
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 34, Number 4, Winter 2004

A NOTE ON MOMENTS OF SCALING FUNCTIONS

F. BASTIN AND S. NICOLAY

ABSTRACT. In this note we give a proof of a reproducing
formula for polynomials using natural decay hypothesis. This
leads to a new exact formula for computation of moments of
even order.

1. Introduction. Let us briefly recall some facts about wavelets
and scaling functions.

In the context of wavelets theory, a multi-resolution analysis of L2(R)
is a sequence Vj , j ∈ Z, of closed subspaces of L2(R) such that

(i) Vj ⊂ Vj+1 for all j ∈ Z

(ii) ∩j∈ZVj = {0}, ∪j∈ZVj is dense in L2(R)

(iii) f ∈ V0 ⇔ f(.−k) ∈ V0, for all k ∈ Z and f ∈ Vj ⇔ f(2x) ∈ Vj+1,
for all j ∈ Z.

(iv) There is a function ϕ (called the scaling function or the father
wavelet) such that the family {ϕ(.−k) : k ∈ Z} is an orthonormal basis
for V0.

A classical procedure (for example, see [5]) leads to the construction
of wavelets, i.e., an orthonormal basis {ψj,k : j, k ∈ Z} of L2(R) with

ψj,k(x) = 2j/2ψ(2jx− k).

The function ψ is called the wavelet or the mother wavelet.

If p is a natural number and f is a function defined on R such that
x �→ xpf(x) is integrable, the moment of order p of f is defined as∫

R

xpf(x) dx.

Moments of wavelets and scaling functions are considered in a wide
literature, especially in numerical algorithms. Under some very weak
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and natural hypotheses, it is known that for a wavelet ψ, there is a
natural number p such that

∫
R
xlψ(x) dx = 0 for l = 0, . . . , p. On the

other hand, for the scaling function ϕ, we always have
∫
R
ϕ(x) dx �= 0,

and the other moments are also usually not equal to zero.

In this context, in order to find the coefficients of the representation
of a polynomial in the approximation spaces Vj , one has to calculate
the moments of the scaling function.

In what follows, we always use the following notations for the mo-
ments

Mj =
∫
R

xjϕ(x) dx.

In [6], Sweldens and Piessens present the following result

M2 = (M1)2

in case the scaling function is compactly supported and the wavelet
has at least three vanishing moments. Then, considering the shifted
moments, they cancel the first and the second error terms in approxi-
mations, hence get an interesting quadrature formula. To obtain this
result about moments, they use a reproducing formula for polynomials.

In this note, under natural hypotheses and Strang-Fix conditions
on a function ϕ (not necessarily a scaling function), we prove the
reproducing formula for polynomials with absolute uniform convergence
on compact sets and obtain the unicity of the coefficients. The result
was obtained by Meyer in [5] but under a stronger regularity hypothesis.
The proof we give does not follow the lines of Meyer’s proof and
only uses a trigonometric Fourier series. Moreover, our result leads
to relations showing that moments Mj of even order can be expressed
in terms of a linear combination of products of moments of smaller
order, with coefficients directly computable. In particular, we obtain
M2 = (M1)2.

Recurrence relations to compute these moments or approximations of
them can be found in [1, 6]. These relations involve approximations or
computations of auxiliary numbers related to the specific property of
scaling functions. Here, we present relations leading to the exact com-
putation of moments of even order using only combinatory coefficients.

In what follows, the set of natural numbers greater than or equal to
0, respectively strictly greater than 0, is denoted N, respectively N0,
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and the set of all integers, respectively all integers not equal to 0, is
denoted Z, respectively Z0.

We also use the following notation

Cn
m =

m!
n!(m− n)!

where m,n ∈ N, m ≥ n.

2. Results.

Proposition 2.1. Let ϕ be a function defined on R satisfying

|ϕ(x)| ≤ C

(1 + |x|)m+1+ε

for some m ∈ N0, C, ε > 0 and such that the functions ϕ(x − k),
k ∈ Z, satisfy

∫
R

ϕ(x− k)ϕ(x− j) dx = δkj , j, k ∈ Z.

If in addition ϕ is such that

M0 = ϕ̂(0) = 1

and satisfies the Strang-Fix conditions

Djϕ̂(2kπ) = 0 for k ∈ Z0, 1 ≤ j ≤ m,

then for every j = 0, . . . ,m, there is a unique sequence (a(j)
k )k∈Z such

that
xj =

∑
k∈Z

a
(j)
k ϕ(x− k)

almost everywhere where the series is absolutely and uniformly conver-
gent on every compact subset of R and where a(j)

k is a polynomial of
degree j in the variable k. These coefficients are

a
(j)
k =

∫
R

xjϕ(x− k) dx, j = 0, . . . ,m, k ∈ Z.
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In particular, we have
a
(j)
0 = Mj .

Proof. We first prove unicity. Assume that for every j = 0, . . . ,m,
the sequence (a(j)

k )k∈Z is such that

xj =
∑
k∈Z

a
(j)
k ϕ(x− k)

almost everywhere with absolute and uniform convergence on every
compact subset of R, and where a(j)

k is a polynomial of degree j in
the variable k. To obtain the unicity and the announced form of the
coefficients, using integration of series, it suffices to prove that for every
l ∈ Z and j = 0, . . . ,m, the series

∑
k∈Z

∫
R

∣∣a(j)
k ϕ(x− k)ϕ(x− l)

∣∣ dx
converges.

For p ∈ N and y, x > 0, we have

(x+ y)p ≤ 2p−1(xp + yp);

hence for every k ∈ Z, x ∈ R and j ∈ N, we have

(1 + |k|)j ≤ (1 + |k − x| + 1 + |x|)j ≤ 2j−1((1 + |k − x|)j + (1 + |x|)j).

It follows that there is C1,j = C1 > 0 such that

|a(j)
k | |ϕ(x−k)| ≤ C1

(1+|k|)j

(1 + |x−k|)m+1+ε

≤ C12j−1

(
1

(1+|x−k|)m−j+1+ε
+

(1 + |x|)j

(1+|x−k|)m+1+ε

)
.

As for every s = 0, . . . ,m, the series

∑
k∈Z

1
(1 + |x− k|)m−s+1+ε
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converges uniformly on every compact subset of R and defines a 1-
periodic and continuous function on R; it is bounded. Hence there is
C2,j = C2 > 0 such that

∑
|k|≤K

∫
R

∣∣a(j)
k ϕ(x− k)ϕ(x− l)

∣∣ dx ≤ C2

∫
R

(1 + |x|)j |ϕ(x− l)| dx,

∀K ∈ N0.

The convergence follows.

Now we prove the existence. For every j = 0, . . . ,m, using the
hypothesis of decay on ϕ, the series∑

k∈Z

(x− k)jϕ(x− k)

is absolutely and uniformly convergent on every compact subset of R
and defines a 1-periodic and bounded function. Using trigonometric
Fourier series we have, almost everywhere,
∑
k∈Z

(x− k)jϕ(x− k) =
∑
l∈Z

( ∫ 1

0

∑
k∈Z

(t− k)jϕ(t− k)e−2ilπt dt

)
e2iπlx

=
∑
l∈Z

( ∫
R

tjϕ(t)e−2ilπt dt

)
e2iπlx.

The Strang-Fix conditions give∫
R

tjϕ(t)e−2ilπt dt = 0, for l ∈ Z0

hence

(1)
∑
k∈Z

(x− k)jϕ(x− k) =
∫
R

tjϕ(t) dt = Mj

almost everywhere absolutely and uniformly on R. It follows that, for
j ≥ 1, ∑

k∈Z

kjϕ(x− k) =
∑
k∈Z

(k − x+ x)jϕ(x− k)

=
j∑

l=0

Cl
jx

j−l
∑
k∈Z

(k − x)lϕ(x− k)

=
j∑

l=0

Cl
jx

j−l(−1)lMl
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hence

(2) xj =
∑
k∈Z

kjϕ(x− k) −
j∑

l=1

Cl
jx

j−l(−1)lMl.

Finally we conclude by a recurrence argument.

We immediately have

a
(j)
k =

∫
R

(x+ k)jϕ(x) dx =
j∑

l=0

Cl
jk

lMj−l

but this relation does not give anything between moments. The next
proposition contains another expression of the polynomials a(j)

k , which
leads to new relations between moments.

We use some definitions and notations: for j, l ∈ N0, we define

Kl(j) =
{

(i1, . . . , il) ∈ Nl
0 :

l∑
k=1

ik = j
}

and

K(j) =
j⋃

l=1

Kl(j).

For (i1, . . . , il) ∈ K(j), we write i ∈ K(j). For j ≥ i1 + · · · + il we
define

Fj(i1, . . . , il) =Fj(i)

=(−1)i1+1 · · · (−1)il+1Ci1
j C

i2
j−i1

· · ·Cil

j−
∑l−1

k=1
ik

Mi1 · · ·Mil

where
Mj =

∫
R

xjϕ(x) dx = a
(j)
0 .

For j ∈ N, we also set

(∗)
∑

i∈K(0)

Fj(i) = 1.
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Proposition 2.2. Under the same hypothesis as in Proposition 2.1
and using the notations introduced above, we have the following rela-
tions

(3) a
(j)
k =

j∑
l=0

kl
∑

i∈K(j−l)

Fj(i), k ∈ Z, j = 1, . . . ,m.

Proof. From (1) we have

Mj =
∫
tjϕ(t) dt =

∑
k∈Z

(x− k)jϕ(x− k) a.e., M0 = 1,

where the convergence is absolute and uniform on R.

For j = 1 we have M1 =
∑

k∈Z(x− k)ϕ(x− k), hence

M0x = x = M1 +
∑
k∈Z

kϕ(x− k) =
∑
n∈Z

(M1 + k)ϕ(x− k).

Using unicity of the coefficients in the reproducing formula, we get

a
(1)
k = k +M1.

Since
∑

i∈K(0) F1(i) = 1 and
∑

i∈K(1) F1(i) = M1, the relation (3) is
verified for j = 1.

Assume now that the relation is satisfied for j = 1, . . . , n − 1. We
then have

xj =
∑
k∈Z

( j∑
l=0

kl
∑

i∈K(j−l)

Fj(i)
)
ϕ(x− k)

for every j = 1, . . . , n− 1 and also for j = 0 using the convention (∗).
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Hence, using (2), we get

xn =
∑
k∈Z

knϕ(x− k) +
n∑

j=1

Cj
n(−1)j+1xn−jMj

=
∑
k∈Z

knϕ(x− k)

+
n∑

j=1

Cj
n(−1)j+1Mj

∑
k∈Z

( n−j∑
l=0

kl
∑

i∈K(n−j−l)

Fn−j(i)
)
ϕ(x− k)

=
∑
k∈Z

knϕ(x− k)

+
∑
k∈Z

( n∑
j=1

n−j∑
l=0

klCj
n(−1)j+1Mj

∑
i∈K(n−l−j)

Fn−j(i)
)
ϕ(x− k)

=
∑
k∈Z

knϕ(x− k)

+
∑
k∈Z

( n−1∑
l=0

kl
n−l∑
j=1

Cj
n(−1)j+1Mj

∑
i∈K(n−l−j)

Fn−j(i)
)
ϕ(x− k)

=
∑
k∈Z

knϕ(x− k)

+
∑
k∈Z

( n−1∑
l=0

kl

( n−l−1∑
j=1

∑
i∈K(n−l−j)

Fn(j, i)+ Cn−l
n (−1)n−l+1Mn−1

))

· ϕ(x− k)

=
∑
k∈Z

knϕ(x− k) +
∑
k∈Z

( n−1∑
l=0

kl
∑

i∈K(n−l)

Fn(i)
)
ϕ(x− k),

hence

a
(n)
k =

n∑
l=0

kl
∑

i∈K(n−l)

Fn(i).

We can deduce from the previous relations that the moments of even
order can be expressed in terms of a linear combination of products of
moments of smaller order in which the coefficients are of type Cl

m.
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Corollary 2.3. Under the same hypotheses as in Proposition 2.1
and using the same notations, we have

Mj =
∑

i∈K(j)

Fj(i) =
∑

i∈∪j
l=1Kl(j)

Fj(i), j = 1, . . . ,m.

In particular, if j is even, we have

2Mj =
∑

i∈∪j
l=2Kl(j)

Fj(i).

Proof. It suffices to take k = 0 in the relations (3) giving a(j)
k in the

previous proposition.

For j even, we have

Fj(j) = (−1)1+jMj = −Mj ,

hence the conclusion.

As an example, we obtain

K2(2) = {(1, 1)}, F2((1, 1)) = 2,

hence
2M2 = 2(M1)2;

in the same way
M4 = −3(M1)4 + 4M1M3.

Let us also recall that the hypotheses we use are very natural in
the context of wavelets. Indeed, we have the following result (see for
example [2, 5]).

Property 2.4. Assume ψj,k, j, k ∈ Z, is an orthonormal basis of
wavelets associated with a multi-resolution analysis as described in the
Introduction. If the scaling function ϕ and the wavelet ψ satisfy

|ϕ(x)|, |ψ(x)| ≤ C

(1 + |x|)m+1+ε



1206 F. BASTIN AND S. NICOLAY

for some ε > 0, C > 0, m ∈ N0, and if ψ ∈ Cm(R), Djψ ∈ L∞(R) for
all j = 0, . . . ,m, then the filter m0 associated to the multi-resolution
analysis satisfies

m0(ξ) = (1 + e−iξ)m+1L(ξ)

where L is 2π-periodic and Cm(R) and we have

|ϕ̂(0)| = 1.

The factorization of the filter implies also

Djϕ̂(2kπ) = 0 for k ∈ Z0, 1 ≤ j ≤ m.
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