive numbers {an}, {bn}, {cn} with T0 ≤ an < cn < bn such that

(24)

CK0

H(cn, an)

∫ cn

an

H(s, an)k(s)ρ(s)q(s) ds

+
CK0

H(bn, cn)

∫ bn

cn

CK0H(bn, s)k(s)ρ(s)q(s) ds

>
1
4γ

1
H(cn, an)

∫ cn

an

ρ(s)r(τ (s))
τ ′(s)

h2
1(s, an) ds

+
1
4γ

1
H(bn, cn)

∫ bn

cn

ρ(s)r(τ (s))
τ ′(s)

h2
2(bn, s) ds.

Then equation (1) is oscillatory.

Theorem 2.7. Let condition (23) in Theorem 2.5 be replaced by

lim sup
t→∞

∫ t

l

[
CK0H(s, l)k(s)ρ(s)q(s)− ρ(s)r(τ (s))

4KLτ ′(s)
h2

1(s, l)
]
ds > 0

(25)

and

lim sup
t→∞

∫ t

l

[
CK0H(t, s)k(s)ρ(s)q(s)− ρ(s)r(τ (s))

4KLτ ′(s)
h2

2(t, s)
]
ds > 0

(26)

for each sufficient large l ≥ T0 ≥ t0 with the other conditions un-
changed. Then equation (1) is oscillatory.

Theorem 2.8. Let condition (24) in Theorem 2.6 be replaced by

lim sup
t→∞

∫ t

l

[
CK0H(s, l)k(s)ρ(s)q(s)− ρ(s)r(τ (s))

4γτ ′(s)
h2

1(s, l)
]
ds > 0

(27)
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and

lim sup
t→∞

∫ t

l

[
CK0H(t, s)k(s)ρ(s)q(s)− ρ(s)r(τ (s))

4γτ ′(s)
h2

2(t, s)
]
ds > 0

(28)

for each sufficient large l ≥ T0 ≥ t0 with the other conditions un-
changed. Then equation (1) is oscillatory.

Next define

(29) R(t) =
∫ τ(t)

l

1
r(s)

ds, τ (t) ≥ l ≥ t0,

and let

(30) H(t, s) = [R(t) −R(s)]λ, t ≥ t0,

where λ > 1 is a constant.

Theorem 2.9. Let limt→∞R(t) = ∞ hold. Then equation (1) is
oscillatory provided that for each l ≥ t0 and there exists λ > 1 such
that the following inequalities are satisfied:

lim sup
t→∞

1
Rλ−1(t)

∫ t

l

CK0[R(s) −R(l)]λq(s) ds >
λ2

4KL(λ− 1)

(31)

and

lim sup
t→∞

1
Rλ−1(t)

∫ t

l

CK0[R(t) −R(s)]λq(s) ds >
λ2

4KL(λ− 1)
.

(32)

Proof. Pick ρ(t) ≡ k(t) ≡ 1. It is easy to see that

h1(t, s) = λ[R(t) −R(s)]λ/2−1 τ ′(t)
r(τ (t))
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and

h2(t, s) = λ[R(t) −R(s)]λ/2−1 τ ′(s)
r(τ (s))

in (H1) and (H2) of Theorem 2.5. Note that∫ t

l

r(τ (s))
4KLτ ′(s)

h2
1(s, l) ds

=
∫ t

l

r(τ (s))
4KLτ ′(s)

λ2[R(s) −R(l)]λ−2

[
τ ′(t)
r(τ (t))

]2

ds

=
λ2

4KL(λ− 1)
[R(t) − R(l)]λ−1

and∫ t

l

r(τ (s))
4KLτ ′(s)

h2
2(t, s) ds

=
∫ t

l

r(τ (s))
4KLτ ′(s)

λ2[R(t) −R(s)]λ−2

[
τ ′(s)
r(τ (s))

]2

ds

=
λ2

4KL(λ− 2)
[R(t) − R(l)]λ−1.

Since limt→∞R(t) = ∞, it follows that

lim
t→∞

1
Rλ−1(t)

∫ t

l

r(τ (s))
4KLτ ′(s)

h2
1(s, l) ds =

λ2

4KL(λ− 1)
(33)

and

lim
t→∞

1
Rλ−1(t)

∫ t

l

r(τ (s))
4KLτ ′(s)

h2
2(t, s) ds =

λ2

4KL(λ− 1)
.(34)

From (31) and (33), we have

lim sup
t→∞

1
Rλ−1(t)

∫ t

l

{
CK0H(s, l)q(s) − r(τ (s))

4KLτ ′(s)
h2

1(s, l)
}
ds

= lim sup
t→∞

1
Rλ−1(t)

∫ t

l

CK0[R(s)−R(l)]λq(s) ds− λ2

4KL(λ−1)
> 0.
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It follows that

lim sup
t→∞

∫ t

l

{
CK0[R(s) −R(l)]λq(s) − r(τ (s))

4KLτ ′(s)
h2

1(s, l)
}
ds > 0;

i.e., (25) holds. Similarly, (32) implies that (26) holds. From Theo-
rem 2.7, equation (1) is oscillatory.

Theorem 2.10. Let limt→∞R(t) = ∞ hold. Then equation (1) is
oscillatory provided that for each l ≥ t0 there exists λ > 1 such that the
following inequalities are satisfied:

lim sup
t→∞

1
Rλ−1(t)

∫ t

l

CK0[R(s) −R(l)]λq(s) ds >
λ2

4γ(λ− 1)

(35)

and

lim sup
t→∞

1
Rλ−1(t)

∫ t

l

CK0[R(t) −R(s)]λq(s) ds >
λ2

4γ(λ− 1)
.

(36)

Proof. This proof follows as in the proof of Theorem 2.9.

Now let k(t) = 1 and H(t, s) = H(t − s) in Theorem 2.5. We have
that ∂(H(t− s))/∂t = −∂(H(t− s))/∂s. Denote this common value by
h(t− s). Then

h1(t, s) =
h(t− s)√
H(t− s)

+
ρ′(t)
ρ(t)

√
H(t− s),

and

h2(t, s) =
h(t− s)√
H(t− s)

− ρ′(t)
ρ(t)

√
H(t− s).

Applying Theorem 2.5 gives
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Theorem 2.11. Assume that for any T ≥t0, there exists T ≤an<cn
such that
(37)∫ cn

an

CK0H(s− an){ρ(s)(q(s) + ρ(2cn−s)q(2cn−s)} ds

>
1

4KL

∫ cn

an

[
ρ(s)

r(τ (s))
τ ′(s)

+ ρ(2cn−s) r(τ (2cn−s))
τ ′(2cn−s)

]
h2(s−an)
H(s−an)

ds

+
1

2KL

∫ cn

an

[
ρ′(s)

r(τ (s))
τ ′(s)

− ρ′(2cn−s) r(τ (2cn−s))
τ ′(2cn−s)

]
h(s−an) ds

+
1

4KL

∫ cn

an

[
[ρ′(s)]2

ρ(s)
r(τ (s))
τ ′(s)

+
[ρ′(2cn−s)]2
ρ(2cn−s)

r(τ (2cn−s))
τ ′(2cn−s)

]
×H(s−an) ds.

Then equation (1) is oscillatory.

Proof. Let bn =2cn−an. ThenH(bn−cn)=H(cn−an)=H(bn−an)/2
and, for any w ∈ L[a, b], we have

∫ bn

cn

w(s) ds =
∫ cn

an

w(2c− s) ds.

Hence∫ bn

cn

H(bn − s)ρ(s)q(s) ds =
∫ cn

an

H(s− an)ρ(2cn − s)q(2cn − s) ds

and∫ bn

cn

ρ(s)r(τ (s))
τ ′(s)

h2
2(bn − s) ds

=
∫ bn

cn

ρ(s)r(τ (s))
τ ′(s)

[
h(bn − s)√
H(bn − s)

− ρ′(s)
ρ(s)

√
H(bn − s)

]2

ds

=
∫ cn

an

ρ(2cn − s)r(τ (2cn − s))
τ ′(2cn − s)

×
[

h(s− an)√
H(s− an)

− ρ′(2cn − s)
ρ(2cn − s)

√
H(s− an)

]2

ds.
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Thus (37) implies (23) and therefore equation (1) is oscillatory by
Theorem 2.5.

Theorem 2.12. Assume that for any T ≥ t0, there exist T ≤an<cn
such that
(38)∫ cn

an

CK0H(s− an){ρ(s)q(s) + ρ(2cn−s)q(2cn−s)} ds

>
1
4γ

∫ cn

an

[
ρ(s)

r(τ (s))
τ ′(s)

+ ρ(2cn−s) r(τ (2cn−s))
τ ′(2cn−s)

]
h2(s−an)
H(s−an)

ds

+
1
2γ

∫ cn

an

[
ρ′(s)

r(τ (s))
τ ′(s)

− ρ′(2cn−s) r(τ (2cn−s))
τ ′(2cn−s)

]
h(s−an) ds

+
1
4γ

∫ cn

an

[
[ρ′(s)]2

ρ(s)
r(τ (s))
τ ′(s)

+
[ρ′(2cn−s)]2
ρ(2cn−s)

r(τ (2cn−s))
τ ′(2cn−s)

]
×H(s−an) ds.

Then equation (1) is oscillatory.

Proof. The proof is similar to the proof of Theorem 2.11 but uses
Theorem 2.6 instead of Theorem 2.5.

3. Oscillation results for nonsmooth f(x). In this section we
consider the oscillation of equation (1) when the function f(x) does not
have a continuous derivative.

Theorem 3.1. Suppose that for x �= 0,

(H3
0 ) there exist constants K and L such that

f(x)
x

≥ K > 0; 0 < ψ(x) ≤ L−1.

Let functions H∈C(D;R), h1, h2∈C(D0;R), k, ρ∈C1([t0,∞); (0,∞))
satisfy the conditions (H1) (H3) in Theorem 2.1. Assume also that for
each sufficiently large T0 ≥ t0, there exist increasing divergent sequences
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of positive numbers {an}, {bn}, {cn} with T0 ≤ an < cn < bn such that

(39)

CKK0

H(cn, an)

∫ cn

an

H(s, an)k(s)ρ(s)q(s) ds

+
CKK0

H(bn, cn)

∫ bn

cn

H(bn, s)k(s)ρ(s)q(s) ds

>
1

4L
1

H(cn, an)

∫ cn

an

ρ(s)r(τ (s))
τ ′(s)H(s, an)k(s)

h2
1(s, an) ds

+
1

4L
1

H(bn, cn)

∫ bn

cn

ρ(s)r(τ (s))
τ ′(s)H(bn, s)k(s)

h2
2(bn, s) ds

holds. Then equation (1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution of equation (1). Without
loss of generality, we may assume that x(t) > 0 and x(τ (t)) > 0 for
t ≥ T1 ≥ t0. Thus, by (A4) and (1), (6) holds.

Define

(40) v(t) = ρ(t)
r(t)ψ(x(t))x′(t)

x(τ (t))
.

Differentiating (40) and making use of (1) and the assumptions of the
theorem, it follows that for all t ≥ T0,

(41)
v′(t) =

ρ′(t)
ρ(t)

v(t) − ρ(t)
F (t, x(t), x′(t), x(τ (t)), x′(τ (t)))

x(τ (t))

− x′(τ (t))τ ′(t)
x(τ (t))

v(t).

By (6) (H0), (A4) and (8), for t ≥ T1, we obtain from (41) that

(42) v′(t) ≤ ρ′(t)
ρ(t)

v(t) − CKK0ρ(t)q(t) − Lτ ′(t)
r(τ (t))ρ(t)

v2(t).

Therefore, by (1) and (42), the rest of the proof is similar to that of
Theorem 2.1.

Theorems 3.2 3.5 that follow have proofs similar to those of Theorems
2.3, 2.5, 2.7 and 2.9, respectively. The details are omitted.
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Theorem 3.2. Let condition (39) in Theorem 3.1 be replaced by

lim sup
t→∞

∫ t

l

[
CKK0H(s, l)k(s)ρ(s)q(s)− ρ(s)r(τ(s))

4Lτ ′(s)H(t,l)k(s) h
2
1(s, l)

]
ds > 0

(43)

and

lim sup
t→∞

∫ t

l

[
CKK0H(t, s)k(s)ρ(s)q(s)− ρ(s)r(τ(s))

4Lτ ′(s)H(t,s)k(s) h
2
2(t, s)

]
ds > 0

(44)

for each sufficient large l ≥ T0 ≥ t0 with the other conditions un-
changed. Then equation (1) is oscillatory.

If h1(t, s) and h2(t, s) are replaced by h1(t, s)
√
H(t, s)k(s) and

h2(t, s)
√
H(t, s)k(s) in Theorems 3.1 and 3.2, respectively, we have

the following theorems. The proofs are similar, so we omit the details.

Theorem 3.3. Suppose that condition (H3
0 ) in Theorem 3.1 holds.

Let functions H∈C(D;R), h1, h2∈C(D0;R), k, ρ∈C1([t0,∞); (0,∞))
satisfy the conditions (H1) (H3) in Theorem 2.5. Assume also that for
each sufficiently large T0 ≥ t0, there exist increasing divergent sequences
of positive numbers {an}, {bn}, {cn} with T0 ≤ an < cn < bn such that

(45)

CKK0

H(cn, an)

∫ cn

an

H(s, an)k(s)ρ(s)q(s) ds

+
CKK0

H(bn, cn)

∫ bn

cn

H(bn, s)k(s)ρ(s)q(s) ds

>
1

4L
1

H(cn, an)

∫ cn

an

ρ(s)r(τ (s))
τ ′(s)

h2
1(s, an) ds

+
1

4L
1

H(bn, cn)

∫ bn

cn

ρ(s)r(τ (s))
τ ′(s)

h2
2(bn, s) ds,

holds. Then equation (1) is oscillatory.

Theorem 3.4. Let condition (45) in Theorem 3.3 be replaced by

lim sup
t→∞

∫ t

l

[
CKK0H(s, l)k(s)ρ(s)q(s)− ρ(s)r(τ (s))

4Lτ ′(s)
h2

1(s, l)
]
ds > 0

(46)
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and

lim sup
t→∞

∫ t

l

[
CKK0H(t, s)k(s)ρ(s)q(s)− ρ(s)r(τ (s))

4Lτ ′(s)
h2

2(t, s)
]
ds > 0

(47)

for each sufficient large l ≥ T0 ≥ t0 with the other conditions un-
changed. Then equation (1) is oscillatory.

Theorem 3.5. Let limt→∞R(t) = ∞ hold. Then equation (1) is
oscillatory provided that for each l ≥ t0 there exists λ > 1 such that

lim sup
t→∞

1
Rλ−1(t)

∫ t

l

CKK0[R(s)−R(l)]λq(s) ds >
λ2

4L(λ−1)

(48)

and

lim sup
t→∞

1
Rλ−1(t)

∫ t

l

CKK0[R(t)−R(s)]λq(s) ds >
λ2

4L(λ−1)
.

(49)

Proof. This theorem can be proved in a manner quite similar to the
proof of Theorem 2.9. The details are omitted here.

Modifying the proof of Theorem 2.11 by using Theorem 3.5 and
Theorem 2.5, we obtain

Theorem 3.6. Assume that for any T ≥ t0, there exists T ≤ an < cn
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such that

(50)∫ cn

an

CKK0H(s− an){ρ(s)q(s) + ρ(2cn−s)q(2cn−s)} ds

>
1

4L

∫ cn

an

[
ρ(s)

r(τ (s))
τ ′(s)

+ ρ(2cn−s) r(τ (2cn−s))
τ ′(2cn−s)

]
h2(s−an)
H(s−an)

ds

+
1

2L

∫ cn

an

[
ρ′(s)

r(τ (s))
τ ′(s)

− ρ′(2cn−s) r(τ (2cn−s))
τ ′(2cn−s)

]
h(s−an) ds

+
1

4L

∫ cn

an

[
[ρ′(s)]2

ρ(s)
r(τ (s))
τ ′(s)

+
[ρ′(2cn−s)]2
ρ(2cn−s)

r(τ (2cn−s))
τ ′(2cn−s)

]

×H(s−an) ds.

Then equation (1) is oscillatory.

4. Remarks and examples. The results in this paper involve
Kamenev’s type conditions and improve and extend the results of
Rogovchenko [12], Li and Agarwal [8], Huang [5], Kamenev [6] and
Philos [10].

Remark 4.1. From Theorems 2.1 2.12 and Theorems 3.1 3.6, we
can derive different explicit sufficient conditions for the oscillation of
equation (1) by appropriate choice of functions H(t, s), k(s) and ρ(s).
For instance, if we choose H(t, s) = (t− s)α, H(t, s) = [R(t) − R(s)]α,
H(t, s) = [logU(t)/U(s)]α or H(t, s) = [

∫ t

s
(1/w(z)) dz]α, etc., for

t ≥ s ≥ t0; then k(s) and ρ(s) may be chosen 1 and s, respectively, etc.,
and α > 1 is a constant, R(t) =

∫ t

t0
ds/u(s) and U(t) =

∫ ∞
t

ds/u(s) <
∞ for t ≥ t0. Also w ∈ C([t0,∞), (0,∞)) satisfies

∫ ∞
t0

(1/w(z)) dz = ∞.

The conditions in this paper are sharper than conditions in [1 16].
We will see that the oscillations cannot be demonstrated by most other
known criteria in the following examples.

Example 4.2. Assume α, a, b, c ≥ 0, (A3) and [τ ′(t)/τ2(t)]′ ≤ 0.
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Consider the delay equation

(51)

[ 1
1 + a cos2 x(t)

x′(t)
]′

+
ατ ′(t)
τ2(t)

[
x(τ (t)) + bx3(τ (t))

]
× [

1 + c(sinx′(t))2 + c(cosx(τ (t))2
]

= 0

where t ≥ 1.

Here L = C = K = K0 = 1 and

R(t) =
∫ τ(t)

l

1
r(s)

ds = τ (t) − l, R′(t) = τ ′(t), lim
t→∞R(t) = ∞.

Then for λ > 1,

(52)

lim sup
t→∞

CK0

Rλ−1(t)

∫ t

l

[R(s) −R(l)]λq(s) ds

= lim sup
t→∞

α

(τ (t) − l)λ−1

∫ t

l

[τ (s) − τ (l)]λ
τ ′(s)
τ2(s)

ds

= lim sup
t→∞

α

(τ (t) − l)λ−1

∫ t

l

(
τ (s)−τ (l)
τ (s)

)λ

τ ′(s)τλ−2(s) ds

≥ α(1−ε)
λ−1

for any ε ∈ (0, 1), since limt→∞
(
(τ (s)− τ (l))/τ (s))λ = 1. Next we will

prove that

(53)
∫ t

l

CK0[R(t)−R(s)]λ
ατ ′(s)
τ2(s)

ds ≥
∫ t

l

CK0[R(s)−R(l)]λ
ατ ′(s)
τ2(s)

ds.

Let

F (t) =
∫ t

l

CK0

{
[R(t) −R(s)]λ − [R(s) −R(l)]λ

} ατ ′(s)
τ2(s)

ds.
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Then F (l) = 0 and, for t ≥ l,

F ′(t)

= CK0

∫ t

l

λ[R(t)−R(s)]λ−1R′(t)
ατ ′(t)
τ2(t)

ds− CK0[R(t)−R(l)]λ
ατ ′(t)
τ2(t)

≥ CK0

∫ t

l

λ[R(t)−R(s)]λ−1R′(s)
ατ ′(t)
τ2(t)

ds− CK0[R(t)−R(l)]λ
ατ ′(t)
τ2(t)

≥ CK0
ατ ′(t)
τ2(t)

∫ t

l

λ[R(t)−R(s)]λ−1R′(s) ds

− CK0[R(t)−R(l)]λ
ατ ′(t)
τ2(t)

= 0.

Hence F (t) ≥ F (l) = 0 for t ≥ l, i.e., (53) holds. By (52) and (53), for
any α > 1/4, there exists λ > 1 such that α/(λ−1) > λ2/(4KL(λ−1)).
This means that conditions in Theorem 2.9 hold for some λ. Therefore,
equation (51) is oscillatory for α > 1/4.

However, the oscillations cannot be demonstrated by other known cri-
teria in [1 16]. Further, we note that Euler’s equation
x′′(t) + (α/t2)x(t) = 0, i.e., (51) with a = b = c = 0 and τ (t) = t,
is oscillatory if α > 1/4. This implies that our results are sharp.

Example 4.3. Let α ≥ 0, (A3) and [τ ′(t)/τ2(t)]′ ≤ 0. Consider the
delay equation

(54)

[
(1 + 5x2(t))x′(t)

]′ +
ατ ′(t)
τ2(t)

[
x(τ (t)) + x3(τ (t))

]
× [

1 + (sinx′(t))2
]

= 0 for t ≥ 1.

Similar to the use of Theorem 2.9 in Example 4.2, now by Theorem 2.10,
equation (1) is oscillatory for α > 1/4. However, ψ(x) = 1 + 5x2 is an
unbounded function.

In Examples 4.2 and 4.3, we can obtain some interesting results. For
example, τ (t) may be chosen to be t, t− δ, t− e−t, etc.

Example 4.4. Let α ≥ 0 and b ≥ 0. Consider the delay equation

(55)

[
1 − e−x2(t)

2(t+ 1)
x′(t)

]′
+

2αt
(t2 − 1)2

x(t− 1) eb(1+sin x(t−1))

× [1 + (sinx(t− 1))2] = 0 for t ≥ 1.
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It is easy to see L = C = K = K0 = 1 and

R(t) =
∫ t−1

l

1
r(s)

ds =
∫ t−1

l

2(s+ 1) ds = t2 − (l + 1)2,

R′(t) = 2t, lim
t→∞R(t) = ∞

and

f(x)
x

= [1 + sin x]eb(1+sin x2) ≥ 1 = C > 0.

Then for λ > 1 we obtain

(56) lim sup
t→∞

CKK0

Rλ−1(t)

∫ t

l

[R(s) −R(l)]λq(s) ds

= lim sup
t→∞

α

(t2 − l2)λ−1

∫ t

l

(s2 − l2)λ 2s
(s2 − l2)2

ds ≥ α

λ− 1

as in Example 4.2. Also, as in Example 4.2, we can prove that

(57)
∫ t

l

CKK0[R(t) −R(s)]λ
2αs

(s2 − 1)2
ds

≥
∫ t

l

CKK0[R(s) −R(l)]λ
2αs

(s2 − 1)2
ds.

By (56) and (57) for any α > 1/4, there exists λ > 1 such that
α/(λ − 1) > λ2/(4L(λ − 1)). This means that all conditions of
Theorem 3.4 hold for some λ. Thus, equation (55) is oscillatory for
α > 1/4. However, f ′(y) ≥ 0 is not satisfied, the results in [1 16] fail
to apply equation (55).
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