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MATRICES DEFINING
GORENSTEIN LATTICE IDEALS

HOSSEIN SABZROU AND FARHAD RAHMATI

ABSTRACT. We study a class of integer matrices that
define Gorenstein lattice ideals. We call them Gorenstein
matrices. We give a combinatorial characterization of those
which are of size (n + 1) × n and we relate them to the
Frobenius problem in integer programming theory. We also
give a necessary and sufficient condition for Gorensteinness
of generic matrices which are defined in integer programming
theory.

1. Introduction. Let S = k[x] := k[x1, . . . , xn] be a polynomial
ring over a fixed field k. A monomial xu1

1 · · ·xun
n in S is denoted by xu,

where u = (u1, . . . , un) ∈ Nn. A vector u ∈ Zn can be written uniquely
as u = u+ −u−, where u+ and u− are positive and negative parts of u,
respectively. Let B = (bij) be an integer n× d-matrix of rank d whose
columns are vectors b1, . . . , bd in Zn. For the lattice LB in Zn which
is spanned by the columns of B, the corresponding lattice ideal in S is
the binomial ideal

ILB
:= 〈xu+ − xu− | u ∈ LB〉.

The matrix B is called a defining matrix of ILB
. Such a matrix is of

course not unique, but one can see easily that it is unique up to action
of SLd(Z), that is, if B′ is a second integer n × d-matrix of rank d,
then ILB

= ILB′ if and only if for a unimodular matrix T ∈ SLd(Z),
we have B′ = BT .

The relationships between the matrix B and the lattice ideal ILB

have been studied by many authors [5, 7, 10, 15] and [16]. It is well
known that some numerical invariants and some algebraic properties
of the lattice ideal ILB

can be read off directly from the matrix B.
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For example, the codimension of ILB
is equal to rank(B) and ILB

is a
prime ideal if and only if B has content (the gcd of all d × d minors
of B) equal to 1 [7]. In general we can say that the matrix B has
property ℘ (such as primeness, radicalness and so on) over a field k, if
the lattice ideal ILB

⊂ k[x] has this property. Note that the statement
“over a field k” in this definition is crucial, since a property ℘ may or
may not depend upon k. For example, primeness is independent of k,
but radicalness depends upon k [4, Lemma 2.2]. The major motivation
of the study of matrices defining lattice ideals is that, not only a lot of
information of the lattice ideals is encoded in these matrices, but also
they may have interesting properties by themselves even when they do
not involve integrality [6].

In [7] the authors show that if the matrix B is mixed, then it is a
complete intersection if and only if there exists a unimodular d × d-
matrix T such that the transposed matrix of B′ = BT is dominating.
We recall from [7] that an r × s-matrix M is called mixed if every row
of M has both a positive and a negative entry. The matrix M is called
dominating if it does not contain a square mixed submatrix. Also in
[5] it has been shown that a mixed dominating matrix of an arbitrary
size decomposes and will have a special format.

In this paper we will study the class of Gorenstein matrices which is
more general than the class of complete intersection matrices.

In Section 3, first we show that the Cohen-Macaulay type of an integer
(n+1)×n-matrix B is equal to the number of maximal lattice point free
polytopes of fibers, Theorem 3.2. Then as a consequence we will give a
combinatorial characterization of Gorenstein matrices of size (n+1)×n
in terms of maximal lattice point free polytopes, Corollary 3.3. The
geometric significance of this class of matrices is due to affine monomial
curves. This is because these matrices define monomial curves when
they are toric (prime) matrices [20, Chapter 10]. As an application we
use this characterization to solve some special cases of the Frobenius
Problem, Problem 3.7. The Frobenius number is used to define a
symmetric semigroup which is a good criterion for establishing that
a monomial curve is Gorenstein [3, 8, 12] and [20, Chapter 10].

In Section 4, we will study Gorensteinness of a generic matrix which
is defined in integer programming theory [1]. We will show that
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Gorenstein generic matrices are precisely column matrices with some
special properties, Theorem 4.7.

2. Grading and fibers. In this section we will show that the
lattice ideal ILB

has a bigraded structure. The following Proposition
characterizes those matrices which are homogeneous with respect to a
strictly positive integer weight vector w = (w1, . . . , wn).

Proposition 2.1. Let B be an integer n × d-matrix of rank d and
LB its corresponding lattice in Zn. Then the following conditions are
equivalent:

(1) There exists a strictly positive integer vector w = (w1, . . . , wn),
such that wB = 0.

(2) LB contains no non-negative vectors, i.e., LB ∩ Nn = {0}.
(3) For every u ∈ Rn, the polyhedron Pu := {v ∈ Rd : Bv ≤ u} is a

polytope, that is, bounded.

(4) The origin is in the interior of the convex hull of the rows of B.

(5) S is a Z-graded ring with respect to deg (xi) = wi and ILB
is a

homogeneous ideal of S.

(6) ILB
⊂ 〈x1, . . . , xn〉.

Proof. (1) ⇒ (2), (1) ⇒ (5), (1) ⇔ (4) and (2) ⇔ (6) are trivial.
(2) ⇒ (1). Follows from Stiemke’s theorem [18, Corollary 7.1k].

(5) ⇒ (1). We can find a set of binomial generators {xu+
1 −

xu−
1 , . . . ,xu+

s − xu−
s } such that each binomial of it is homogeneous

with respect to the grading given by deg (xi) = wi. Thus, w ·ui = 0 for
i = 1, . . . , s. Let u ∈ LB be an arbitrary element. Then by definition
of ILB

we have xu+ − xu− ∈ ILB
. This implies that u is in the lattice

spanned by the vectors u1, . . . , us and therefore w · u = 0.

(1) ⇒ (3). By [18, Corollary 7.1b], for each u we can find a
polytope Q and a polyhedral cone C such that Pu = Q + C. Clearly
{x : Bx ≤ 0} = {0} which implies that C = {0}. Thus, Pu = Q is a
polytope.
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(3) ⇒ (2). The polyhedral cone P0 is a polytope implies that
P0 = {0}. This gives the result.

All lattices in this paper satisfy the equivalent conditions of Propo-
sition 2.1.

Now abbreviate Γ := Zn/LB. For any monomial xu ∈ S we define
deg (xu) := u+LB. Then S is graded by the Abelian group Γ and ILB

is a homogeneous ideal of S with respect to this grading. The set of all
monomials of a fixed degree C ∈ Γ is called a fiber. Equivalently, the
fibers are the congruence classes of Nn modulo LB. Thus, the set of all
fibers is Nn/LB.

Construction 2.2 (The polytope of a fiber [15] and [16]). The fiber
containing a particular monomial xu can be identified with the lattice
points in the polyhedron

Pu := {v ∈ Rd : Bv ≤ u},

via the map
Pu ∩ Zd −→ Nn −→ S

v 
−→ u − Bv 
−→ xu−Bv

Since, by Proposition 2.1, Pu is a polytope, each fiber C is a finite
set. Two polytopes Pu and Pu′ are lattice translates of each other if
u − u′ ∈ LB. Disregarding lattice equivalence we write PC := Pu for
all xu ∈ C. PC is called the polytope of fiber C.

We say that PC is a maximal lattice point free polytope if PC contains
no lattice points in its interior, but every facet of it contains at least
one lattice point in its relative interior. We set

T (B) :={PC :C∈Nn/LB, PC is a maximal lattice point free polytope}.

By the above two graded structures, one can see that the ring S
is ∗local with maximal homogeneous ideal 〈x1, . . . , xn〉 [2, Definition
1.5.13]. Thus one can consider the multi-graded minimal free resolution
of S/ILB

over S. The multi-graded Betti number βi,C of this definition
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is the k-dimension of the degree C piece of a Tor module:

βi,C = dimk TorS
i (S/ILB

, k)C ,

this counts the minimal i-syzygies of S/ILB
having degree C.

Now we will use simplicial complex to compute the Betti numbers
βi,C as follows:

Lemma 2.3 [15, 16] and [13, Theorem 9.2]. Let C be a fiber
of monomials of fixed degree C. Let ∆C be the simplicial complex
generated by the supports of all monomials in C. (In other words, ∆C is
a simplicial complex on the set {1, . . . , n} and a subset F of {1, . . . , n}
is a face of ∆C if and only if C contains a monomial xu = xu1

1 · · ·xun
n

whose supp (u) = {i : ui �= 0} contains F .) Then

βi+1,C = rank H̃i(∆C ; k)

where H̃i(∆C ; k) is the ith reduced homology group of ∆C with coeffi-
cients in k.

3. Gorenstein integer matrices of size (n + 1) × n and the
Frobenius problem. Let I be a homogeneous ideal in S. Then
the k-algebra S/I is Artinian if dimk(S/I) is finite. The graded
Artinian k-algebra S/I is Gorenstein if dimk Soc(S/I) = 1, where
Soc (S/I) = {f̄ ∈ S/I : f̄ · 〈x1, . . . , xn〉 = 0}. In general, the k-algebra
R := S/I is said to be Gorenstein if R/xR is Gorenstein for some
homogeneous nonzero divisor x ∈ R. If R is not Artinian, then by
finite iteration of the division operation we give an Artinian ring. The
number of necessary divisions is the dimension of S/I. The ideal I is
called Gorenstein if S/I is a Gorenstein ring [20, Section 1.3].

Lemma 3.1 [9, Theorem 3.5, Proposition 3.11] and [20, Corollary
4.3.5]. (1) Let I ⊆ S be a homogeneous ideal of codimension l. Then
S/I is Cohen-Macaulay if and only if the graded minimal free resolution
of S/I over S has length l.

(2) S/I is Gorenstein if and only if S/I is Cohen-Macaulay and the
last Betti number in the graded minimal free resolution of S/I over S
is equal to 1.
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Theorem 3.2. Let B = (bij) be an integer (n+1)×n-matrix of rank
n. Then B is a Cohen-Macaulay matrix if and only if #T (B) ≥ 1. If B
is a Cohen-Macaulay matrix, then the Cohen-Maculay type of B, i.e.,
the last Betti number in the graded minimal free resolution of S/ILB

over S, is equal to #T (B).

Proof. Since ∆C has at most n + 1 vertices, it has no reduced
homology if it has an n-dimensional face. (This is because if it has an
n-dimensional face, it is a full simplex and therefore it is contractible.)
This fact implies that H̃i(∆C ; k)=0 for all i≥n. Since rank (LB)=n
and βi+1,C = rank H̃i(∆C ; k) by Lemma 2.3, we conclude that βi,C = 0
for all i > rank (LB).

We also note that if C is a fiber such that PC ∈ T (B), then ∆C

is the boundary of a n-simplex and therefore it is homologous to the
(n− 1)-sphere. Consequently, βi,C = 1 if i = rank (LB) and βi,C = 0 if
i �= rank (LB).

The above discussion together with Lemma 3.1 shows that if #T (B) ≥
1, then B is a Cohen-Macaulay matrix.

Now suppose that B is a Cohen-Macaulay matrix. Then by Lemma
3.1, S/ILB

has a graded minimal free resolution over S with length
rank (LB) = codim (ILB

). We claim that the last term of this resolution
is equal to ⊕PC∈T (B)S(−C). Suppose C is a fiber such that S(−C)βn,C

is a direct summand of the last term of the resolution. Since ∆C is
a simplicial complex on the vertex set {1, . . . , n + 1}, we must have
βn,C = 1. Also the minimality of the resolution implies that βi,C = 0
for all i �= n. Thus ∆C is homologous to the (n−1)-sphere and therefore
it is the boundary of a n-simplex. So, by the definition of PC we have
PC ∈ T (B).

The above proof also shows that the Cohen-Macaulay type of a
Cohen-Macaulay matrix B is equal to #T (B).

Corollary 3.3. Let B be an integer (n+1)×n-matrix of rank n. Then
B is Gorenstein if and only if there exists a unique fiber C ∈ Nn+1/LB

such that PC is a maximal lattice point free polytope.

Proof. Follows immediately from Lemma 3.1 and Theorem 3.2.
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Example 3.4. If B =
(

2 −1

2 3

−4 −2

)
, then B is not Gorenstein because

the two polytopes P(2,3,0) and P(3,2,0) are maximal lattice point free
polytopes which are not lattice translates of each other.

Remark 3.5. If B is an integer n × 2-matrix of rank 2, then Peeva
and Sturmfels [16] proved that, for the matrix B, being complete
intersection is equivalent to being Gorenstein, and they also show that
in this case B must be imbalanced (up to the action of SL2(Z)), i.e.,
bi1 = 0 or bi2 ≤ 0. Using this observation one can see that, up to a
permutation of the rows and columns, a Gorenstein 3× 2-matrix must

be of the form B =
(

0 b12
b21 b22
b31 b32

)
, where b21b31 < 0, b12 > 0, b22 and b32

are not positive and at least one of them is not zero. Lemma 3.6 below
gives the unique fiber C ∈ N3/LB in Corollary 3.3 such that PC is a
maximal lattice point free polytope.

Lemma 3.6. Let B be a complete intersection (n + 1) × n-matrix
such that the transposed matrix of B is a mixed dominating matrix. Let
b1, . . . , bn be the columns of B. Then the unique fiber C in Corollary 3.3
is the fiber containing the monomial xb+1 +···+b+n .

Proof. If the hypothesis that the transposed of B is mixed dominating
does not hold, then one can multiply matrix B by a unimodular matrix
until it holds. Since B is complete intersection, it is Gorenstein and by
Corollary 3.3 there exists a unique fiber C ∈ Nn+1/LB such that PC

is a maximal lattice point free polytope. By the proof of Theorem 3.2,
the fiber C is one which appears in the last term of the minimal free
resolution of S/ILB

over S. Since B is complete intersection we can
find the fiber C using the Koszul complex K of S with respect to the
binomials xb+1 −xb−1 , . . . ,xb+n −xb−n . For each i = 1, . . . , n, suppose fui

denotes xb+
i −xb−

i and ei denotes the element (0, . . . , 0, 1, 0, . . . , 0) ∈ Sn

which has ith component 1 and all its other components 0. Then K
has the form

0 −→
n∧

Sn −→ · · · −→
k∧

Sn ∂k−→
k−1∧

Sn −→ · · · −→
0∧

Sn −→ 0,
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where ∂k is defined by

∂k(ei(1) ∧ · · · ∧ ei(k)) =
k∑

h=1

(−1)n−1fui(h)ei(1) ∧ · · · ∧ êi(h) ∧ · · · ei(k),

where the êi(h) indicates that ei(h) is omitted. If we assign to ei the
degree b+

i +LB, then K will become the graded minimal free resolution
of S/ILB

over S. Since deg (e1 ∧ · · · ∧ en) = b+
1 + · · ·+ b+

n +LB, we get
the result.

Next we want to relate Gorenstein (n + 1) × n-matrices to the
Frobenius problem in integer programming theory.

Problem 3.7 (Frobenius problem). Let w = (w1, . . . , wn) be a
strictly positive integer vector whose greatest common divisor is unity.
The problem is to find the largest integer f∗ which cannot be written
as a non-negative integer combination of wi.

Theorem 3.8 (Scarf and Shallcross [17]). Let w = (w1, . . . , wn+1)
be as in Problem 3.7. Let B be an integer (n + 1) × n-matrix whose
columns generate the lattice kerZ(w) := {x ∈ Zn+1 : w · x = 0}. Then

f∗ = max{w · u : Puis a maximal lattice point free polytope} −
n+1∑
i=1

wi.

Corollary 3.9. With the notation as in Theorem 3.8, let B be a
Gorenstein matrix. Then

f∗ = w · u −
n+1∑
i=1

wi,

where u is a vector such that the fiber containing xu yields the unique
maximal lattice point free polytope PC in Corollary 3.3. Consequently,
if B is a complete intersection matrix such that its transposed matrix
is mixed dominating, then

f∗ = w · (b+
1 + · · · + b+

n ) −
n+1∑
i=1

wi,

where, b1, . . . , bn are the columns of B.
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Proof. Let u ∈ Zn+1 be such that Pu is a maximal lattice point free
polytope and gives the maximum value of w · u. We choose a lattice
point v0 of Pu and we consider the polytope Pu − v0 = Pu′ where
u′ = u−Bv0 is a non-negative integer vector. Thus Pu′ is equal to the
maximal lattice point free polytope PC where C is the fiber containing
the monomial xu′

. By Corollary 3.3, the fiber C is unique and since
lattice translation does not change the value of w · u, we get the first
result.

The second part of the corollary follows from the first part and
Lemma 3.6.

Example 3.10. Let w = (w1, w2) be a strictly positive integer vector
with gcd(w1, w2) = 1. Then it is easy to see that the column of matrix
B =

(−w2

w1

)
, generates kerZ(w) ⊂ Z2. Since B is complete intersection

by Corollary 3.9, we have

f∗ = (w1 w2 )
(

0
w1

)
− w1 − w2 = w1w2 − w1 − w2.

Remark 3.11. Let w1, . . . , wn+1 be an arithmetical sequence whose
common difference is d ≥ 1, and assume that (1) w1 = qn + r, where
r, q ∈ N and 2 ≤ r ≤ n + 1 �= 2 and (2) gcd(w1, d) = 1. Then one can
use Example 3.10 to show that f∗ = (q+d)w1−d [20, Lemma 10.2.12].

Example 3.12. Let w = (w1, w2, w3) be a strictly positive integer
vector with gcd(w1, w2, w3) = 1. If w2 divides w3 then f∗ = w1w2 −
w1 − w2. For the proof, we note that the columns of the matrix

B =

⎛⎝−w2 0
w1 −w3/w2

0 1

⎞⎠
generate the lattice kerZ(w). Clearly B is a complete intersection
matrix satisfying the conditions of Corollary 3.9. Thus,

f∗ = (w1 w2 w3 )

⎛⎝ 0
w1

1

⎞⎠− w1 − w2 − w3 = w1w2 − w1 − w2.
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4. Gorenstein generic matrices. In this section we want to
show when a generic matrix will be Gorenstein. First we recall some
definitions from [1].

Let B = (bij) be an integer n×d-matrix with n > d and rank (B) = d.
Then a lattice point u ∈ Zd, u �= 0, is a neighbor of the origin, if the
body

〈0, u〉 := {v ∈ Rd : Bv ≤ (Bu)+}

contains no lattice points in its interior. The set of all neighbors of the
origin is denoted by N(B).

Example 4.1. Let B = (b1, . . . , bn)t be an n × 1-matrix. Let
w = (w1, . . . , wn) be a strictly positive vector such that wB = 0.
Then it is easy to see that for every u ∈ Z, u �= 0, we have 〈0, u〉 is
equal to [0, u] if u > 0 and 〈0, u〉 is equal to [u, 0] if u < 0, where
[−,−] denotes a closed interval in the real line R. Thus, clearly we
have N(B) = {−1, 1}.

Definition 4.2. Let B = (bij) be an integer n×d-matrix, with n > d
and rank (B) = d. Then B is generic if the following conditions hold:

(1) B is homogeneous with respect to a strictly positive weight vector
w.

(2) For every non-negative vector v, vB = 0 implies #supp (v) ≥ d+1.

(3) For every u ∈ N(B), #supp (Bu) = n.

Example 4.3 (continued from Example 4.1). If the entries of the
n × 1-matrix B are all nonzero, then clearly B is generic.

The term ‘generic’ is justified by the following theorem in integer
programming theory.

Theorem 4.4 (Bárány and Scarf [1]). (1) Generic matrices form a
dense set in the collection of all matrices satisfying conditions (1) and
(2) in Definition 4.2.
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(2) Let B be a generic matrix and B′ a matrix satisfying

Sign-Pattern(Bu) = Sign-Pattern(B′u)

for every u ∈ N(B). Then B′ is also generic.

Following Peeva and Sturmfels [15] we call a lattice ideal generic if
it is generated by binomials with full support. The following theorem
shows why a generic lattice ideal is called generic.

Theorem 4.5 (Peeva and Sturmfels [15]). Let B = (bij) be a
generic n × d-matrix. A vector u ∈ Zd is in N(B) if and only if
{x(Bu)+ ,x(Bu)−} is a 2-element fiber. In this case x(Bu)+ − x(Bu)− is
a minimal generator of ILB

. Consequently, ILB
has a unique minimal

system of Γ-homogeneous binomial generators, which correspond to the
elements in N(B).

Example 4.6. Let B =

( 4 −2 −1

−1 4 −1

−1 −1 3

−1 −1 −1

)
. Then B is homogeneous with

respect to the weight vector w = (20, 24, 25, 31), and

N(B) = ±
⎧⎨⎩
⎛⎝ 1

0
0

⎞⎠ ,

⎛⎝ 0
1
0

⎞⎠ ,

⎛⎝ 0
0
1

⎞⎠ ,

⎛⎝ 1
1
0

⎞⎠ ,

⎛⎝ 1
0
1

⎞⎠ ,

⎛⎝ 0
1
1

⎞⎠ ,

⎛⎝ 1
1
1

⎞⎠⎫⎬⎭ .

We have that B is a generic matrix and, by Theorem 4.5, the
unique minimal set of Γ-homogeneous binomial generators of ILB

⊂
k[x1, x2, x3, x4] is equal to {x4

1−x2x3x4, x
3
1x

2
3−x2

2x
2
4, x

2
1x

3
2−x2

3x
2
4, x1x

2
2x3

−x3
4, x

4
2−x2

1x3x4, x
3
2x

2
3−x3

1x
2
4, x

3
3−x1x2x4}. A description of neighbors

of the origin for four by three matrices can be found in [19] and [1].

Theorem 4.7. Let B be a generic matrix. Then B is a Gorenstein
matrix if and only if B is a column matrix.

Proof. First we assume that B = (b1, . . . , bn)t is an n×1-matrix. Set
b := (b1, . . . , bn). Then the lattice LB is generated by the vector b and
it is easy to see that ILB

= 〈xb+ −xb−〉. Since ILB
is generated by one
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element and the codimension of ILB
is equal to rank (LB) = 1, ILB

is
complete intersection and therefore it is Gorenstein.

Conversely, suppose B is a Gorenstein matrix. By Theorem 4.5, we
may assume that {m1−xnm′

1, . . . , mr−xnm′
r} is a unique minimal set

of Γ-homogeneous binomial generators of ILB
where each monomial mi

is not divisible by xn and each binomial mi−xnm′
i contains all variables.

Suppose w = (w1, . . . , wn) is a strictly positive integer vector such that
wB = 0. Then, by Proposition 2.1, ILB

is homogeneous with respect to
deg (xi) = wi. We fix a degree reverse lexicographic term order ≺ of the
monomial relative to this grading on S, that is, xp1

1 · · ·xpn
n ≺ xq1

1 · · ·xqn
n

if either
∑n

i=1 piwi <
∑n

i=1 qiwi or
∑n

i=1 piwi =
∑n

i=1 qiwi and the last
nonzero coordinate of (p1−q1, . . . , pn−qn) is positive. We denote by M
the initial ideal of ILB

with respect to the fixed term order ≺. Then by
[16, Lemma 8.4] {m1, . . . , mr} is the set of minimal generators of M .
Since by [11, Corollary 2.9] codim (ILB

) = codim (M), this implies that
ILB

is a complete intersection if and only if M is complete intersection.

Again the genericity of ILB
implies that M is a generic monomial

ideal, by [14, Theorem 3.1]. Thus, by [14, Theorem 1.5] the minimal
free resolution of S/M is the monomial Scarf complex FM . Also by [15,
Theorem 4.2] the minimal free resolution of S/ILB

is the algebraic Scarf
complex FLB

. Since by [15, Corollary 5.5] these two complexes differ
only in their differential and recover each other, Lemma 3.1 implies that
ILB

is Gorenstein if and only if M is Gorenstein. Since the minimal
free resolution of S/M is of F∆-type, by [21, Corollary 2.11] we have
M is Gorenstein if and only if M is complete intersection. Thus, for
the generic lattice ideal ILB

being Gorenstein is equivalent to being
complete intersection.

Now suppose B is a complete intersection matrix and suppose the
contrary that d ≥ 2. Then there exists a unimodular matrix T ∈
SLd(Z) such that the transposed matrix of the matrix BT = B′ is
mixed dominating. Therefore by [5, Theorem 2.2] the matrix B′, after
rearranging the rows and columns if it is necessary, must be of the form

B′ =
(

M 0 m
0 N n

)
,

where M, N, m and n are matrices with properties described in [5,
Theorem 2.2]. Since the generators of ILB

= ILB′ are determined by
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columns of B′ (because ILB
is a complete intersection) this contradicts

the genericity of ILB
because, by Theorem 4.5, a generic lattice ideal

has a unique minimal set of Γ-homogeneous binomial generators in
which each binomial is with full support. Thus d must be equal to 1.

Acknowledgments. We are grateful to Margaret Bayer and the
referee for pointing out many typographical and English errors.
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