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ON CONVEX UNIVALENT FUNCTIONS WITH
CONVEX UNIVALENT DERIVATIVES

STEPHAN RUSCHEWEYH AND LUIS SALINAS

ABSTRACT. We study the functions

(∗)

∞∑
k=0

ak
(1 + z)k

k!
, a0 ≥ a1 ≥ · · · ≥ 0,

and show that they are either constant or convex univalent in
the unit disk D. Note that this set of functions is invariant
under differentiation. Our result generalizes a previous one
of Suffridge, and we verify a number of general conjectures
of Suffridge and Shah & Trimble concerning functions with
convex univalent derivatives for our particular cases. We also
pose and discuss the conjecture that the functions (∗), under
the further restriction that a1 = a2, actually belong to the
much smaller class DCP , whose members preserve direction-
convexity of univalent functions in D, under the Hadamard
product.

1. Introduction. This work was inspired by T.J. Suffridge’s paper
[12] where he studies the partial sums

(1.1) Qn(z) =
n∑
k=0

(1 + z)k

k!
, z ∈ C , n ∈ N ,

of the series e1+z =
∑∞
k=0(1 + z)k/k!. His main result was that the

Qn are convex univalent in the unit disk D. Note that Q′
n = Qn−1 so

that all derivatives of Qn are as well convex univalent or constants. He
conjectured that the normalized functions

(1.2) Cn(z) :=
Qn(z) −Qn(0)

Q′
n(0)

=
n∑
k=1

(∑n−k
l=0 1/l!∑n−1
l=0 1/l!

)
zk

k!
, n ∈ N ,

2000 AMS Mathematics Subject Classification. Primary 26D07, 26D15, 33B15.
Received by the editors on March 20, 2000, and in revised form on June 1, 2000.
The authors have received partial support from FONDECYT, grants 1980015/

798001. The second author also received support from UTFSM, grant 971222.

Copyright c©2005 Rocky Mountain Mathematics Consortium

1017



1018 S. RUSCHEWEYH AND L. SALINAS

are in some sense extremal within the set of functions Fn with the
corresponding property.

To be precise, let A denote the set of analytic functions in the unit
disc D, and let A0 stand for the set of functions f ∈ A satisfying
f(0) = 0, f ′(0) = 1. Furthermore, let

K̃ := {f ∈ A : f ≡ const. or f convex univalent in D} ,
Kn :=

{
f ∈ A0 : f (k) ∈ K̃, k = 0, 1, . . . , n

}
, n = 0, 1, . . . ,

and Fn := Kn ∩ Pn, where Pn are the complex polynomials of degree
≤ n. We shall also use

K∞ =
∞⋂
n=1

Kn.

The study of univalent functions with univalent derivatives has a long
tradition, see for instance [4 12].

Conjecture 1 (Suffridge [12]). For f ∈ Fn we have

|f (k)(0)| ≤ C(k)
n (0), k = 1, . . . , n,

with equality only for f = Cn, or one of its ‘rotations.’

For n = 2, 3, 4 this has been established in [12].

For K∞ there exists an older conjecture by Shah and Trimble (note
that limn→∞ Cn(z) = ez − 1 ∈ K∞):

Conjecture 2. For f ∈ K∞ we have

(1.3)
∣∣∣f (k)(0)

∣∣∣ ≤ 1, k ∈ N,

and

(1.4) 1 − e−|z| ≤ |f(z)| ≤ e|z| − 1, z ∈ D.

We set Wn := co {C1, . . . , Cn}, n ∈ N, and W∞ := co {Cn : n ∈ N},
where co stands for the closed convex hull of set (in the topology of
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compact convergence in D). Our first aim is to establish the following
result.

Theorem 1. W∞ ⊂ K∞ and Wn ⊂ Kn for n ∈ N. Moreover,
Conjectures 1 and 2 hold for Wn and W∞, respectively. In addition,
for f ∈ W∞, we find

(1.5) e−|z| ≤ |f ′(z)| ≤ e|z|, z ∈ D.

Note that this theorem implies in particular that all functions of the
form ∞∑

k=0

ak
k!

(1 + z)k, a0 ≥ a1 ≥ · · · ≥ 0,

are convex univalent in D. In fact, we believe that most of these func-
tions enjoy a much stronger property. We briefly recall the definition
of the class DCP , compare [2]. A domain Ω ⊂ C is said to be convex
in the direction eiφ, φ ∈ R, if and only if for every a ∈ C the set

Ω ∩ {a+ teiφ : t ∈ R
}

is either connected or empty. Accordingly, the classes K(φ), φ ∈ R, of
functions convex in the direction eiφ are defined as

{
f ∈ A : f is univalent and f(D) is convex in the direction eiφ

}
.

We say that a function g ∈ A is Direction-Convexity-Preserving,
g ∈ DCP , if and only if g ∗ f ∈ K(φ) for all f ∈ K(φ) and all
φ ∈ R. Here ∗ stands for the Hadamard product of analytic functions.
Functions in DCP have many other intriguing properties in the context
of convex harmonic functions and Jordan curves in the plane with
convex interior domain. We refer to [2, 3] for more details.

Conjecture 3. For 0 �= a1 = a2 ≥ a3 ≥ · · · ≥ 0 we have

(1.6)
∞∑
k=1

ak
k!

(1 + z)k ∈ DCP.
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It is well known that each f ∈ DCP is convex univalent in D.
Therefore Conjecture 3, where it applies, is stronger than the first
part of Theorem 1, which just says that the functions (1.6) are convex
univalent in D.

The restriction a1 = a2 in the statement of Conjecture 3 cannot just
be dropped, as it is readily verified that, for instance,

(1.7) 2
1 + z

1!
+

(1 + z)2

2!
+

(1 + z)3

3!
/∈ DCP.

Of course, there may exist weaker restrictions which do the same.

We can prove Conjecture 3 for polynomials of the form (1.6) of degree
≤ 10 using computer algebra and numerical polynomial solvers on real
algebraic polynomials of degree < 20. It is likely that one can go up
to much higher degrees with more computational efforts. This does
not seem to be a useful project if there is no very specific reason.
Instead, we show that the conjecture can be reduced to a set of real
inequalities which should be established theoretically. We shall discuss
this in Section 3.

A weaker form of Conjecture 3 was already mentioned in [1], and the
special case of (1.6) where ak = 1, k ∈ N, has first been established by
Kurth (unpublished):

Theorem 2. e1+z ∈ DCP .

We give an independent short proof of Theorem 2 in Section 3.

2. Proof of Theorem 1. It is easily established that f ∈ W∞ if
and only if

f(z) = λ (ez − 1) +
∞∑
k=1

λkCk(z)

(
λ, λk ≥ 0,

∞∑
k=1

λk = 1 − λ
)
,

and thus

(2.1) f(z) =
∞∑
k=1

ak
(1 + z)k − 1

k!
,
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where

(2.2) ak =
λ

e
+

∞∑
j=k

λj∑j
m=1(1/(m− 1)!)

, k ∈ N.

This shows that indeed f ∈ W∞ if and only if there is a sequence

(2.3) a1 ≥ a2 ≥ · · · ≥ 0, with f ′(0) =
∞∑
k=1

ak
(k − 1)!

= 1,

such that (2.1) holds. The set K := K̃ ∩ A0 is known to be compact.
Therefore it will be sufficient to prove the convexity of such f ∈ W∞
for which, in the representation (2.1), only finitely many of the ak are
nonvanishing. After dropping the unimportant normalization we are
left with the proof of

Lemma 1. For some n ∈ N let 1 = a1 ≥ a2 ≥ · · · ≥ an ≥ 0. Then
the function

(2.4) P (z) :=
n∑
k=1

ak
(1 + z)k

k!

is convex univalent in D.

Proof. We need to show that

(2.5) γP (z) := Re
[
1 +

zP ′′(z)
P ′(z)

]
≥ 0, z ∈ D.

We have

(2.6) P ′(z) =
n−1∑
k=0

ak+1
(1 + z)k

k!
=
n−1∑
j=0

λjQj(z),

where the polynomials Qj are as in (1.1), and λj ≥ 0,
∑n−1

j=0 λj = 1.
Since the Qj are known to be convex univalent [12] and have positive
coefficients, it is clear that ReQj(z) ≥ Qj(−1) = 1, z ∈ D. Then
(2.6) implies that ReP ′(z) ≥ 1 in D as well. Furthermore, the Qj
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are typically real and so is P ′. Therefore there exists w ∈ A with
|w(z)| ≤ 1, z ∈ D, and typically real such that

(2.7) P ′(z) =
2

1 − w(z)
.

Using an+1 := 0 and

|1 + z|k
k!

≤ |1 + z|22k−2

k!
≤ Re (1 + z), k ≥ 2, z ∈ D,

we get, for n ≥ 3,

Re
[

z

P ′(z)

n−1∑
k=2

(ak+1 − ak+2)
(1 + z)k

k!

]

≥ −
n−1∑
k=2

(ak+1 − ak+2)
|1 + z|k
k!

≥ −a3Re (1 + z).

Note that this holds also for n < 3, with all terms = 0. In what
follows we observe that a2 = a3 = 0 for n = 1 and a3 = 0 for n = 2.
Calculation gives for n ∈ N:

γP (z) = Re

[
1 + z +

z

P ′(z)

n−1∑
k=0

(ak+2 − ak+1)
(1 + z)k

k!

]

≥ Re
[
(1 + z)(1 − a3) +

z

P ′(z)
{a2 − a1 + (1 + z)(a3 − a2)}

]

If a3 = 1, then a2 = 1 as well, and we are already done: γP (z) ≥ 0.
Otherwise we write λ := (a2−a3)/(1−a3) and it remains to show that

(2.8) Re
[
1 + z − z

1 − w(z)
2

(1 + λz)
]
≥ 0, λ ∈ [0, 1], z ∈ D.

The minimum of this expression will be attained on ∂D. Furthermore,
for symmetry reasons, we need to study z = eiφ, 0 ≤ φ ≤ π, only. Since
w is typically real we have for those φ: w(z) = ρeiψ with 0 ≤ ρ ≤ 1,
0 ≤ ψ ≤ π. Because of linearity we have to establish (2.8) only for the
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extremal cases λ = 0, 1. For λ = 0 however, (2.8) is obvious. In the
other case we are left with (τ := φ/2):

(2.9) cos(τ ) − 1
2

cos(3τ ) +
1
2
ρ cos(3τ + ψ) ≥ 0,

for 0 ≤ τ ≤ π/2, 0 ≤ ψ ≤ π, 0 ≤ ρ ≤ 1.

Since cos(τ ) − cos(3τ )/2 ≥ 0 in our range of τ it is clear that
(2.9) holds whenever cos(3τ + ψ) ≥ 0. In the other cases, 3τ + ψ ∈
(π/2, 3π/2), the choice ρ = 1 is always the worst choice, which we
assume from now on. For 3τ ≥ π we have cos(3τ + ψ) ≥ cos(3τ )
which then implies (2.9). If, however, 3τ ≤ π we have to show that
cos(τ )−cos(3τ )/2 ≥ 1/2, which is a rather simple affair. This completes
the proof of Lemma 1.

We have shown that W∞ ⊂ K. Since W∞ is invariant under
differentiation (modulo renormalization), as can be seen from (2.1),
it is clearly a subset of K∞ as well. The first part of Theorem 1 is
therefore established (the statements concerning Wn follow from the
one for W∞).

We turn to the estimates. Conjecture 1, with n fixed, holds for the
polynomials Cj , j ≤ n, and therefore also for the members of Wn. The
same argument takes care of the coefficient estimate in Conjecture 2.
Standard arguments concerning the ‘integration’ of lower and upper
estimates for univalent functions show that (1.5) implies the distortion
part in Conjecture 2 as far as W∞ is concerned. We thus turn to the
proof of (1.5) and use f ∈ W∞ in the representation (2.1). Then either
f ′ ≡ 1, and nothing has to be proved, or f ′ is convex univalent with
non-negative coefficients. Hence, 0 < f ′(−|z|) ≤ |f ′(z)| ≤ f ′(|z|) in D.
Using the normalization in (2.3) we conclude that we need to establish

∞∑
k=1

ak
(k − 1)!

(
(1 − r)k−1 − e−r

) ≥ 0,(2.10)

∞∑
k=1

ak
(k − 1)!

(
(1 + r)k−1 − er

) ≤ 0,(2.11)

for 0 ≤ r ≤ 1. Of course, we can now remove the normalization in (2.3)
when dealing with (2.10) and (2.11), only keeping the nonnegativity
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and monotoneity of the ak. It is readily seen that

(1 − r)k−1 − e−r ≤ 0, k ≥ 2,

so that the sum in (2.10) will be as small as possible, with a1 > 0 fixed,
if all ak, k ≥ 2, are as large as possible, i.e., ak = a1 for all k. Then,
however, the sum on the left of (2.10) is ≡ 0. This proves (2.10). A
similar argument establishes (2.11).

3. Proof of Theorem 2 and comments on Conjecture 3. The
following criterion for membership in DCP is [2, Theorem 4].

Lemma 2. Let g be nonconstant and analytic in D, continuous in
D, and such that u(x) := Re g(eix), x ∈ R, is three times continuously
differentiable. Then g ∈ DCP if and only if g is convex univalent and

σu(x) := u′(x)u′′′(x) − (u′′(x))2 ≤ 0, x ∈ R.

Proof of Theorem 2. In view of Lemma 2 we have to study

u(x) := Re exp(eix) = ecos(x) cos(sin(x)).

ez is convex univalent and u is obviously smooth enough for the lemma
to apply. A little calculation yields

σu(x) = −1
2
e2 cos(x)f(x),

where

f(x) := 3 + 5 cos(x) + cos(2x) − cos(3x+ 2 sin(x)).

For reasons of symmetry we need to prove f(x) ≥ 0 for 0 ≤ x ≤ π only.

First note that 3 + 5 cos(x) + cos(2x) = 2 + 5 cos(x) + 2 cos2(x) ≥ 1
holds for 0 ≤ x ≤ x0 = arccos((−5 +

√
17)/4) = 1.79181 . . . . Hence it

remains to establish

f(π − x) = 3 − 5 cos(x) + cos(2x) + cos(3x− 2 sin(x)) ≥ 0,
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for 0 ≤ x ≤ π − x0 < 1.35. Since

x− sin(x) ≤ x3

6
, x+

x3

3
≤ π,

hold for 0 ≤ x ≤ π/2, we can reduce the problem to

(3.1) 3 − 5 cos(x) + cos(2x) + cos
(
x+

x3

3

)
≥ 0, 0 ≤ x ≤ 1.35.

Using the series expansion of the cosine about the origin we find
c1(x) ≤ cos(x) ≤ c2(x), 0 ≤ x ≤ π, where

c1(x) = 1 − x2

2
+
x4

24
− x4

720
, c2(x) = c1(x) +

x8

40320
.

It thus suffices to establish the nonnegativity of

h(x) := 3 − 5 c2(x) + c1(2x) + c1

(
x+

x3

3

)
,

and to this end we write

g(x) :=
1
x4

(
h(x) − 1003x8

40320
− 5x10

1296

)

=
1
6
− x2

12
− x8

1944
− x10

3888
− x12

29160
− x14

524880
.

But then, for 0 ≤ x ≤ 1.35,

h(x)
x4

≥ g(x) ≥ g(1.35) = 0.00256 . . . > 0,

and this settles our assertion.

In view of Theorem 1 and Lemma 2 it will be sufficient for a proof of
Conjecture 3 to show that σu ≤ 0 for

u(x) :=
∞∑
k=2

λkuk(x),
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where

uk(x) := Re
k∑
j=1

(1 + eix)j

j!
, k = 2, 3, . . . ,

λk ≥ 0,
∞∑
k=2

λk = 1.

This is equivalent to

∞∑
j,k=2

λjλkuj,k(x) ≥ 0, x ∈ R,

with

uj,k(x) = u′′j (x)u
′′
k(x) −

1
2
(u′j(x)u

′′′
k (x) + u′k(x)u

′′′
j (x)).

We conjecture that

(3.2) uj,k(x) ≥ 0, j, k ≥ 2, x ∈ R,

and this will obviously imply Conjecture 3. Using computer algebra
and a numerical polynomial solver (we used the software package
Mathematica 4.0) it is easy to verify (3.2) for small values of j, k. We
did so for 2 ≤ j, k ≤ 10, and found no counterexample to (3.2). Note,
however, that u1,3(x) assumes negative values, which also leads to the
counterexample (1.7) mentioned in the introduction.
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