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CHERN-SIMONS FORMS ASSOCIATED TO
HOMOGENEOUS PSEUDO-RIEMANNIAN STRUCTURES

P.M. GADEA AND J.A. OUBIÑA

ABSTRACT. Forms of Chern-Simons type associated to
homogeneous pseudo-Riemannian structures are considered.
The corresponding secondary classes are a measure of the
lack of a homogeneous pseudo-Riemannian space to be locally
symmetric. Explicit computations are done for some pseudo-
Riemannian Lie groups and their compact quotients.

1. Introduction. The characterization by É. Cartan of Rieman-
nian locally symmetric spaces as those Riemannian manifolds whose
curvature tensor is parallel was extended by Ambrose and Singer in
[1]. They proved that a complete simply connected Riemannian man-
ifold is homogeneous if and only if it admits a (1, 2) tensor field S
satisfying certain equations. If S = 0 then the manifold is Riemannian
symmetric.

The purpose of the present paper is to provide forms of Chern-
Simons type for each pseudo-Riemannian manifold (M, g) endowed
with a homogeneous pseudo-Riemannian structure S. This construc-
tion furnishes odd-dimensional differential forms of degree greater than
1, which are null if S = 0. Under certain conditions, these forms are
closed and define secondary classes. Each of such triples (M, g, S) has
thus a number of such differential forms, and roughly speaking (when
the corresponding group of real cohomology of the manifold is nonzero),
the more nonvanishing classes of that kind a manifold has, the less sym-
metric it is.

We give several examples of such forms on some Lie groups equipped
with left-invariant metrics: The three-dimensional unimodular Lie
groups, so having instances of Abelian, nilpotent, solvable and simple
Lie groups; and the five-dimensional generalized Heisenberg group
H(1, 2), which is nilpotent. Further, we consider the corresponding
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secondary classes of the compact quotients of the previous groups,
identifying them in the real cohomology spaces of the quotient spaces.
In [6], we also studied the oscillator group.

2. Preliminaries. Ambrose and Singer [1] proved that a con-
nected, simply connected and complete Riemannian manifold (M, g) is
homogeneous if and only if there exists a (1, 2) tensor field S on M ,
called a homogeneous Riemannian structure, satisfying certain equa-
tions, see (2.1) below. In [4] we have extended that characterization
to pseudo-Riemannian manifolds. Specifically, let (M, g) be a con-
nected C∞ pseudo-Riemannian manifold of dimension n and signature
(k, n−k). Let ∇ be the Levi-Civita connection of g and R its curvature
tensor field. A homogeneous pseudo-Riemannian structure on (M, g) is
a tensor field S of type (1, 2) on M such that the connection ∇̃ = ∇−S
satisfies

(2.1) ∇̃g = 0, ∇̃R = 0, ∇̃S = 0.

If g is a Lorentzian metric (k = 1), we say that S is a homogeneous
Lorentzian structure. In [4] we proved that if (M, g) is connected,
simply connected and geodesically complete, then it admits a homo-
geneous pseudo-Riemannian structure if and only if it is a reductive
homogeneous pseudo-Riemannian manifold.

Let (P, M, G) be a principal fiber bundle over the n-dimensional
C∞ manifold M . Let I r(G) be the real vector space of Ad (G)-
invariant polynomials of degree r. Let D be a connection in P ,
with connection 1-form ω and curvature form Ω = dω + ω ∧ ω. Let
I ∈ I r(G) be an invariant polynomial. One can consider for each
r the 2r-form I(Ωr) = I(Ω, . . . , Ω), which is a 2r-form on P and
projects to a (unique) 2r-form on M , say again I(Ωr). This form
is closed and determines a cohomology class in H2r(M,R). Let D̃ be
another connection in P with connection 1-form ω̃ and curvature form
Ω̃. Consider the connection given, for a t ∈ [0, 1], by ωt = ω̃ + t(ω− ω̃),
with curvature form Ωt = dωt+ωt∧ωt. Then we have the transgression
formula

(2.2) I(Ωr) − I(Ω̃r) = dQ(ω, ω̃),
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where

(2.3) Q(ω, ω̃) := r

∫ 1

0

I(ω − ω̃, Ωt, . . . , Ωt︸ ︷︷ ︸
r−1

) dt.

The Chern-Simons (2r − 1)-form Q(ω, ω̃) on M defines, if I(Ωr) =
I(Ω̃r), a secondary class.

3. Chern-Simons forms associated to a homogeneous pseudo-
Riemannian structure. We consider the bundle of pseudo ortho-
normal frames p:Ok,n−k(M) → M over the pseudo-Riemannian n-
manifold (M, g), where g is a metric of signature (k, n− k). We define
Ad (O(k, n − k))-invariant polynomial functions f1, . . . , fn on the Lie
algebra o(k, n − k) by

f(t, X) = det (tI + X) =
n∑

r=0

fr(X) tn−r, X ∈ o(k, n − k).

Let Ω be the curvature form of a connection ω in Ok,n−k(M). Then,
for each fr, r = 1, . . . , n, there exists a unique closed 2r-form υr on
M such that p∗(υr) = fr(Ω). One has det (I + Ω) = p∗(1 + υ1 + · · · +
υn), so having characteristic forms υr of degree 2r, and a total form
Υ(Ok,n−k(M), ω) = 1 +

∑n
r=1 υr. The forms fr(Ω) are the elementary

symmetric functions sr(Ω), r = 1, . . . , n, of the eigenvalues of Ω, so
that det (I + Ω) = 1 + s1(Ω) + s2(Ω) + · · ·+ sn(Ω). By using Newton’s
recursive formulas, one can further compute the functions sr(Ω) in
terms of the traces of the powers of Ω from the expressions

tr (Ωr) − s1(Ω) tr (Ωr−1) + s2(Ω) tr (Ωr−2) − · · ·
+ (−1)r−1sr−1(Ω) tr (Ω) + (−1)rr sr(Ω) = 0, r = 1, . . . , n,

and since trΩ = 0, we have after computation that

det (I +Ω) = 1− 1
2

tr (Ω2)+
1
3

tr (Ω3)+
1
4

(1
2
(tr (Ω)2)2− tr (Ω4)

)
+ · · · .

Now, we consider here the Levi-Civita connection ∇ and the linear
connection ∇̃ = ∇−S, with connection form ω̃ and curvature form Ω̃, as
in the previous section, where S is a homogeneous pseudo-Riemannian
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structure on (M, g), so that the general equation (2.2) can be written
in this case as

(3.1) sr(Ω) − sr(Ω̃) = dQ(ω, ω̃).

If sr(Ω) = sr(Ω̃), then Q(ω, ω̃) is closed, so determining a secondary
class. In particular, if r = 2, 3, then this happens if tr (Ωr) = tr (Ω̃r).
We shall denote by QS

2r−1(M, g), or simply by QS
2r−1, the form Q(ω, ω̃)

in (3.1).

Definition 3.1. Let (M, g) be a pseudo-Riemannian manifold and
let S be a homogeneous pseudo-Riemannian structure on M . We
shall call the forms QS

2r−1(M, g), for each 3 ≤ 2r − 1 ≤ dim M ,
Chern-Simons forms of pseudo-Riemannian homogeneity, or simply
forms of homogeneity, on (M, g, S). We shall call the corresponding
real cohomology classes [QS

2r−1](M, g) secondary classes of pseudo-
Riemannian homogeneity, or simply secondary classes of homogeneity.

The case r = 1 in (3.1) is trivial, as the forms ω − ω̃, Ω, and Ω̃ take
values in o(k, n − k). For r = 2, we get the formula

(3.2) QS
3 = −1

2
tr

(
2 σ ∧ Ω̃ + σ ∧ dσ + 2 σ ∧ ω̃ ∧ σ +

2
3

σ ∧ σ ∧ σ
)
,

where σ = ω − ω̃. One can obtain similar formulas for any r with
2r ≤ dimM . We give also the formula for r = 3:
(3.3)

QS
5 =

1
3

tr
{

3 σ ∧ Ω̃2 +
3
2
(σ2 ∧ Ω̃ ∧ ω̃ + 2 σ ∧ Ω̃ ∧ σ ∧ ω̃ + σ ∧ Ω̃ ∧ dσ

+ σ2 ∧ ω̃ ∧ Ω̃ + σ ∧ dσ ∧ Ω̃ + 2 σ4 ∧ ω̃ + σ3 ∧ dσ)

+ 2 σ3 ∧ Ω̃ + 3 σ2 ∧ ω̃ ∧ σ ∧ ω̃ + 2 σ ∧ ω̃ ∧ σ ∧ dσ + σ3 ∧ ω̃2

+ σ2 ∧ ω̃ ∧ dσ + σ2 ∧ dσ ∧ ω̃ + σ ∧ (dσ)2 +
3
5

σ5
}

,

where Aj = A ∧ (j· · · ∧ A for any matrix A. We now give some general
results for the forms QS

2r−1.

Proposition 3.2. If S = 0 then QS
2r−1 = 0, for each r.
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Proof. Immediate from (2.3).

Let S1 and S2 be homogeneous pseudo-Riemannian structures on
(M1, g1) and (M2, g2), respectively. We recall [11, pp. 33 34] that an
isomorphism between S1 and S2 is an isometry ϕ: (M1, g1) → (M2, g2)
which is also an affine transformation with respect to the connections
∇̃1 = ∇1 − S1 and ∇̃2 = ∇2 − S2. Then we have the following
proposition.

Proposition 3.3. If ϕ: (M1, g1) → (M2, g2) is an isomorphism
between S1 on (M1, g1) and S2 on (M2, g2), then ϕ∗(QS2

2r−1

)
= QS1

2r−1,
for each r.

Proof. According to the previous definition, we have that ϕ∗ω2 = ω1

and ϕ∗ω̃2 = ω̃1. Thus we have that ϕ∗((ωt)2) = ϕ∗(ω̃2 + t(ω2 − ω̃2)) =
(ωt)1, and so ϕ∗((Ωt)2) = ϕ∗(d(ωt)2 + (ωt)2 ∧ (ωt)2) = (Ωt)1. Hence
for any invariant polynomial I we have that

ϕ∗{I(σ2, (Ωt)2, . . . , (Ωt)2)} = I(σ1, (Ωt)1, . . . , (Ωt)1).

As I is multi-linear, we conclude.

Proposition 3.4.

tr (Ωr) − tr (Ω̃r) = tr
{ r−1∑

l=0

(
r

l

)
Ωl ∧ (3[S, S] −ASS)r−l

}
,

where ASS is defined by (ASS)(X, Y ) = SS(X,Y )−S(Y,X).

Proof. First we recall that d∇S is defined [7, p. 22] by

(3.4) (d∇S)(X, Y ) = ∇XSY −∇Y SX − S[X,Y ],

and we put

(3.5) [S, S](X, Y ) = SXSY − SY SX = [SX , SY ].
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On the other hand, Ambrose-Singer’s third equation (2.1) can be
written as

(3.6) (∇XS)(Y, Z) = [SX , SY ](Z) − SS(X,Y )Z.

Since ∇ is torsionless, by (3.4) we can write (d∇S)(X, Y )(Z) =
(∇XS)(Y, Z) − (∇Y S)(X, Z), and thus from (3.6) one has that

(3.7) (d∇S)(X, Y )(Z) = {2[SX , SY ] − SS(X,Y )−S(Y,X)}(Z).

Hence, on account of (3.5) we have that (d∇S)(X, Y ) = (2[S, S] −
ASS)(X, Y ). Substituting now (3.7) in Koszul’s formula Ω̃ = Ω +
[S, S] + d∇S, see [7, p. 22], we obtain that Ω̃ = Ω + 3[S, S] − ASS .
Finally, calculation of tr (Ω̃r) = tr (Ω + 3[S, S] − ASS)r gives us, on
account of the property tr (Φ∧Ψ) = tr (Ψ∧Φ) for any two End (TM)-
valued 2-forms Φ, Ψ, the expression in the statement.

In particular, if 3[S, S] = ASS, then tr (Ωr)− tr (Ω̃r) = 0, and QS
2r−1

defines, for r = 2, 3, a secondary class [QS
2r−1].

4. Examples of forms QS
2r−1 associated to homogeneous

pseudo-Riemannian structures.

4.1 The 3-dimensional unimodular Lie groups. Let G be a
connected unimodular Lie group, with Lie algebra g, endowed with
a left-invariant Riemannian metric g. We consider the homogeneous
Riemannian structure S on (G, g) defined by [11, p. 83]

(4.1)

2g(SXY, Z) = g([X, Y ], Z) − g([Y, Z], X) + g([Z, X], Y ), X, Y, Z ∈ g.

If dim G = 3 there exists [8] an orthonormal basis {E1, E2, E3} of g
such that

(4.2) [E1, E2] = λ3E3, [E2, E3] = λ1E1, [E3, E1] = λ2E2.
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If ∇ is the Levi-Civita connection of G then ∇Ei
Ei = SEi

Ei = 0 and
the remaining components of ∇ and S are given by

∇E1E2 = SE1E2 = 1
2 (−λ1 + λ2 + λ3)E3,

∇E1E3 = SE1E3 = 1
2 (λ1 − λ2 − λ3)E2,

∇E2E1 = SE2E1 = 1
2 (−λ1 + λ2 − λ3)E3,

∇E2E3 = SE2E3 = 1
2 (λ1 − λ2 + λ3)E1,

∇E3E1 = SE3E1 = 1
2 (λ1 + λ2 − λ3)E2,

∇E3E2 = SE3E2 = 1
2 (−λ1 − λ2 + λ3)E1.

Let {θ1, θ2, θ3} be the basis dual to {E1, E2, E3}. We obtain for ω, ω̃

and Ω̃ defined as in Section 3, that ω̃ = 0, Ω̃ = 0,

ω =
1
2

⎛
⎝ 0 (−λ1 − λ2 + λ3)θ3 (λ1 − λ2 + λ3)θ2

(λ1 + λ2 − λ3)θ3 0 (λ1 − λ2 − λ3)θ1

(−λ1 + λ2 − λ3)θ2 (−λ1 + λ2 + λ3)θ1 0

⎞
⎠

and then from (3.2), after some calculations, the next proposition.

Proposition 4.1. The Chern-Simons form associated to the homo-
geneous Riemannian structure S on G, for arbitrarily fixed λ1, λ2, λ3

as in (4.2), is given by

(4.3) QS
3 (Gλ1,λ2,λ3 , g) = −1

2

( ∑
λ3

i −
∑
i �=j

λiλ
2
j+4λ1λ2λ3

)
θ1∧θ2∧θ3.

If S = 0 then λi = 0, 1 ≤ i ≤ 3, and the group G is commutative;
in this case QS

3 (G0,0,0, g) = 0. Since SE1E1 = SE2E2 = SE3E3 = 0,
one has c12(S) = 0, and hence S is of type S2 ⊕ S3, see [11, p. 84],
[5]. In particular, S is of type S2, that is, SXY ZSXY Z = 0 for every
X, Y, Z ∈ g, if and only if λ1 + λ2 + λ3 = 0; and S is of type S3, that
is SXY + SY X = 0 for X, Y ∈ g, if and only if λ1 = λ2 = λ3. By [8],
see also [11, p. 84], if S �= 0 is of type S2 then the Lie algebra g of G
is either the Lie algebra e(1, 1) of the Lie group of rigid motions of the
Minkowski plane or sl(2,R), and we have that

QS
3 (Gλ1,λ2,λ3 , g) = −1

2
(λ3

1 − λ3
2 − λ3

3 + 4λ1λ2λ3) θ1 ∧ θ2 ∧ θ3,
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with
∑

λi = 0. If S �= 0 is of type S3 we may suppose λi = 1, i = 1, 2, 3;
then g = su(2), and we have that

QS
3 (SU(2), g) = −1

2
θ1 ∧ θ2 ∧ θ3.

As a consequence of Milnor’s classification [8] of three-dimensional
unimodular Lie algebras, if S is neither of type S2 nor S3 then g is
either the Heisenberg Lie algebra h3 or the Lie algebra e2 of the Lie
group of rigid motions of the Euclidean space. If g is the Lie algebra of
the Heisenberg group H3 we may suppose that λ1 = 1 and λ2 = λ3 = 0;
in this case,

QS
3 (H3, g) = −1

2
θ1 ∧ θ2 ∧ θ3.

If g = e2, then one of the constants, suppose λ3, is null; in this case,

QS
3 (E(2)λ1,λ2 , g) = −1

2
(λ1 + λ2)(λ1 − λ2)2 θ1 ∧ θ2 ∧ θ3.

4.2 The Heisenberg group. Consider again the Heisenberg group
H3, that is, the simply connected Lie group corresponding to the Lie
algebra h3 = 〈a, x, y〉 with nonzero bracket [x, y] = a. We now endow
H3 with the left-invariant pseudo-Riemannian metric defined at h3 by
the diagonal matrix g = diag (ε, 1, 1) with respect to the given basis,
where ε = ±1. Let {τ, α, β} be the basis dual to {a, x, y}. Then,
integrating Ambrose-Singer’s equations (2.1), we obtain [5, 11] the
1-parameter family of homogeneous pseudo-Riemannian structures

(4.4) Sλ = λ τ ⊗ (α∧β)+
1
2

ε β⊗ (τ ∧α)− 1
2

ε α⊗ (τ ∧β), λ ∈ R.

From this we have that

ω =
1
2

⎛
⎝ 0 −β α

εβ 0 ετ
−εα −ετ 0

⎞
⎠ , and letting A =

⎛
⎝ 0 0 0

0 0 1
0 −1 0

⎞
⎠ :

ω̃ =
(

ε

2
+ λ

)
τ A, Ω̃ =

(
ε

2
+ λ

)
α ∧ β A,
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and then, after some computations from (3.2), we obtain the following
proposition.

Proposition 4.2. The form of homogeneity on (H3, gε) correspond-
ing to the homogeneous pseudo-Riemannian structure Sλ is given by

QSλ
3 (H3, gε) = −1

2

(
1
2
− 2λ(λ + ε)

)
τ ∧ α ∧ β.

Notice that in the Riemannian case, that is, when ε = 1, and if
λ = −1/2, then Sλ is the homogeneous Riemannian structure on H3

obtained in Section 4.1, where the Heisenberg group was considered as
a particular case of three-dimensional unimodular Lie group.

4.3 The generalized Heisenberg group H(1, 2). Consider [3]
a 2-nilpotent Lie group N with the left-invariant metric induced by
a, not necessarily positive definite, inner product in their Lie algebra
n. If n is a Lie algebra with inner product 〈 , 〉 and z is the center
of n, one considers a decomposition n = z ⊕ v, where z = U ⊕ Z,
v = V ⊕ E, U stands for the null subspace of z, and V ⊂ v for a
complementary null subspace. An example of the construction in [3]
is the generalized Heisenberg group H(1, 2) of dimension 5, whose Lie
algebra is n = U ⊕ Z ⊕ V ⊕ E = 〈{u, z, v, e1, e2}〉, where U = 〈{u}〉,
Z = 〈{z}〉, V = 〈{v}〉 and E = 〈{e1, e2}〉, with nonvanishing brackets
[e1, e2] = z, [v, e2] = u, and nontrivial inner products

〈u, v〉 = 1, 〈z, z〉 = ε, 〈e1, e1〉 = ε̄1, 〈e2, e2〉 = ε̄2,

where each ε-symbol is ±1 independently, so that the pseudo-Rieman-
nian metric on H(1, 2) defined by 〈 , 〉 has signature (k, 5 − k),
1 ≤ k ≤ 4. Let {η, θ, τ, α1, α2} denote the dual basis to {u, z, v, e1, e2}.
Then integration of Ambrose-Singer’s equations (2.1) gives us [5] the
only homogeneous pseudo-Riemannian structure

(4.5)
S =

ε

2
α2 ⊗ (θ ∧ α1) − ε

2
α1 ⊗ (θ ∧ α2)

− ε

2
θ ⊗ (α1 ∧ α2) − τ ⊗ (τ ∧ α2).
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We obtain that

ω =
1
2

⎛
⎜⎜⎜⎝

0 0 0 0 2τ
0 0 0 −α2 α1

0 0 0 0 0
0 εε̄1α

2 0 0 εε̄1θ
0 −εε̄2α

1 −2ε̄2τ −εε̄2θ 0

⎞
⎟⎟⎟⎠ , ω̃ = 0, Ω̃ = 0,

and by means of some computations from (3.2) and (3.3), we have the
following proposition.

Proposition 4.3. The forms of homogeneity on (H(1, 2), gεε̄1ε̄2)
corresponding to the homogeneous pseudo-Riemannian structure S are

QS
3 (H(1, 2), gεε̄1ε̄2) = −1

2
ε̄1 ε̄2 θ ∧ α1 ∧ α2, QS

5 (H(1, 2), gεε̄1ε̄2) = 0.

5. Secondary classes [QS
2r−1] of compact quotients of Lie

groups. Now, we determine the secondary classes [QS
2r−1] of the

compact quotients of the spaces considered in Section 4. For this,
we first note that given a left-invariant form α on a Lie group G,
then it is invariant under the action of a discrete subgroup Γ of G,
so that there exists a form α̂ on the quotient Γ\G such that π∗(α̂) = α,
where π denotes the natural projection π: G → Γ\G. In the sequel,
we shall denote by α̂ such a projected form of a left-invariant form α
on G onto a compact quotient Γ\G. If g is a left-invariant metric
on G, then it projects to a metric ĝ on Γ\G such that the map
π: (G, g) → (Γ\G, ĝ) is a local pseudo-Riemannian isometry. Moreover,
the Levi-Civita connection ∇ projects to the Levi-Civita connection
∇̂ on Γ\G and each homogeneous pseudo-Riemannian structure S

projects to a homogeneous pseudo-Riemannian structure Ŝ on Γ\G,
where Γ is a uniform discrete subgroup of G.

5.1 The three-dimensional unimodular groups. We first recall
that for a compact orientable three-dimensional manifold M one has
H3(M,R) ≈ R. On the other hand, the compact quotients of the
three-dimensional unimodular Lie groups G were classified in [10] and
such manifolds are orientable. Thus, H3(Γ\G,R) ≈ R in all the cases,
which we now recall.
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The Abelian group R3 has vanishing Chern-Simons form, so its only
compact quotient, the 3-torus T 3, has no nontrivial corresponding
secondary class.

The compact quotients of the Heisenberg group are the S1-bundles
over the torus T 2 with Euler class m ∈ H2(T 2,Z). One has such a
bundle for each m ∈ Z.

Let Ẽ0(2) be the universal covering of the identity component
E0(2) = SO(2) � R2 of the Euclidean group E(2). The compact quo-
tients of Ẽ0(2) are the 2-torus bundles over S1, which are flat manifolds
with cyclic holonomy equal to either Z2 or Z3 or Z4 or Z6 or 1.

The compact quotients of the group E(1, 1) of rigid motions of the
Minkowski plane are torus bundles over S1 satisfying a supplementary
condition.

The group SU(2) ≈ S3 is compact. Their quotients as above are
either lens spaces when Γ is a cyclic group, one for each m ∈ Z, m > 1,
or the quotient spaces by Γ, where Γ is either the binary dihedral group,
or the binary tetrahedral group, or the binary octahedral group, or the
binary icosahedral group.

The compact quotients of the universal covering S̃L(2,R) of the Lie
group SL(2,R) are defined by a Fuchsian group Γ of the first kind
satisfying certain conditions. We have the following proposition.

Proposition 5.1. For any three-dimensional unimodular Lie group
G, the Chern-Simons form QS

3 (Gλ1,λ2,λ3 , g) in (4.3) defines the sec-
ondary class

−1
2

( ∑
λ3

i −
∑
i �=j

λiλ
2
j + 4λ1λ2λ3

)
[θ̂

1 ∧ θ̂
2 ∧ θ̂

3
],

associated to the homogeneous pseudo-Riemannian structure Ŝ induced
on any of the compact quotients (Γ\G, ĝ) by the homogeneous pseudo-
Riemannian structure S in (4.1). If G = H3, SU(2), the secondary
class is given by

−1
2

[θ̂ 1 ∧ θ̂ 2 ∧ θ̂ 3].
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For G = E(1, 1), S̃L(2,R), we have the class

−1
2

(λ3
1 − λ3

2 − λ3
3 + 4λ1λ2λ3) [θ̂ 1 ∧ θ̂ 2 ∧ θ̂ 3],

∑
λi = 0.

If G = Ẽ0(2), one has the class

−1
2

(λ1 + λ2)(λ1 − λ2)2 [θ̂ 1 ∧ θ̂ 2 ∧ θ̂ 3].

5.2 The Heisenberg group. The cohomology of the compact
quotient of the Heisenberg group H3 by a discrete subgroup Γ is known
to be [2], as a consequence of Nomizu’s theorem [9], equal to

H0(Γ\H3,R) = {[1]}, H1(Γ\H3,R) = {[α̂], [β̂]},
H2(Γ\H3,R) = {[τ̂ ∧ α̂], [τ̂ ∧ β̂]}, H3(Γ\H3,R) = {[τ̂ ∧ α̂ ∧ β̂]}.
Then we have the following proposition.

Proposition 5.2. The Chern-Simons form QSλ
3 (H3, gε) in Proposi-

tion 4.2 determines the secondary class −1/2(1/2−2λ(λ+ε))[τ̂ ∧ α̂∧ β̂]
associated to the homogeneous pseudo-Riemannian structure Ŝλ in-
duced on the compact quotient (Γ\H3, ĝε) by the homogeneous pseudo-
Riemannian structure Sλ in (4.4).

5.3 The generalized Heisenberg group H(1, 2). We can com-
pute, again as a consequence of Nomizu’s theorem, the cohomology of
the compact quotient Γ\H(1, 2) of the generalized Heisenberg group
H(1, 2) by a discrete subgroup Γ, obtaining

H0(Γ\H(1, 2),R) = 〈1〉, H1(Γ\H(1, 2),R) = 〈[τ̂ ], [α̂1], [α̂2]〉,
H2(Γ\H(1, 2),R) = 〈[η̂ ∧ τ̂ ], [η̂ ∧ α̂1 + θ̂ ∧ τ̂ ], [η̂ ∧ α̂2],

[θ̂ ∧ α̂1], [θ̂ ∧ α̂2], [τ̂ ∧ α̂1]〉,
H3(Γ\H(1, 2),R) = 〈[η̂ ∧ θ̂ ∧ α̂2], [η̂ ∧ τ̂ ∧ α̂1], [η̂ ∧ τ̂ ∧ α̂2],

[η̂ ∧ α̂1 ∧ α̂2], [θ̂ ∧ τ̂ ∧ α̂1], [θ̂ ∧ α̂1 ∧ α̂2]〉,
H4(Γ\H(1, 2),R) = 〈[η̂ ∧ θ̂ ∧ τ̂ ∧ α̂1], [η̂ ∧ θ̂ ∧ τ̂ ∧ α̂2],

[η̂ ∧ θ̂ ∧ α̂1 ∧ α̂2]〉,
H5(Γ\H(1, 2),R) = 〈[η̂ ∧ θ̂ ∧ τ̂ ∧ α̂1 ∧ α̂2]〉.
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Then we have the following proposition.

Proposition 5.3. The Chern-Simons form QS
3 (H(1, 2), gεε̄1ε̄2) in

Proposition 4.3 determines the secondary class −1/2 ε̄1 ε̄2 [θ̂ ∧ α̂1 ∧ α̂2]
associated to the homogeneous pseudo-Riemannian structure Ŝ induced
on the compact quotient (Γ\H(1, 2), ĝεε̄1ε̄2) by the homogeneous pseudo-
Riemannian structure S in (4.5).

6. Final remarks. For the class of pseudo-Riemannian homogeneity
in Proposition 5.2, we have

[QSλ
3 ](Γ\H3, ĝε) = 0, for ε = 1, λ =

±√
2−1
2

, or ε = −1, λ = −1
2
,

so that in these cases the pseudo-Riemannian compact quotient of the
Heisenberg group, endowed with that homogeneous pseudo-Riemann-
ian structure, is “more symmetric” (although they are never symmetric
in the usual sense) than the spaces corresponding to the rest of values of
λ. Consider a compact quotient Γ\H(1, 2) of the generalized Heisenberg
group. By Proposition 5.3, we have that

[QS
3 ](Γ\H(1, 2), ĝεε̄1ε̄2) �= 0, [QS

5 ](Γ\H(1, 2), ĝεε̄1ε̄2) = 0.

Hence this compact quotient, endowed with that homogeneous pseu-
do-Riemannian structure, is “more symmetric” than other pseudo-Rie-
mannian manifolds of the same dimension whose classes of pseudo-
Riemannian homogeneity are nonnull.
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