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A CHARACTERIZATION OF STRONGLY WEAKLY
COMPACTLY GENERATED BANACH SPACES

DAVE SOBECKI

ABSTRACT. A Banach space X is strongly weakly com-
pactly generated if and only if there is a reflexive space R and
a continuous linear operator T : R → X such that T (BR)
almost absorbs every weakly compact set in X.

1. Introduction and notation. In 1988, Schlüchtermann and
Wheeler introduced a property closely related to the weakly compactly
generated property of Banach spaces [3, Theorem 2.1].

Definition. We call a Banach space X strongly weakly compactly
generated, or SWCG, if X contains a weakly compact subset K such
that if L is any other weakly compact subset and ε > 0, then there is a
positive integer n so that L ⊂ nK + εBX where BX = {x ∈ X : ‖x‖ ≤
1}. (When two subsets K and L satisfy this condition, we say that K
almost absorbs L.)

In short, then, a Banach space X is SWCG if it contains a weakly
compact subset that almost absorbs every other weakly compact set
in X. Not surprisingly, the reason for the name is that the SWCG
property is a slight strengthening in the conditions of the weakly
compactly generated (WCG) property. Every SWCG space is also
WCG, but the two properties are distinct: c0 is an example of a space
that is WCG but not SWCG.

This paper provides an alternate characterization of the SWCG
property which is analogous to the following well-known WCG result
of Davis, Figiel, Johnson and Pe�lczyński [1, Corollary 3].

Proposition 1. A Banach space X is WCG if and only if there is
a reflexive space R and a one-to-one operator T : R → X with T (BR)
dense in X.
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2. The characterization.

Theorem 1. A Banach space X is strongly weakly compactly
generated if and only if there is a reflexive space R and a continuous
linear operator T : R → X such that T (BR) almost absorbs every
weakly compact set in X.

Proof. To begin, we observe that the theorem is trivial if X is
reflexive, so we assume that X is nonreflexive. Let K be a weakly
compact set in X that almost absorbs every weakly compact set in
X. Let W = conv (K ∪ (−K)). Then it follows from the Krein-
Smulian theorem [2, p. 434] that W is weakly compact and W is clearly
symmetric and convex. Also, W still almost absorbs every weakly
compact set in X since it is a superset of K. Let Un = 2nW + 2−nBX

and define a functional on X by

‖x‖n = inf {t > 0 : x ∈ tUn}.

Then ‖ · ‖n is a norm on X for all n [4]. Define a new space R by

R =
{

x ∈ X : ‖|x|‖ =
( ∞∑

n=1

‖x‖2
n

)1/2

< ∞
}

.

By definition, R can be identified with the subspace of (
∑∞

n=1(X,
‖ · ‖n))l2 of constant sequences, since we are placing the same element
from X in each coordinate. Clearly a subspace of constant sequences
in the l2-sum is closed, and it follows that R is a Banach space.

Let T be the formal identity from (R, ‖|· |‖) to (X, ‖·‖). Since ‖·‖n is
equivalent to the standard norm on X for all n, T is a bounded linear
operator.

If w ∈ W , then w ∈ 2−nUn so ‖w‖n ≤ 2−n for all n. Thus,

‖|w|‖ ≤
( ∞∑

n=1

(2−n)2
)1/2

< 1

and so w ∈ T (BR). Thus W ⊂ T (BR) and, since W almost absorbs
every weakly compact set in X, it follows that T (BR) almost absorbs
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every weakly compact set in X as required. It is shown in [1, Lemma
1] that R is reflexive, completing the first half of the proof.

Conversely, if we have a reflexive space R and a linear operator T as
in the hypotheses of the theorem, then BR is weakly compact by the
Banach-Alaoglu theorem and so T (BR) is weakly compact in X. But,
by hypothesis, T (BR) almost absorbs every weakly compact set in X,
and so X is strongly weakly compactly generated.
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