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A NOTE ON WEIGHTED ESTIMATES
FOR CERTAIN CLASSES OF

PSEUDO-DIFFERENTIAL OPERATORS

SHUICHI SATO

ABSTRACT. We consider certain classes of pseudo-differen-

tial operators and prove L2
w − L2

w, L1
w − L1,∞

w and H1
w − L1

w
estimates.

1. Introduction. For a multi-index α = (α1, . . . , αn), let (∂ξ)α

denote the differential operator

(∂/∂ξ1)α1 . . . (∂/∂ξn)αn .

Put |α| = α1 + · · · + αn. Let ω : [0,∞) × [0,∞) → [0,∞) be such that

(1) for each fixed s, ω(s, t) is continuous, increasing and concave with
respect to t and ω(s, 0) = 0;

(2) if s/2 ≤ s′ ≤ 2s, ω(s′, t) ≤ Cω(s, t) for some constant C;

(3)
∞∑

j=0

ω(2j , 2−j)2 <∞.

A function ω satisfying these conditions is called a modulus of conti-
nuity. Let σ(x, ξ) be a continuous, bounded function on Rn ×Rn. Let
L,M be nonnegative integers. We consider the following conditions:

(1.1) |(∂ξ)ασ(x, ξ)| ≤ Cα(1 + |ξ|)−|α| for all |α| ≤ L,

(1.2) |(∂ξ)ασ(x+ y, ξ) − (∂ξ)ασ(x, ξ)|
≤ Cα(1 + |ξ|)−|α|ω(1 + |ξ|, |y|) for all |α| ≤M.

We say that σ ∈ Σ(ω,L,M) if σ(x, ξ) satisfies (1.1) and (1.2).
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Let σ(x,D) denote the pseudo-differential operator defined by

σ(x,D)f(x) =
∫
Rn

σ(x, ξ)f̂(ξ)e2πi〈x,ξ〉 dξ,

where 〈x, ξ〉 denotes the inner product in Rn and f̂ , f ∈ S(Rn) (the
Schwartz space), is the Fourier transform; we also write f̂ = F(f).

Now we define some function spaces. Let ω ∈ A1 where Ap denotes
the weight class of Muckenhoupt. A nonnegative, locally integrable
function w is of class A1, by definition, if there exists a constant c ≥ 0
such that M(w)(x) ≤ cw(x) almost everywhere, where M denotes the
Hardy-Littlewood maximal operator. Let ϕ ∈ C∞

0 (Rn) be nonnegative,
radial and such that supp (ϕ) ⊂ {|x| ≤ 1}, ϕ(0) = 1,

∫
ϕ = 1. Let f be

a tempered distribution on Rn. We say f ∈ H1
w(Rn) if

‖f‖H1
w

=
∫
Rn

sup
t>0

|f ∗ ϕt(x)|w(x) dx <∞,

where ϕt(x) = t−nϕ(t−1x). We denote by L1,∞
w the weak L1

w space of
all those measurable functions f which satisfy

‖f‖L1,∞
w

= sup
λ>0

λw({x ∈ Rn : |f(x)| > λ}) <∞,

where w(E) =
∫

E
w(x) dx. Finally, for a weight v, Lp

v denotes the
weighted Lebesgue space with norm ‖f‖Lp

v
= (

∫ |f(x)|pv(x) dx)1/p.

In this note we shall prove the following.

Theorem 1. Let w ∈ A1. If σ(x, ξ) ∈ Σ(ω, [n/2]+1, [n/2]+1), then
the pseudo-differential operator σ(x,D) extends to a bounded operator
on L2

w where [a] denotes the integer such that a− 1 < [a] ≤ a.

Theorem 2. Let w ∈ A1. If σ(x, ξ) ∈ Σ(ω, n + 1, [n/2] + 1), then
σ(x,D) extends to a bounded operator from L1

w to L1,∞
w and from H1

w

to L1
w.

When ω(s, t) = ω0(t) and w is a constant function, these mapping
properties of the pseudo-differential operators were proved by Coifman-
Meyer under stronger assumptions on σ(x, ξ), see [3, Theorem 9].
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Weighted estimates were studied in detail by Yabuta [9]. (See also
Muramatu-Nagase [6], Miyachi-Yabuta [5], Carbery-Seeger [2] and
Yamazaki [10].) Theorems 1 and 2 improve results of [9].

Taking ω(s, t) = sδt, 0 < δ < 1, in Theorems 1 and 2 we have the
following two corollaries.

Corollary 1. Let w ∈ A1. If σ(x, ξ) satisfies (1.1) with L = [n/2]+1
and

(1.3) |(∂x)β(∂ξ)ασ(x, ξ)| ≤ Cα,β(1 + |ξ|)δ|β|−|α|

for all |α| ≤ [n/2] + 1 and |β| = 1 with 0 < δ < 1, then σ(x,D) is
bounded on L2

w.

Corollary 2. Let w ∈ A1. If σ(x, ξ) satisfies (1.1) with L = n + 1
and (1.3), then σ(x,D) is bounded from L1

w to L1,∞
w and from H1

w to
L1

w.

Since ω(s, t) = sδt satisfies (2.1) and (2.2) of [9] (see (1.8) and
(1.9) below), Corollary 1 follows from Theorem 2.1 of Yabuta [9] and
Corollary 2 from [9, Section 7]. See also Journé [4].

Remark 1. Let

σa(x, ξ) = e−2πi〈x,ξ〉e−|x|2(1 + |ξ|2)−n/a, a ≥ 2.

When w is a constant function and n is odd in Theorem 1, the
optimality of [n/2] + 1 in Σ(ω, [n/2] + 1, [n/2] + 1) can be seen by
taking the symbol σ4(x, ξ). When w is a constant function and n ≥ 3
in Theorem 2, the optimality of L = n + 1 in Σ(ω, n + 1, [n/2] + 1)
for the weak (1,1) boundedness can be seen by checking the symbol
σ2(x, ξ). See Coifman-Meyer [3, p. 12] and Yabuta [8, Section 6].

Remark 2. Let η ∈ C∞
0 (R) be such that η(ξ) = 1 for ξ ∈ [3/4, 5/4],

supp (η) ⊂ [2/3, 4/3]. Then the optimality of the exponent 2 in the
condition

∑
j ω(2j , 2−j)2 <∞ can be seen by checking a symbol of the

form

σ(x, ξ) =
∞∑

j=0

ωjη(2π2−jξ) exp(−2πi2jx)
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with
∑

j ω
2
j = ∞. See Coifman-Meyer [3, pp. 39 40].

In fact, we can refine Theorems 1 and 2 as follows (Theorems 3 and
4). Let σ(x, ξ) be continuous and bounded on Rn ×Rn. Let L and M
be nonnegative integers and 0 < a, b ≤ 1. Let ω(s, t) be a modulus of
continuity. We consider the following conditions

(1.4) |(∂ξ)ασ(x, ξ)| ≤ Cα(1 + |ξ|)−|α| for |α| ≤ L,

(1.5) |(∂ξ)ασ(x, ξ + η) − (∂ξ)ασ(x, ξ)|
≤ Cα(1 + |ξ|)−|α|−a|η|a for |η| < (1 + |ξ|)/2 and |α| = L,

(1.6) |(∂ξ)ασ(x+ y, ξ) − (∂ξ)ασ(x, ξ)|
≤ Cα(1 + |ξ|)−|α|ω(1 + |ξ|, |y|) for |α| ≤M,

(1.7) |(∂ξ)ασ(x+ y, ξ + η) − (∂ξ)ασ(x, ξ + η)
− (∂ξ)ασ(x+ y, ξ) + (∂ξ)ασ(x, ξ)|

≤ Cα(1 + |ξ|)−|α|−b|η|bω(1 + |ξ|, |y|)
for |η| < (1 + |ξ|)/2 and |α| = M.

Theorem 3. Suppose σ(x, ξ) satisfies (1.4) (1.7) with L = M =
[n/2] and a = b, 0 < a ≤ 1, [n/2] + a > n/2. Then σ(x,D) is bounded
on L2

w for all w ∈ A1.

Theorem 4. Suppose σ(x, ξ) satisfies the conditions (1.4), (1.5) with
L = n, 0 < a ≤ 1 and the conditions (1.6), (1.7) with M = [n/2] and
b such that [n/2] + b > n/2, 0 < b ≤ 1. Then σ(x,D) is bounded from
L1

w to L1,∞
w and from H1

w to L1
w for all w ∈ A1.

We easily see that Theorems 1 and 2 immediately follow from The-
orems 3 and 4, respectively. In Theorem 4, the assumption on M in
(1.6) and (1.7) is less restrictive than that of [9, Theorem 2.3], see also
[9, Section 7]. Also we note that Theorem 3 was proved in [9] with the
additional, superfluous assumptions on ω ((2.1) and (2.2) of [9])

(1.8)
∫ 1

0

ω(1/t, tδ)2 dt/t <∞ for some 0 < δ < 1;
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(1.9)
∑

1≤2j≤1/R

ω(2j , R) ≤ B for all 0 < R ≤ 1 with some B > 0.

We can remove these assumptions in Theorem 3.

Remark 3. Let ω1 be a modulus of continuity such that ω1(s, t) =
log(2 + s)[log(2 + 1/t)]−3/2−α, ω1(s, 0) = 0 for 0 ≤ s, 0 < t ≤ 1, where
0 < α < 1/2. It is easy to see that ω1 does not satisfy the condition
(1.9). Let ω̃2(s, t) = s1/2t1/2[log(2+1/t)]−1/2−β , β > 0, ω̃2(s, 0) = 0 for
0 ≤ s, 0 < t ≤ 1. If β is small enough, ω̃2(s, t) is concave on [0, 1] with
respect to t and so we can find a modulus of continuity ω2 such that
ω2(s, t) = ω̃2(s, t) for 0 ≤ s, 0 ≤ t ≤ 1. We can easily see that ω2 does
not satisfy the condition (1.8). If we define a modulus of continuity ω
by ω = ω1 + ω2, then ω does not satisfy either (1.8) or (1.9).

Theorems 3 and 4 are consequences of more general results (Theorems
5 and 6). Let ρ be a nonnegative function such that ρ−1 ∈ L1(Rn).
Define

‖f‖Bρ
=

( ∫
Rn

|f̂(x)|2ρ(x) dx
)1/2

.

Let Ψ ∈ C∞(Rn) be a radial function supported in {1/2 ≤ |ξ| ≤ 2}
such that ∑

j∈Z

Ψ(2−jξ) = 1 for ξ �= 0,

where Z denotes the set of all integers. Define Φ ∈ C∞
0 (Rn) by

Φ(ξ) = 1 − ∑
j≥1 Ψ(2−jξ). Then we have the following

Theorem 5. Let σ(x, ξ) be continuous and bounded on Rn × Rn.
Let w ∈ A1. Suppose that

(1.10) sup
t>0

θt ∗ w(x) ≤ Cw(x) a.e. where θ(x) = ρ(x)−1

and that

(1.11) sup
j≥1

sup
x∈Rn

‖σ(x, 2j ·)Ψ(·)‖Bρ
<∞,

(1.12)
sup

x∈Rn

‖σ(x+ y, 2j ·)Ψ(·) − σ(x, 2j ·)Ψ(·)‖Bρ ≤ Cω(2j , |y|)

j ≥ 1,
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(1.13) sup
x∈Rn

‖σ(x, ·)Φ(·)‖Bρ
<∞.

Then σ(x,D) is bounded on L2
w.

Let β be a nonnegative function on [0,∞) such that β(t) > 0 for t > 0
and

(1) β(s) ≤ Cβ(t) if t/2 ≤ s ≤ 2t,

(2) β(t) ≤ C(1 + t),

(3) β(s) ≤ Cβ(t) for 0 ≤ s ≤ t,

(4)
∑

k≥1 kβ(2k)−1 <∞.

We assume that functions w ∈ A1 and ρ satisfy the following condition
for some β as above

(1.14) sup
t>0

t−n

∫
Rn

θ(y/t)(1 + β(|y|/t))w(x− y) dy ≤ Cw(x)

almost everywhere, where θ(x) is as in (1.10). We also assume that
|η| ∗ θ(x) ≤ Cηθ(x) for all η ∈ S(Rn). Under these assumptions on ρ
and w ∈ A1, we have the following

Theorem 6. Let σ(x, ξ) be continuous and bounded on Rn × Rn.
Put

Aj(x, k) =
∫
Rn

σ(x, 2jξ)Ψ(ξ) exp(−2πi〈k, ξ〉) dξ, j ≥ 1,

B(x, k) =
∫
Rn

σ(x, ξ)Φ(ξ) exp(−2πi〈k, ξ〉) dξ.

Suppose σ(x,D) is bounded on L2
w and

|Aj(x, k)| ≤ Cρ(k)−1, j ≥ 1, |B(x, k)| ≤ Cρ(k)−1.

Then σ(x,D) is bounded from L1
w to L1,∞

w and from H1
w to L1

w.
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Examples. Let

(1) ρ(x) = (1 + |x|2)s/2, s > n;

(2) ρ(x) = (1+ |x|2)n/2[log(2+ |x|2)]3[log(2+log(2+ |x|2))]2+ε, ε > 0.

Then we can see that these functions ρ satisfy all the requirements
assumed in Theorem 6 for all w ∈ A1 by taking β(t) = tτ with
0 < τ < min(1, s− n) and β(t) = [log(2 + t)]2[log(2 + log(2 + t))]1+ε/2,
respectively.

As an application of the weighted estimates of Theorem 5 and the
extrapolation theorem of Rubio de Francia [7], we have the following

Corollary 3. Let ρ be a nonnegative function such that ρ−1 ∈
L1(Rn). Suppose that the condition (1.10) holds for all w ∈ A1.
Suppose that σ satisfies the conditions (1.11) (1.13). Let 2 < p < ∞.
Then σ(x,D) is bounded on Lp

w for all w ∈ Ap/2.

In particular, we have the conclusion of Corollary 3 under the hy-
potheses of Theorem 3.

We shall prove Theorem 5 in Section 2. To prove the weighted
estimates, Yabuta [9] used the sharp function of Fefferman-Stein, which
requires the superfluous assumptions on ω stated above ((1.8), (1.9)).
Instead of using the sharp function, basically we apply the method of
Coifman-Meyer [3], the principal part of which is the decomposition
of a symbol into the reduced symbols. However, to get the improved
results, we need to refine the method. We shall prove Theorem 6 in
Section 3 by applying a weighted version of a result of Carbery [1]. In
Section 4 we shall prove Theorems 3 and 4 by applying Theorems 5
and 6.

In this note C is used to denote nonnegative constants which may be
different in different occurrences.

2. Proof of Theorem 5. Take a radial function ψ ∈ C∞
0 (Rn)

such that supp (ψ) ⊂ {1/4 < |ξ| < 4} and ψ(ξ) = 1 if 1/2 ≤ |ξ| ≤ 2.
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Decompose

σ(x, ξ) = σ(x, ξ)Φ(ξ) +
∑
j≥1

σ(x, ξ)Ψ(2−jξ)

= σ(x, ξ)Φ(ξ) +
∑
j≥1

σ(x, ξ)Ψ(2−jξ)ψ(2−jξ)2

=
∫
Rn

B(x, k)e2πi〈k,ξ〉 dk

+
∑
j≥1

∫
Rn

Aj(x, k) exp(2πi〈2−jk, ξ〉) dkψ(2−jξ)2,

where Aj(x, k) and B(x, k) are as in Theorem 6.

Lemma 1. Suppose that the conditions (1.11) and (1.12) hold. Then
we can decompose Aj(x, k) = A

(1)
j (x, k) + A

(2)
j (x, k), where

|A(i)
j (x, k)| = ρ(k)−1/2q(i)(x, k, j)

with nonnegative functions q(i)(x, k, j) satisfying

sup
x∈Rn

∑
j≥1

∫
Rn

q(1)(x, k, j)2 dk <∞,(2.1)

sup
x∈Rn

sup
j≥1

∫
Rn

q(2)(x, k, j)2 dk <∞.(2.2)

Furthermore, the Fourier transform of A(2)
j (x, k) in the x-variable is

supported in {|ξ| ≤ 2j−10} uniformly in k.

Lemma 2. Suppose that the condition (1.13) holds. Then the
function

r(x, k) = ρ(k)1/2|B(x, k)|
satisfies

sup
x∈Rn

∫
Rn

r(x, k)2 dk <∞.
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Now we prove Lemma 1. Put

A
(2)
j (x, k) =

∫
Rn

[ϕ̂2−j+10 ∗ σ(·, 2jξ)](x)Ψ(ξ) exp(−2πi〈k, ξ〉) dξ,

where [ϕ̂2−j+10 ∗σ(·, 2jξ)](x) =
∫
ϕ̂2−j+10(y)σ(x− y, 2jξ) dy and ϕ is as

in the definition of H1
w in Section 1. Define A(1)

j = Aj −A
(2)
j . Then we

see that∫
|A(2)

j (x, k)|2ρ(k) dk ≤ C

∫
|ϕ̂2−j+10(y)|‖σ(x+ y, 2j ·)Ψ(·)‖2

Bρ
dy

≤ C sup
x∈Rn

‖σ(x, 2j ·)Ψ(·)‖2
Bρ
.

Therefore, by (1.11) we get (2.2). The support condition for the Fourier
transform of A(2)

j is easily seen.

Next, since
∫
ϕ̂ = 1, by (1.12) we have

∑
j≥1

∫
|A(1)

j (x, k)|2ρ(k) dk

≤
∑
j≥1

C

∫
|ϕ̂2−j+10(y)|‖σ(x+ y, 2j ·)Ψ(·) − σ(x, 2j ·)Ψ(·)‖2

Bρ
dy

≤
∑
j≥1

C

∫
|ϕ̂2−j+10(y)|ω(2j , |y|)2 dy

≤
∑
j≥1

C

∫
|ϕ̂(y)|ω(2j , 2−j+10|y|)2 dy

≤
∑
j≥1

Cω(2j , 2−j)2
∫

|ϕ̂(y)|(1 + |y|)2 dy

≤
∑
j≥1

Cω(2j , 2−j)2 <∞,

where we have used the inequality ω(2j , a2−j) ≤ C(1 + a)ω(2j , 2−j),
a > 0, which holds since ω(s, t) is increasing and concave in t. This
proves (2.1). We have completed the proof of Lemma 1.

We easily see that the condition (1.13) implies Lemma 2.
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Now we turn to the proof of Theorem 5. Put

Ej(f)(x, k) =
∫
Rn

exp(2πi〈2−jk, ξ〉)ψ(2−jξ)2f̂(ξ) exp(2πi〈x, ξ〉) dξ

= (τ−kF−1(ψ))2−j ∗ ∆j(f)(x),

where τkf(x) = f(x− k) and

∆j(f)(x) =
∫
Rn

ψ(2−jξ)f̂(ξ) exp(2πi〈x, ξ〉) dξ.

Then by (2.1) and the Schwarz inequality we have∣∣∣∣
∞∑

j=1

∫
A

(1)
j (x, k)Ej(f)(x, k) dk

∣∣∣∣2

≤
∫ ∑

j≥1

q(1)(x, k, j)2 dk
∑
j≥1

∫
ρ(k)−1|Ej(f)(x, k)|2 dk

≤ C
∑
j≥1

∫
ρ(k)−1|Ej(f)(x, k)|2 dk.

Thus, integrating with respect to w(x) dx by (1.10) and the weighted
Littlewood-Paley inequality we have∫ ∣∣∣∣

∞∑
j=1

∫
A

(1)
j (x, k)Ej(f)(x, k) dk

∣∣∣∣2w(x) dx

≤ C
∑
j≥1

∫
ρ(k)−1

( ∫
|Ej(f)(x, k)|2w(x) dx

)
dk

≤ C
∑
j≥1

∫ ( ∫
ρ(k)−1

∫
2jn|F−1(ψ)(2j(x− y) + k)|w(x) dx dk

)

· |∆j(f)(y)|2 dy
≤ C

∑
j≥1

∫ ( ∫
ρ(k)−1w(y − 2−jk) dk

)
|∆j(f)(y)|2 dy

≤ C
∑
j≥1

∫
w(y)|∆j(f)(y)|2 dy

≤ C‖f‖2
L2(w).
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Observing that the Fourier transform of
∫
A

(2)
j (x, k)Ej(f)(x, k) dk is

supported in an annulus of the form {c12j < |ξ| < c22j}, c1, c2 > 0, we
apply the weighted Littlewood-Paley inequality. Then by the Schwarz
inequality and (2.2) we have

∫ ∣∣∣∣
∞∑

j=1

∫
A

(2)
j (x, k)Ej(f)(x, k) dk

∣∣∣∣2w(x) dx

≤ C

∫ ∞∑
j=1

∣∣∣∣
∫
A

(2)
j (x, k)Ej(f)(x, k) dk

∣∣∣∣2w(x) dx

≤ C
∑
j≥1

∫ ( ∫
q(2)(x, k, j)2 dk

)( ∫
ρ(k)−1|Ej(f)(x, k)|2 dk

)
w(x) dx

≤ C
∑
j≥1

∫∫
ρ(k)−1|Ej(f)(x, k)|2 dk w(x) dx

≤ C‖f‖2
L2(w),

where we can have the last inequality as in the previous paragraph.
Collecting the results, we see that σ̃(x,D) is bounded on L2

w where
σ̃(x, ξ) = σ(x, ξ) − σ(x, ξ)Φ(ξ).

The operator τ (x,D) where τ (x, ξ) = σ(x, ξ)Φ(ξ) can be treated by
using Lemma 2 as follows: by Schwarz’s inequality, we see that

∣∣∣∣
∫
τ (x, ξ)f̂(ξ)e2πi〈x,ξ〉 dξ

∣∣∣∣2 =
∣∣∣∣
∫
B(x, k)f(x+ k) dk

∣∣∣∣2

≤
∫
r(x, k)2 dk

∫
ρ(k)−1|f(x+ k)|2 dk

≤ C

∫
ρ(k − x)−1|f(k)|2 dk.

Integrating with respect to w(x) dx, we get the L2
w boundedness. This

completes the proof of Theorem 5.

3. Proof of Theorem 6. The following is a weighted version of
Theorem 2 of Carbery [1].
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Proposition 1. Let α be a nonnegative function on Z such that∑
k≤0

|k|α(k) <∞.

Let σ(x, ξ) be continuous and bounded on Rn × Rn. Let w ∈ A1 and
suppose that σ(x,D) is bounded on L2

w. Put σi(x, ξ) = σ(x, ξ)Ψ(2iξ),
i ∈ Z, where Ψ ∈ C∞

0 (Rn) is as in Section 1. Suppose that

|σi ∗ (Ψ̂)2−j |L1
w
≤ α(i− j) for all i, j ∈ Z with i ≤ j,

where the convolution is taken in the ξ-variable and |σ|L1
w

denotes the
L1

w L1
w operator norm of σ(x,D). Then σ(x,D) is bounded from L1

w

to L1,∞
w and from H1

w to L1
w.

The proof is similar to the one given in [1] for the unweighted
case. Let T be a singular integral operator with kernel K(x, y). Put
Kj(x, y) = K(x, y)Ψ(2−j(x− y)) and Tjf(x) =

∫
Kj(x, y)f(y) dy. Let

ϕ be as in the proof of Lemma 1 and Pjf(x) = ϕ2j ∗ f(x). Suppose
T is bounded on L2

w, w ∈ A1. Then the L1
w L1,∞

w boundedness of T
follows from the weighted version of the Hörmander condition

sup
j∈Z

∣∣∣∣ ∑
l≥0

Tj+l(I − Pj)
∣∣∣∣
L1

w

<∞,

where I denotes the identity operator. We can use this result to prove
the L1

w L1,∞
w boundedness of Proposition 1. To prove the H1

w L1
w

boundedness, we use the atomic decomposition for H1
w.

To apply Proposition 1 for the proof of Theorem 6, we need the
following

Lemma 3. Let w ∈ A1, ρ and β be as in Theorem 6. Suppose that

|Aj(x, k)| ≤ Cρ(k)−1.

Then

|σ̃m ∗ (Ψ̂)2−j |L1
w
≤ Cβ(2−m+j)−1 for all m, j ∈ Z with m ≤ j,
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where σ̃(x, ξ) = σ(x, ξ) − σ(x, ξ)Φ(ξ), as before.

We also need the following, which can be easily seen.

Lemma 4. Let w ∈ A1. Suppose that θ ∗ w(x) ≤ Cw(x) almost
everywhere, where θ is as in (1.10), and that

|B(x, k)| ≤ Cρ(k)−1.

Then τ (x,D) is bounded on L1
w and L2

w, where τ (x, ξ) = σ(x, ξ)Φ(ξ),
as before.

We first prove Lemma 3. Put

bj(x, ξ) = σ(x, ξ)Ψ(2−jξ)

=
∫
Rn

Aj(x, k) exp(2πi〈2−jk, ξ〉) dkψ(2−jξ)2,

Kj,l,m(x, y) = F−1[(bl)m(x, ·) ∗ (Ψ̂)2−j ](y),

where the inverse Fourier transform is taken with respect to the ξ-
variable. Then, writing u(x) =

∫ |ψ̂2(x + k)|ρ(k)−1 dk, we have for
m− 2 ≤ −l ≤ m+ 2, l ≥ 1,∫

|Kj,l,m(x, x− y)|w(x) dx

≤ C

∫
ρ(k)−1

∫
2(l+m)n

∫
|ψ̂2(2(l+m)(x− z) + k)||Ψ̂(z)| dz

· |Ψ(2m−jx)|w(2mx+ y) dx dk

= C

∫
ρ(k)−1

∫∫
|ψ̂2(x+ k)||Ψ(2−j−lx+ 2m−jz)|

· w(2mz + 2−lx+ y) dx|Ψ̂(z)| dz dk
= C

∫∫
u(x)|Ψ(2−j−lx+ 2m−jz)|w(2mz + 2−lx+ y) dx|Ψ̂(z)| dz.

Since Ψ is supported in {1/2 ≤ |x| ≤ 2}, by the properties (1) and
(3) of β we see that

|Ψ(2−j−lx+ 2m−jz)| ≤ Cβ(2−m+j)−1β(|2−m−lx+ z|)
≤ Cβ(2−m+j)−1[β(|x|) + β(|z|)].
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Since u(x) ≤ Cρ(−x)−1 by our assumption, by (1.14) we have∫
|Kj,l,m(x, x− y)|w(x) dx

≤ Cβ(2−m+j)−1

∫∫
ρ(−x)−1[β(|x|) + β(|z|)]

· w(2mz + 2−lx+ y) dx|Ψ̂(z)| dz
≤ Cβ(2−m+j)−1

∫
(1 + β(|z|))w(2mz + y)|Ψ̂(z)| dz

≤ Cβ(2−m+j)−1w(y).

To get the last inequality, we have used the growth condition (2) of β.
From this we can easily get the conclusion of Lemma 3.

Next we prove Lemma 4. We have∣∣∣∣
∫
τ (x, ξ)f̂(ξ)e2πi(x,ξ) dξ

∣∣∣∣ =
∣∣∣∣
∫
B(x, k)f(x+ k) dk

∣∣∣∣
≤ C

∫
ρ(k − x)−1|f(k)| dk.

Integrating with respect to w(x) dx, we get the L1
w boundedness. The

L2
w boundedness can be proved as in the last paragraph of Section 2.

We see that σ̃(x,D) (see Lemma 3) is bounded on L2
w by the L2

w

boundedness of τ (x,D) (see Lemma 4) and σ(x,D). Therefore, by
Lemma 4 and Lemma 3 along with Proposition 1, now we can conclude
the proof of Theorem 6.

4. Proofs of Theorems 3 and 4. We first prove Theorem 3.
We prove the validity of the conditions (1.11), (1.12) and (1.13) with
ρ(k) = (1 + |k|2)s, s = [n/2] + d, where d satisfies a > d and
[n/2] + d > n/2. By integration by parts,

Aj(x, k) = (2πikm)−[n/2]

∫
Rn

[( ∂

∂ξm

)[n/2]

(σ(x, 2jξ)Ψ(ξ))
]

· exp(−2πi〈k, ξ〉)dξ.
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Let ψ be as in Section 2. Then by applying Plancherel’s theorem, we
have for l ≥ 0,

(4.1)

∫
|k|≈|km|,2l≤|k|≤2l+1

|Aj(x, k)|2(1 + |k|2)s dk

≤ C22sl

∫
|k|≈|km|

|ψ(2−lk)Aj(x, k)|2 dk

≤ C22dl

∫
Rn

∣∣∣ψ̂2−l ∗
[( ∂

∂ξm

)[n/2]

(σ(x, 2j ·)Ψ(·))
]
(ξ)

∣∣∣2 dξ.
Put F (x, ξ) = (∂/∂ξm)[n/2](σ(x, 2jξ)Ψ(ξ)). Then by (1.4) and (1.5)

with L = [n/2] we have |F (x, ξ)| ≤ C and

(4.2) |F (x, ξ + η) − F (x, ξ)| ≤ C|η|a.
When |ξ| ≥ 1, by (4.2) we see that∣∣∣ψ̂2−l ∗

[( ∂

∂ξm

)[n/2]

(σ(x, 2j ·)Ψ(·))
]
(ξ)

∣∣∣
=

∣∣∣∣
∫

[F (x, ξ + η) − F (x, ξ)]ψ̂2−l(η) dη
∣∣∣∣

≤
∣∣∣∣
∫
|η|<|ξ|/2

[F (x, ξ + η) − F (x, ξ)]ψ̂2−l(η) dη
∣∣∣∣

+
∣∣∣∣
∫
|η|≥|ξ|/2

[F (x, ξ + η) − F (x, ξ)]ψ̂2−l(η) dη
∣∣∣∣

≤ Cχ0(ξ)
∫

|η|a|ψ̂2−l(η)| dη + C(2l|ξ|)−2n

≤ C2−al(1 + |ξ|)−2n,

where χ0 is the characteristic function of the ball {|ξ| ≤ 5}. We also
have this estimate for |ξ| < 1. Using this in (4.1) we have

(4.3)
∫
|k|≈|km|
|k|≥1

|Aj(x, k)|2(1 + |k|2)s dk ≤
∑
l≥0

C22dl2−2al ≤ C.

It is easier to get the estimate∫
|k|≤1

|Aj(x, k)|2(1 + |k|2)s dk ≤ C.
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Using this and (4.3) for m = 1, . . . , n, we see that the condition (1.11)
holds.

Next we show that the condition (1.12) holds. By integration by
parts,

Aj(x+ y, k) −Aj(x, k)

=
∫
Rn

(σ(x+ y, 2jξ) − σ(x, 2jξ))Ψ(ξ) exp(−2πi〈k, ξ〉) dξ

= (2πikm)−[n/2]

∫
Rn

[( ∂

∂ξm

)[n/2]

((σ(x+ y, 2jξ) − σ(x, 2jξ))Ψ(ξ))
]

· exp(−2πi〈k, ξ〉)dξ.

Put G(x, y, ξ) = (∂/∂ξm)[n/2]((σ(x + y, 2jξ) − σ(x, 2jξ))Ψ(ξ)). Then
by Plancherel’s theorem we have, as above, for l ≥ 0,

(4.4)
∫

|k|≈|km|
2l≤|k|≤2l+1

|Aj(x+ y, k) −Aj(x, k)|2(1 + |k|2)s dk

≤ C22dl

∫
Rn

|[ψ̂2−l ∗G(x, y, ·)](ξ)|2 dξ.

By (1.6) and (1.7) with M = [n/2] and a = b we have |G(x, y, ξ)| ≤
Cω(2j , |y|) and

(4.5) |G(x, y, ξ + η) −G(x, y, ξ)| ≤ C|η|aω(2j , |y|).

Using (4.5) and arguing as in the proof for (1.11) above, we can see
that

|[ψ̂2−l ∗G(x, y, ·)](ξ)| ≤ C2−alω(2j , |y|)(1 + |ξ|)−2n.

Using this in (4.4) and summing up in l ≥ 0, we have

(4.6)
∫
|k|≈|km|
|k|≥1

|Aj(x+ y, k) −Aj(x, k)|2(1 + |k|2)s dk ≤ Cω(2j , |y|)2.

We also have∫
|k|≤1

|Aj(x+ y, k) −Aj(x, k)|2(1 + |k|2)s dk ≤ Cω(2j , |y|)2.
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Using this and (4.6) for m = 1, . . . , n, we can get (1.12).

The condition (1.13) can be proved similarly. Since ρ(x) = (1+ |x|2)s

satisfies (1.10) for all w ∈ A1, now Theorem 3 follows from Theorem 5.

Next we prove Theorem 4. By integration by parts and estimates
similar to (4.2), under the assumption of Theorem 4, we have

|Aj(x, k)| ≤ C(1 + |k|2)−(n+a)/2, j ≥ 1,

|B(x, k)| ≤ C(1 + |k|2)−(n+a)/2.

Also by Theorem 3, σ(x,D) is bounded on L2
w for w ∈ A1. Further-

more, we see that ρ(x) = (1+ |x|2)(n+a)/2 satisfies all the requirements
of Theorem 6 with any w ∈ A1 and, for example, β(t) = ta/2 for (1.14).
Therefore we can apply Theorem 6 to get Theorem 4.
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