ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 34, Number 4, Winter 2004

A CHARACTERIZATION OF STRONGLY WEAKLY COMPACTLY GENERATED BANACH SPACES

DAVE SOBECKI

ABSTRACT. A Banach space X is strongly weakly compactly generated if and only if there is a reflexive space R and a continuous linear operator $T : R \to X$ such that $T(B_R)$ almost absorbs every weakly compact set in X.

1. Introduction and notation. In 1988, Schlüchtermann and Wheeler introduced a property closely related to the weakly compactly generated property of Banach spaces [3, Theorem 2.1].

Definition. We call a Banach space X strongly weakly compactly generated, or SWCG, if X contains a weakly compact subset K such that if L is any other weakly compact subset and $\varepsilon > 0$, then there is a positive integer n so that $L \subset nK + \varepsilon B_X$ where $B_X = \{x \in X : ||x|| \le 1\}$. (When two subsets K and L satisfy this condition, we say that K almost absorbs L.)

In short, then, a Banach space X is SWCG if it contains a weakly compact subset that almost absorbs every other weakly compact set in X. Not surprisingly, the reason for the name is that the SWCG property is a slight strengthening in the conditions of the weakly compactly generated (WCG) property. Every SWCG space is also WCG, but the two properties are distinct: c_0 is an example of a space that is WCG but not SWCG.

This paper provides an alternate characterization of the SWCG property which is analogous to the following well-known WCG result of Davis, Figiel, Johnson and Pełczyński [1, Corollary 3].

Proposition 1. A Banach space X is WCG if and only if there is a reflexive space R and a one-to-one operator $T : R \to X$ with $T(B_R)$ dense in X.

¹⁹⁹¹ AMS Mathematics Subject Classification. 46B20. Received by the editors on March 29, 2002.

Copyright ©2004 Rocky Mountain Mathematics Consortium

D. SOBECKI

2. The characterization.

Theorem 1. A Banach space X is strongly weakly compactly generated if and only if there is a reflexive space R and a continuous linear operator $T : R \to X$ such that $T(B_R)$ almost absorbs every weakly compact set in X.

Proof. To begin, we observe that the theorem is trivial if X is reflexive, so we assume that X is nonreflexive. Let K be a weakly compact set in X that almost absorbs every weakly compact set in X. Let $W = \overline{\operatorname{conv}(K \cup (-K))}$. Then it follows from the Krein-Smulian theorem [2, p. 434] that W is weakly compact and W is clearly symmetric and convex. Also, W still almost absorbs every weakly compact set in X since it is a superset of K. Let $U_n = 2^n W + 2^{-n} B_X$ and define a functional on X by

$$||x||_n = \inf \{t > 0 : x \in tU_n\}.$$

Then $\|\cdot\|_n$ is a norm on X for all n [4]. Define a new space R by

$$R = \left\{ x \in X : \||x|\| = \left(\sum_{n=1}^{\infty} \|x\|_n^2\right)^{1/2} < \infty \right\}.$$

By definition, R can be identified with the subspace of $(\sum_{n=1}^{\infty} (X, \|\cdot\|_n))_{l_2}$ of constant sequences, since we are placing the same element from X in each coordinate. Clearly a subspace of constant sequences in the l_2 -sum is closed, and it follows that R is a Banach space.

Let T be the formal identity from $(R, ||\cdot||)$ to $(X, ||\cdot||)$. Since $||\cdot||_n$ is equivalent to the standard norm on X for all n, T is a bounded linear operator.

If $w \in W$, then $w \in 2^{-n}U_n$ so $||w||_n \le 2^{-n}$ for all n. Thus,

$$|||w||| \le \left(\sum_{n=1}^{\infty} (2^{-n})^2\right)^{1/2} < 1$$

and so $w \in T(B_R)$. Thus $W \subset T(B_R)$ and, since W almost absorbs every weakly compact set in X, it follows that $T(B_R)$ almost absorbs

1504

every weakly compact set in X as required. It is shown in [1, Lemma1] that R is reflexive, completing the first half of the proof.

Conversely, if we have a reflexive space R and a linear operator T as in the hypotheses of the theorem, then B_R is weakly compact by the Banach-Alaoglu theorem and so $T(B_R)$ is weakly compact in X. But, by hypothesis, $T(B_R)$ almost absorbs every weakly compact set in X, and so X is strongly weakly compactly generated.

Acknowledgments. The author wishes to thank the referee, whose suggestions enhanced the clarity of this paper.

REFERENCES

1. W.J. Davis, T. Figiel, W.B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.

2. N. Dunford and J.T. Schwartz, Linear operators, Interscience Publishers, Inc., New York, 1958.

3. G. Schlüchtermann and R. Wheeler, On strongly WCG Banach spaces, Math. Z. 199 (1988), 387-398.

4. P. Wojtaszczyk, Banach spaces for analysts, Cambridge University Press, Cambridge, 1991.

DEPARTMENT OF MATHEMATICS, MIAMI UNIVERSITY, HAMILTON, OH 45014 E-mail address: sobeckdm@muohio.edu