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FORCING LINEARITY NUMBERS FOR
FINITELY GENERATED MODULES

C.J. MAXSON AND A.B. VAN DER MERWE

ABSTRACT. Forcing linearity numbers for finitely gener-
ated free modules over fields, integral domains and local rings
have previously been determined. In this paper we find the
forcing linearity numbers for finitely generated modules over
commutative Noetherian rings.

1. Introduction and basic results. Throughout this paper R
will be a commutative Noetherian ring with identity and V a finitely
generated (fg) nonzero unital R-module. The set MR(V ) := {f : V →
V | f(rv) = rf(v), r ∈ R, v ∈ V } is the collection of homogeneous
functions determined by the R-module V . This set is a nearring under
point-wise addition and composition of functions. We say a collection
S = {Wα}α∈A of proper, nonzero submodules Wα of V forces linearity
on V if whenever f ∈ MR(V ) and f ∈ HomR(Wα, V ) for each α ∈ A
then f ∈ EndR(V ). The following definition is taken from [4].

Definition A. To each nonzero R-module V we assign a number
fln (V ) ∈ N ∪ {0} ∪ {∞} called the forcing linearity number of V as
follows:

(i) If MR(V ) = EndR(V ), then fln (V ) = 0.

(ii) If MR(V ) �= EndR(V ) and there is some finite collection S of
proper submodules of V which forces linearity with, say, |S| = s but no
collection T of proper submodules of V with |T | < s forces linearity,
then we say fln (V ) = s.

(iii) If neither of the above conditions hold we say fln (V ) = ∞.

The number fln (V ) measures how far the nearring MR(V ) is from
being the endomorphism ring. The following results were obtained in
[4]. We include them for the sake of reference and completeness.
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Theorem B. Let R be an integral domain, not a field. Then
fln (Rm) = 0 if and only if m = 1. Otherwise fln (V ) = 1.

Theorem C. Let R be a field and V a vector space over R.

(i) fln (V ) = 0 if and only if dimR(V ) = 1.

(ii) If |R| = ∞ and dimR(V ) > 1, then fln (V ) = ∞.

(iii) If |R| < ∞ and dimR(V ) = 2, then fln (V ) = ∞.

(iv) If |R| = q < ∞ and 2 < dimR(V ), then fln (V ) = q + 2.

Theorem D. Let R be a local ring, not a field, not an integral
domain, with unique maximal ideal J , and let V = Rm, m ∈ N.

(i) fln (V ) = 0 if and only if m = 1.

(ii) If AnnR(J) = {0} and m ≥ 2, then fln (V ) = 1.

We now take AnnR(J) �= {0} and m ≥ 2.

(iii) If |R/J | = ∞, then fln (V ) = ∞.

(iv) If |R/J | < ∞ and m = 2, then fln (V ) = ∞.

(v) If |R/J | = q < ∞ and m ≥ 3, then fln (V ) = q + 2.

In this paper we determine the fln for fg modules over arbitrary
commutative Noetherian rings. As an application we complete the
above determination of forcing linearity numbers for all fg free modules
over commutative Noetherian rings.

2. Forcing linearity numbers for finitely generated modules.
In this section we consider finitely generated (fg) modules over com-
mutative Noetherian rings. The section is divided into two parts. We
first consider rings that are not local and then restrict to local rings.
Throughout this section all rings are commutative and Noetherian. We
start with a general result.

Theorem 2.1. Let V be an fg faithful R-module. If R has at least
two maximal ideals, then fln (V ) ≤ 2.
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Proof. Let I1 �= {0} �= I2 be proper ideals of R such that I1 +I2 = R.
We know I1V �= {0} �= I2V . Since V is faithful we have I1V �= V �=
I2V from [3, Theorem 76]. Thus I1V and I2V are proper nonzero
submodules of V . We show that {I1V, I2V } forces linearity. To this
end, let u, v ∈ V and f ∈ MR(V ) be such that f is linear on I1V and
I2V . If w := f(u + v) − f(u) − f(v), then I1w = {0} and I2w = {0}.
Hence, Rw = (I1 + I2)w = {0} so w = 0 and f is linear on V .

Following Kaplansky [3], we define Z(V ) = {r ∈ R | rw = 0 for some
nonzero w ∈ V } for any R-module V and as usual we let U(R) denote
the group of units in R. Several of our results will depend on whether
Z(V ) = R − U(R) or not.

Theorem 2.2. If V is an fg R-module, then Z(V ) � R − U(R) if
and only if there exists a nonzero ideal I of R with AnnV (I) := {v ∈
V | Iv = {0}} = {0}.

Proof. If Z(V ) � R−U(R), then there exists d ∈ R−U(R) such that
dv �= 0 for each nonzero v ∈ V . Thus AnnV (Rd) = {0}. Conversely if
Z(V ) = R−U(R) and I is any nonzero ideal of R, then since I ⊆ Z(V )
we have from Kaplansky, [3, Theorem 82], that there exists a nonzero
u ∈ V such that Iu = {0}, i.e., AnnV (I) �= {0}.

We turn our attention to determining when fln (V ) = 0. Recall
that, for any R-module V , Ass (V ) = {P |P is a prime ideal of R and
P = (0 : w) for some nonzero w ∈ V }. The collection of maximal
elements in Ass (V ) is denoted by Max-Ass (V ). The following result
also appeared in [7], but here we provide a proof that is significantly
less involved.

Theorem 2.3. The following are equivalent for an fg module V :

i) fln (V ) = 0;

ii) MR(V ) = EndRV ;

iii) VP is RP -cyclic for each P ∈ Max-Ass (V ).



932 C.J. MAXSON AND A.B. VAN DER MERWE

Proof. Suppose MR(V ) �= EndR(V ) but that VP is RP -cyclic for
each P ∈ Max-Ass (V ). Let x, y ∈ V and f ∈ MR(V ) such that
w := f(x + y) − f(x) − f(y) �= 0. From [5, Lemma 9.34], there exists
P ∈ Max-Ass (V ) such that (0 : w) ⊆ P . Since VP is RP -cyclic there
exists a/1 ∈ VP such that x/1 = r1/s1 ·a/1 and y/1 = r2/s2 ·a/1. Thus
t1xs1 = t1r1a and t2ys2 = t2r2a for some t1, t2 /∈ P . Because t1s1t2s2 /∈
P and (0 : w) ⊆ P , t1s1t2s2w �= 0. But t1s1t2s2w = t1s1t2s2[f(x+y)−
f(x)−f(y)] = f(t2s2t1r1a+t1s1t2r2a)−f(t2s2t1r1a)−f(t1s1t2r2a) = 0,
a contradiction, so VP is not RP -cyclic.

Conversely suppose that VP is not RP -cyclic for some P∈Max-Ass (V ).
We show MR(V ) �= EndR(V ). For an R-module U , denote by E(U) the
injective hull of U . From [7, Theorem 2.1 and Corollary 2.6] we have
that E(V ) = E(R/P1)⊕· · ·⊕E(R/Pn), where Ass (V ) = {P1, . . . , Pn},
and that each element of E(R/Pi) is annihilated by a power of P . Thus,
since V is finitely generated, we have from [5, Lemma 3.55] that there
exists an a ∈

⋂
Pi �⊆P Pi \ P such that the component of av in E(R/Pi)

is zero for all v ∈ V if Pi �⊆ P . Let W = aV . Since we know that mul-
tiplication by s ∈ R \ Pi acts as an isomorphism on E(R/Pi), we have
that (0 : w) ⊆ P if w is a nonzero element in W . Moreover, WP = VP

so WP is not RP -cyclic. Note also that the map w 
→ w/1 for W → WP

is injective so we consider W as an R-submodule of WP . If J denotes
the Jacobson radical of RP , then an application of Nakayama’s lemma
gives JWP �= WP so let x/1 ∈ WP − JWP where x ∈ W .

Let X = RP x ∩ W , say X is generated by {(r1/s1)x, . . . , (rn/sn)x},
and let t = s1s2 · · · sn. Since P ∈ Max-Ass (V ), there exists v0 ∈ V
with P = (0 : v0). Let y = av0. Then P = (0 : y) and y ∈ W . Define
f : V → V by

f(w) =
{

t(r/s)y if w = (r/s)x ∈ X

0 if w ∈ W\X.

Since (r1/s1)x = (r2/s2)x implies ((r1/s1) − (r2/s2)) ∈ J we see that
f is well defined. We now show f ∈ MR(W ). First we note that if
w ∈ X, r ∈ R then rw ∈ X so f(rw) = rf(w), so we take w ∈ W\X,
r ∈ R. If r /∈ P , then rw /∈ X for otherwise (1/r)rw = w ∈ X. Also,
if w /∈ X and r ∈ P with rw = (c/d)x ∈ W then c ∈ P since if c /∈ P ,
x/1 = rd/c · w/1 ∈ JWP , a contradiction to the choice of x. Thus
f ∈ MR(W ).
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We next note that, if X = W , then WP = RP x, a contradiction to
the fact that WP is not RP -cyclic. So we let y0 ∈ W\X and note
that f(y0 + x) − f(y0) − f(x) = −ty �= 0. Define g: V → V by g(v) =
f(av), v ∈ V . Then g ∈ MR(V ) but g(y0+x)−g(y0)−g(x) = −aty �= 0,
i.e., MR(V ) �= EndR(V ).

If, in particular, Z(V ) = R − U(R), then Max-Ass (V ) is just the
collection of maximal ideals of R and in this case fln (V ) = 0 if and
only if VI is RI -cyclic for every maximal ideal I of the fg module V .

Suppose now that fln (V ) �= 0 and Z(V ) � R − U(R). Thus there
exists 0 �= d ∈ R − U(R) such that dw �= 0 for each nonzero w ∈ V .
Then dV is a nonzero submodule of V . If we assume that V is a
faithful R-module, then it follows from Theorem 76 of Kaplansky [3]
that dV �= V . Now if f ∈ MR(V ) is such that f is linear on dV , then,
for u, v ∈ V , if w := f(u + v) − f(u) − f(v) we see that dw = 0. But
then w = 0 so f is linear on V . This establishes our next result.

Theorem 2.4. If V is an fg faithful R-module such that Z(V ) �
R − U(R) and fln (V ) �= 0, then fln (V ) = 1.

We continue with V being an fg module. If Z(V ) = R − U(R),
then for any maximal submodule M of V and any v ∈ V − M ,
(M : v) ⊆ Z(V ), where (M : v) := {r ∈ R|rv ∈ M}, so there
exists 0 �= w ∈ V with (M : v)w = 0, i.e., (M : v) ⊆ AnnR(w).
Since M is maximal, (M : v) = (M : M + Rv) = (M : V ). Thus
V/M ∼= R/(M : V ) as R-modules, and therefore (M : V ) is a maximal
ideal of R.

Theorem 2.5. Let V be an fg R-module with Z(V ) = R − U(R)
and fln (V ) �= 0. Then fln (V ) = 1 if and only if there is a maximal
submodule M of V such that V(M :V ) is a cyclic R(M :V )-module.

Proof. If fln (V ) = 1, then there exists a maximal submodule M of V
which forces linearity. From [2, Theorem III.8], for every prime ideal P
of R either MP = VP or VP is a cyclic RP -module or Soc (VP ) = {0}.
As we have noted above, (M : V ) is a maximal ideal of R. On the other
hand, M(M :V ) �= V(M :V ) since (M : V ) ∩ (R − (M : V )) = ∅. Since
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(M : V ) ⊆ Z(V ) there is some 0 �= w ∈ V with (M : V )w = 0, [3,
Theorem 82]. A straightforward calculation gives AnnR(M:V )(w/1) =
(M : V )(M :V ) so R(M :V )(w/1) is a minimal submodule of V(M :V ), i.e.,
Soc (V(M :V )) �= {0}. Thus we must have that V(M :V ) is a cyclic R(M :V )-
module.

If Q is any prime ideal different from (M : V ), then since (M :
V ) ∩ (R − Q) �= ∅ we have MQ = VQ. The reverse direction now also
follows from Theorem III.8 of [2].

Corollary 2.6. Let V be an fg faithful R-module with fln (V ) �= 0
where R is not a local ring.

1) If Z(V ) � R − U(R), fln (V ) = 1.

2) If Z(V ) = R − U(R), then fln (V ) = 1 if and only if V(M :V ) is a
cyclic R(M :V )-module for some maximal submodule M of V . Otherwise
fln (V ) = 2.

Proof. The result follows from Theorems 2.1, 2.4, and 2.5.

We now let R be a local ring, i.e., a commutative Noetherian ring
with a unique maximal ideal J consisting of the nonunits of R. For
local rings the analogue of Theorem 2.2 is given in the next result. This
result is most probably part of the folklore in commutative algebra, but
since we could not find a suitable reference, we will provide a proof.

Theorem 2.7. Let R be a local ring with maximal ideal J , and let
V be an fg R-module. The following are equivalent:

(i) Z(V ) = J ;

(ii) AnnV (J) �= {0};
(iii) Soc(V ) �= {0}.

Proof. Since J = R − U(R), the equivalence of (i) and (ii) is as
in Theorem 2.2. Suppose AnnV (J) = W �= {0}. Then W may be
regarded as a R/J-vector space. Let Y be a one-dimensional subspace
of W . Since JY = {0} we see that Y is also a simple R-module so
Soc (V ) �= {0}. Conversely, suppose W is a nonzero simple submodule
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of V . From Nakayama’s lemma, JW � W and since W is simple,
JW = {0}, i.e., AnnV (J) �= {0}.

Suppose Z(V ) = J . From Theorem 2.3, fln (V ) = 0 if and only if VJ

is a cyclic R-module. But, since V ∼= VJ as R-modules, we have the
following result.

Theorem 2.8. If V is an fg R-module where R is a local ring with
Z(V ) = J , then fln (V ) = 0 if and only if V is a cyclic R-module.

We note that the above theorem generalizes Theorem I.1 of [1] for if
J is nilpotent then AnnV (J) �= {0}. We show in the next example that
if AnnV (J) = {0} it may happen that fln (V ) = 0 while V is not cyclic.

Example 2.9. Let R be a local ring with P1, . . . , Pn incomparable
prime ideals in R. Denote by V the R-module R/P1 ⊕ · · · ⊕ R/Pn.
Then AnnV (J) = {0} and V is not cyclic, since the direct sum of
nontrivial modules over a local ring is not cyclic. We have that
Max-Ass (V ) = {P1, . . . , Pn}, and thus since VPi

∼= (R/Pi)Pi
, we have

from Theorem 2.3 that fln (V ) = 0.

Theorem 2.10. Let V be an fg faithful module over the local ring
R with fln (V ) �= 0. The following are equivalent:

i) fln (V ) = 1;

ii) Soc (V ) = {0};
iii) AnnV (J) = {0};
iv) Z(V ) � J .

Proof. The equivalence of ii), iii) and iv) is Theorem 2.7. It follows
from Theorem 2.4 that (iv) implies (i). In order to show that (i) implies
(iv), we assume that Z(V ) = J and that fln (V ) = 1. It follows from
Theorem 2.5 that there is a maximal submodule M of V such that
V(M :V ) is a cyclic R(M :V )-module. Since (M : V ) is a maximal ideal of
R, (M : V ) = J . Thus, since R is local by assumption, V is cyclic. This
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contradicts the assumption that fln (V ) �= 0, and therefore (i) implies
(iv).

Henceforth in this section we take AnnV (J) �= {0}. When this is the
case we have the following nice relationship.

Theorem 2.11. Let V be an fg module over a local ring R. Suppose
further that AnnV (J) �= {0}. Then fln (V/JV ) ≤ fln (V ) where we
consider V/JV as a vector space over R/J .

Proof. If dimR/J(V/JV ) = 1, then fln (V/JV ) = 0 and the result
clearly holds. Thus, we take dimR/J(V/JV ) ≥ 2. Let s be a
nonnegative integer with s < fln (V/JV ). It suffices to show that
s < fln (V ). Moreover, when determining fln (V ) one only has to
consider maximal submodules. If M is a maximal submodule of V ,
then from Nakayama’s lemma, JV ⊆ M . Now let C be a collection of
s maximal submodules of V where we take C = ∅ if s = 0. Let D be
the corresponding collection in V/JV . Since fln (V/JV ) > s, there is
some f ∈ MR/J(V/JV ) which is linear on the subspaces in D but is
not linear on V/JV . Let n = dimR/J(V/JV ) so we may consider f as
a map in MR/J ((R/J)n). Let x, y ∈ (R/J)n, or V/JV , be such that
a := f(x + y) − f(x) − f(y) �= 0. Suppose that a is nonzero in the ith
component. Using the projection map from (R/J)n to the i-component,
we obtain a nonlinear homogeneous map g: (R/J)n → R/J which is
linear on D.

Now let 0 �= b ∈ AnnV (J). Suppose g(v + JV ) = rv + J where
rv is determined modulo J . Define F : V → V by F (v) = rvb. It is
straightforward to verify that F is well defined, that F ∈ MR(V ) and
that F is linear on C. Since g(x + y + JV ) �= g(x + JV ) + g(y + JV ),
we have rx+y + J �= rx + ry + J so rx+yb �= (rx + ry)b, i.e., F (x + y) �=
F (x) + F (y). Thus, fln (V ) > s as desired.

Corollary 2.12. If dimR/J(V/JV ) = 2, then fln (V ) = ∞. If R/J
is infinite and dimR/J (V/JV ) ≥ 2, then fln (V ) = ∞.

Proof. From Theorem C of the introduction, fln (V/JV ) = ∞ in these
situations.
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If dimR/J (V/JV ) = 1, then, from Nakayama’s lemma, V is a cyclic
R-module, so fln (V ) = 0. As in the case of fg free modules over
local rings, [4], it remains to consider the case where |R/J | < ∞ and
2 < dimR/J (V/JV ). We do this in the final result of this section.

Theorem 2.13. Let V be an fg module over a local ring R such that
|R/J | = q < ∞ and 2 < dimR/J (V/JV ) and further AnnV (J) �= {0}.
Then fln (V ) = q + 2.

Proof. From Nakayama’s lemma, V = 〈e1, . . . , em〉 if and only if
{e1 + JV, . . . , em + JV } is a basis for V/JV over R/J . The proof of
Theorem 4.7 of [4] works here so fln (V ) ≤ q + 2. On the other hand,
from the introduction we know that fln (V/JV ) = q + 2 in this case.
Hence, from Theorem 2.11, fln (V ) = q + 2.

3. Applications. In this section we apply results of the previous
section to complete the determination of the forcing linearity numbers
for finitely generated free modules over an arbitrary commutative
Noetherian ring. Further we specialize some of the above results to
fg modules over non-local integral domains.

We first let V = Rm where R is not a local ring. From Theorem 2.1,
fln (Rm) ≤ 2. Moreover, as in [4], fln (Rm) = {0} if and only if m = 1.
Thus we take m ≥ 2. From Theorem 2.4, if Z(Rm) � R − U(R), then
fln (Rm) = 1 so we take Z(Rm) = R − U(R). Suppose fln (Rm) = 1.
From Theorem 2.5, Rm

(M :Rm) is a cyclic R(M :Rm)-module for some
maximal submodule M of Rm. Let P := (M : Rm). Then (Rm)P

is isomorphic as an RP -module to (RP )m and, since m ≥ 2, (Rm)P is
not a cyclic RP -module. Hence M cannot force linearity which means
fln (Rm) ≥ 2. We summarize in the following:

Theorem 3.1. Let R be a commutative Noetherian ring, not a local
ring. Let V = Rm be an fg free R-module.

1) fln (Rm) = 0 if and only if m = 1.

2) For m ≥ 2, if Z(Rm) � R − U(R), then fln (Rm) = 1 while, if
Z(Rm) = R − U(R), then fln (Rm) = 2.
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We note that Z(Rm) is the set of divisors of zero in R so we see that
when m �= 1 then fln (Rm) = 2 if and only if every nonunit is a divisor
of zero in R.

We conclude this section and the paper with a specialization to
(Noetherian) integral domains, not local rings.

Theorem 3.2. Let R be a Noetherian integral domain, not a local
ring, and let V be an fg faithful R-module. Then fln (V ) = 0 if and
only if V is torsion free and uniform.

Proof. Since V is an fg faithful R-module, V cannot be a torsion
module. If fln (V ) = 0, then V must be R-connected [6, Proposition 2.3]
and therefore V must be torsion free. The result now follows from
Corollary 3.2 of [6].

Now if fln (V ) �= 0 and Z(V ) � R−U(R), we know from Theorem 2.4
that fln (V ) = 1. As in the case for free modules we show that
Z(V ) = R − U(R) implies fln (V ) = 2. Note that Z(V ) = R − U(R)
implies that V is not torsion free (and not torsion since V is faithful
by assumption). Assume fln (V ) = 1 when Z(V ) = R − U(R), and
let M be a maximal submodule which forces linearity. As in the proof
of Theorem 2.5, if we let P denote the maximal ideal (M : V ), then
we know MP �= VP and Soc (VP ) �= {0} so we must have that VP is a
cyclic RP -module, say (Rw)P = VP . Thus for each v ∈ V there exists
r ∈ R, l, t /∈ (M : V ) such that t(rw− lv) = 0. If w is a torsion element
we choose v to be torsion free and obtain a contradiction. If w is torsion
free we choose v to be torsion and again obtain a contradiction. Hence
no maximal submodule forces linearity.

Theorem 3.3. Let R be a Noetherian integral domain, not a local
ring, and let V be an fg faithful R-module with fln (V ) �= 0. If
Z(V ) � R − U(R), then fln (V ) = 1. Otherwise fln (V ) = 2.
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