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A STUDY OF THE LIPPMANN-SCHWINGER
EQUATION AND SPECTRA FOR SOME
UNBOUNDED QUANTUM POTENTIALS

CHRISTOPHER WINFIELD

ABSTRACT. In this article we study the Modified Lipp-
mann Schwinger equation for certain model potentials V de-
fined on R3, not of Rollnik class, and solutions to the equation
in a weak sense. Further, we study the resolvent and the spec-
trum of the operator H = −Δ + cV in our model for nonzero
constants c. In particular, we find that, for sufficiently small
c > 0, H has no singular spectrum.

Introduction. This article involves the study of the integral opera-
tor

(0.1) (Aλφ)(x) =
1
4π

∫
R3

|V (x)|1/2eiλ|x−y|V (y)1/2

|x− y| φ(y, κ)d y,

for certain classes of real-valued functions V defined on R3 where Aλ

operates on a Hilbert space of functions φ also defined on R3 and
where λ is a complex parameter. Here V is regarded as the potential
for a (three-dimensional) Schrödinger operator H def= Ho +V = −Δ+V .
We study a norm by Friedrichs [1] to develop a class of potentials V
for which Aλ is not a Hilbert-Schmidt operator for any real λ, yet is
compact for all real λ.

We apply our study of the operators Aλ to the so-called modified
Lippmann-Schwinger equation:

(0.2)
ψ(x, κ) = |V (x)|1/2eiκ·x

− 1
4π

∫
R3

|V (x)|1/2ei|κ||x−y|V (y)1/2

|x− y| ψ(y, κ)d y.
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with V 1/2 def= |V |1/2(sgnV ). Equation (0.2) arises in the study of Møller
(wave) operators and of continuum eigenfunction expansions of the
operator Ho + V on L2(R3) [5, 6, 9, 15]. It is known [2, 3, 8, 11]
that, for κ ∈ R3, except possibly those of a set of Lebesgue measure
0, (0.2) has a unique solution ψ(x, κ) ∈ L2(R3) when V ∈ L1(R3) and
satisfies

(0.3)
∫
R3

∫
R3

|V (x)||V (y)|
|x− y|2 dx dy <∞.

So, to motivate our study of the operator (0.1), we provide a sketch
of proof. If V satisfies (0.3), then A|κ| : L2(R3) → L2(R3) is a
bounded operator. Indeed, it is a Hilbert-Schmidt operator and is,
hence, compact. After rearrangement, equation (0.2) can be written as
(0.4) (I +A|κ|)ψ(x, κ) = |V (x)|1/2eiκ·x

where I denotes the identity operator on L2(R3). The result then
follows via the analytic Fredholm theorem, see Theorem VI.41 of [11].

The condition (0.3) on V is satisfied if V ∈ L1
loc(R

3) and V (x) =
O(e−α|x|) as |x| → ∞ for some positive α [2, 3]. Moreover, by Sobolev’s
inequality, this condition is also satisfied if V (x) ∈ L1(R3) ∩ L3/2(R3)
[11]. However, for some potentials, the operators A|κ| may not be of
Hilbert-Schmidt class, yet may be bounded even compact. Indeed,
using estimates from [1], see also [10], we demonstrate the existence of
locally bounded V for which the operator A|κ| is not Hilbert-Schmidt
for any κ, yet is compact for all κ.

The outline of this article is as follows: In Section 1 we introduce
modes of compactness for operators A|κ| and check known results
for some simple, bounded potentials to motivate more complicated
examples. In Section 2 we introduce certain potentials of unbounded
essential range to be used throughout the rest of the article. The
associated operatorsA|κ| are then shown to be compact but not Hilbert-
Schmidt. Using this model, in Section 3 we demonstrate the existence
of weak solutions of the Lippmann-Schwinger equation, and in Section 4
we study the spectrum of the Schrödinger equation.

1. Compactness of A|κ| for some bounded potentials. A
measurable function V (x) defined on R3 is of Rollnik class [11, 12] if

(1.1) ||V ||2Rollnik
def=

∫
R3

∫
R3

|V (x)||V (y)|
|x− y|2 dx dy <∞.
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And, for 0 < β ≤ 1, using an operator norm from [1], we will say V is
of class cl (2β) if

(1.2) ||V ||22β
def= sup

z∈R3

∫
R3

∫
R3

|V (x)|β|V (y)||V (z)|1−β

|x− y|2β |y − z|2−2β
dx dy <∞

with cl (2) being the Rollnik-class potentials. Such classes are moti-
vated by norms from [1] which, for 0 < β ≤ 1, are given by

(1.3) ||T ||22β
def= sup

z∈R3

∫
|K(x, y)|2β|K(y, z)|2−2β dx dy,

for an integral operator T on L2(R3)

Tφ(x) =
∫
R3
K(x, y)φ(y) dy

with integral kernel K.

T will be said to be 2β-bounded if (1.3) is finite. Indeed, a measurable
function V is of class cl (2β) if and only if the associated operator A|κ|
is 2β-bounded: Note that ||T ||HS = ||T ||2 where || · ||HS denotes the
Hilbert-Schmidt norm. It follows from (20.14) of [1] that integrals
(1.3) produce upper bounds on the L2(R3) operator norms of integral
operators T since

||T || ≤ ||T ||2β ;

and, for the case β = 1, we have

||T || ≤ ||T ||HS .

Furthermore, we denote by ||T ||Hol the Holmgren norm of an integral
operator T which is defined by

||T ||Hol
def= sup

z∈R3

∫
|K(x, z)| dx.

Finally, we will denote, for positive a, the quantities

[|T |]a def= sup
z∈R3

∫
|K(x, z)|a dx.
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It is easy to show that

(1.4) ||T ||22β ≤ [|T |]2β · [|T |]2−2β .

For bounded potentials, V ∈ B(R3), we find a range of p for which
V ∈ Lp(R3) =⇒ V ∈ cl (2β) for some 0 < β < 1:

Proposition 1. Suppose V ∈ Lp(R3) ∩ B(R3) for some p <
(3/16)(1 +

√
33) ≈ 1.2646. Then, there exist positive numbers, β1(p)

and β2(p), such that β1(p) < β2(p) and that V ∈ cl (2β) whenever
β1(p) < β < β2(p).

Proof. Since V ∈ B(R3), we need only to appraise

sup
z∈R3

∫
R3

∫
R3

|V (x)|β|V (y)|
|x− y|2β |y − z|2−2β

dx dy

as we determine p and q for which V ∈ Lp(R3) ∩ Lq(R3) implies
V ∈ cl (2β).

Write∫ |V (x)|β
|x− y|2β

dx =
∫
|x−y|<1

|V (x)|β
|x− y|2β

dx+
∫
|x−y|≥1

|V (x)|β
|x− y|2β

dx.

We have∫
|x−y|<1

|V (x)|β
|x− y|2β

dx ≤ sup
x∈R3

[
|V (x)|β

∫
|x−y|<1

|x− y|−2β dx

]

and, using Hölder’s inequality, we have for appropriate β < p <∞,∫
|x−y|≥1

|V (x)|β
|x− y|2β

dx

≤
[ ∫

|x−y|≥1

|V (x)|p dx
]β/p[ ∫

|x−y|≥1

|x− y|(−2βp)/(p−β) dx

]1−β/p

.

Likewise,∫ |V (y)|
|y − z|2−2β

dy =
∫
|y−z|<1

|V (y)|
|y − z|2−2β

dy +
∫
|y−z|≥1

|V (y)|
|y − z|2−2β

dy
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with

(1.7)
∫
|y−z|<1

|V (y)|
|y − z|2−2β

dy ≤ sup
y∈R3

[
|V (y)|

∫
|y−z|<1

|y − z|2β−2 dy

]
;

and, for appropriate q > 1,

∫
|y−z|≥1

|V (y)|
|y − z|2−2β

dy ≤
[ ∫

|y−z|≥1

|V (y)|q dy
]1/q

×
[ ∫

|y−z|≥1

|y − z|(2β−2)q/q−1 dy

]1−1/q

.

The convergence of integral (1.8) for all 0 < β < 1 is clear when
V ∈ Lq(R3) for 0 < q ≤ 1.

We now determine for which p and β are the quantities (1.5) (1.8)
finite when V ∈ Lp(R3) ∩B(R3). For any positive R,

(1.9)
∫
|x−y|<R

|x− y|−r dx <∞,

for r < 3, and

(1.10)
∫
|x−y|≥R

|x− y|−r dx <∞

for r > 3. Now, 2β < 2 and 2− 2β < 2 for 0 < β < 1 so that (1.5) and
(1.7) are finite for any p and q, respectively. Moreover, from (1.9) and
(1.10), the quantities (1.6) and (1.8) are both finite provided that

(1.11)
2βp
p− β

> 3

for p > β and

(1.12)
(2 − 2β)q
q − 1

> 3

for q > 1.
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Now, for fixed p and q, we determine the range of β for which
V ∈ cl (2β). Simultaneous inequalities (1.11) and (1.12) give

(1.13)
3p

2p+ 3
< β < max

q

[
min

{
3 − q

2q
, q

}]
,

where the maximum is taken over those q for which V ∈ Lq(R3);
namely, those q such that q ≥ p. So, the statement of the proposition
then holds for

β1(p)
def=

3p
2p+ 3

and

β2(p)
def=

⎧⎨
⎩

1 : 0 < p ≤ 1
3−p
2p

: 1 < p <
( 3

16

)
(1 +

√
33).

Corollary 1. Given p ≤ 1, Lp(R3) ∩ B(R3) ⊂ cl (2β) for every
β1(p) < β ≤ 1.

Proof. We have only to show that V ∈ cl (2) which follows from
Sobolev’s inequality.

Remark 1.14. We note that, for V ∈ L∞(R3), an estimate on Riesz
potentials [13] shows that A|κ| is bounded as an operator from Lp(R3)
to Lq(R3) for 1/q = 1/p− 2/3 where 1 < p < 3/2.

To investigate the compactness of the operators A|κ| for possibly
unbounded V , we will use the following

Lemma 1. Suppose that V ∈ cl (2β)∩L2
loc(R

3) for some 0 < β < 1.
Then, the associated operator A|κ| is compact.

Proof. Let 0 ≤ g
R
(x) ≤ 1 be defined by

(1.15) g
R
(x) =

{
1 : |x| ≤ R

0 : |x| > R.
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Then, for each R > 0 we define the operators A|κ|,R by

4πA|κ|,Rφ(x) =
∫
ei|κ||x−y||V (x)|1/2gR(x)V (y)1/2

|x− y| g
R
(x−y)φ(y) dy.

Now, using the changes of variables u = y − x and r = |u|, we obtain

∫∫ |V (x)g2
R
(x)||V (y)|

|x− y|2 g2
R
(x− y) dy dx

≤
∫
|x|≤R

∫
|u|≤R

|V (x)||V (u+ x)|
|u|2 du dx

≤
∫
|x|≤R

∫
S2

∫ R

0

|V (x)||V (x+ rω)| dr dω dx.

Since

|V (x)||V (x+ rω)| ≤ (V (x))2 + (V (x+ rω))2

2
,

we have, for each r ∈ [0, R] and for each ω ∈ S2,∫
|x|≤R

|V (x)||V (x+ rω)| dx ≤ 1/2
∫
|x|≤R

|V (x)|2 + |V (x+ rω)|2 dx

≤
∫
|x|≤2R

|V (x)|2 dx.

So, by the Fubini-Tonelli Theorem, for all R > 0,

||A|κ|,R||HS ≤
√
R

( ∫
|x|≤2R

|V (x)|2 dx
)1/2

.

Therefore, for such R, A|κ|,R is of Hilbert-Schmidt class and is, hence,
compact. Clearly, ||A|κ|−A|κ|,R||2β ≤ ||A|κ|||2β so that by the Lebesgue
dominated convergence theorem,

lim
R→∞

||A|κ| −A|κ|,R||2β = 0

and, hence, in the L2(R3) operator norm,

lim
R→∞

||A|κ| −A|κ|,R|| = 0.
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This shows that A|κ| is the operator-norm limit of compact operators
and is therefore compact.

We now provide a necessary condition for bounded, central potentials
to be of class cl (2β): V is said to be a central potential if there is a
function V , defined on R+, such that V (x) = V(|x|). For r = |x| we
state the following

Proposition 2. A bounded, central potential V ∈ cl (2β) only if the
associated function V satisfies

V(r) ∈ L1(R+; dr) ∩ Lβ(R+; r2−2β dr).

Proof. For each z, we use the Fubini-Tonelli theorem and a change
of coordinates to obtain

(1.16)

||V ||22β ≥
∫
R3

∫
R3

|V (x)|β|V (y)||V (z)|1−β

|x− y|2β |y − z|2−2β
dx dy

≥ 4π|V (z)|1−β

∫ ∞

0

|V(r)|βr2
(R+ r)2β

dr

×
∫
|y|<R

|V (y)|
|y − z|2−2β

dy.

Likewise, choosing R so large that∫
|x|<R

|V (x)|β dx def= δ > 0,

we have

(1.17)
||V ||22β ≥ 4π

∫
R3

|V (z)|1−β |V (y)| dy
(R+ |y|)2β(|z| + |y|)2−2β

∫
|x|<R

|V (x)|β dx

= 4π|V (z)|1−βδ

∫ ∞

0

V(r)r2

(R+ r)2β(|z| + r)2−2β
dr

Choosing z, not a root of V , and sufficiently large R, it is clear that,
since V is bounded, (1.16) is finite only if V(r) ∈ Lβ(R+; r2−2β dr) and
that (1.17) is finite only if V(r) ∈ L1(R+; dr).
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Our object, which we postpone until the next section, will be to con-
struct cl (2β)-class potentials which are not Rollnik-class. To motivate
those constructions, we first consider operators A|k| for certain bounded
potentials given by

Vγ(x) def= (1 + |x|)−γ .

(Such potentials are well-studied in, for instance, the study of Møller
operators [4, 6, 7, 17].)

Proposition 3. Vγ(x) ∈ cl (2β) if and only if γ > (3/β)− 2. Hence,
Vγ ∈ cl (2β) for each 3/(γ + 2) ≤ β ≤ 1.

Proof. By Proposition 2, Vγ ∈ cl (2β) only if

γ > max
{

3
β
− 2, 1

}
.

Yet, (3/β) − 2 ≥ 1 for any 0 < β ≤ 1 and, hence, γ > (3/β) − 2.
Conversely, V ∈ Lp(R3) if and only if p > 3/γ; and, by Proposition 1
we have Vγ ∈ cl (2β) for p < [3β/(3 − 2β)]. The combined inequalities
give γ > (3/β) − 2, and the proof is complete.

Remark 1.18. The associated operator A|κ| is already known to be
compact, indeed Hilbert-Schmidt, for Vγ(x) = V(|x|) as in Proposi-
tion 3 via Sobolev’s inequality for γ > 2.

Remark 1.19. It follows immediately from Proposition 3 that the
associated operator A|κ| is bounded for γ > 1 which is already known
[4].

2. Compactness of A|κ| for some unbounded potentials.
We now introduce a class of potentials which admits functions which
do not decay as |x| → ∞ to construct potentials of various classes
cl (2β). Consider functions that are supported on ∪∞

k=1Ek for Lebesgue
measurable sets Ek satisfying the following properties:

(i) The sets Ek are disjoint, and for k = l the distance d(Ek, El)
between sets Ek and El satisfies

c1|k − l| ≤ d(Ek, El) ≤ c2|k − l|
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for some positive constants c1 and c2, independent of k and l.

(ii) There are positive constants C1, C2 and b such that for every k
the Lebesgue measure μ(Ek) of Ek satisfies

C1k
−b ≤ μ(Ek) ≤ C2k

−b.

(iii) For every 1/2 ≤ β′ < 1, there is a positive constant Cβ′ ,
depending only on β′, such that, for every k,∫

Ek

|x− y|−2β′
dx ≤ Cβ′μ(Ek)

uniformly for y ∈ Ek.

(iv) There is a positive constant D such that, for every k, the
diameter, diam (Ek), of Ek satisfies diam (Ek) ≤ D.

For fixed b > 0, the collection of sets

Ek =
{
(x1, x2, x3) :

√
x2

2 + x2
3 < 1, k < x1 < k +

1
2kb

}
and

Ẽk =
{
(x1, x2, x3) :

√
x2

2 + x2
3 <

1
2
, k +

1
8kb

< x1 < k +
1

4kb

}

for k = 1, 2, 3, . . . satisfy criteria (i) (iv) and the property that Ẽk ⊂ Ek

for all k.

We now construct model potentials which are not Rollnik-class yet
are 2β-class and, in fact, C∞(R3)-class. Let χ1(x) be a nonnegative,
C∞(R3)-class function such that χ1(x) = 1 for all x ∈ Ẽ1 and
suppχ1 ⊂ E1. Then, define for k = 1, 2, 3, . . .

χk(x) def= χ1

(
(x1 − k)kb + 1, x2, x3

)
and

Va,b(x)
def=

∞∑
k=1

χk(x)ka.

We note that suppVa,b ⊂ ∪∞
k=1Ek and that, for each k, suppχk ⊂ Ek

and Va,b(x) = ka for all x ∈ Ẽk.
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Given 0 < β < 1, we determine parameters a and b for which Va,b are
of class cl (2β). First, we introduce some notation: Given two functions,
f and g, the expression f � g means that there is a positive constant
c such that |f | ≤ c|g| uniformly on the domain of both f and g and
f � g means that both f � g and g � f hold. We are now ready to
state

Proposition 4. Given 0 < β < 1 and 0 < α < 2β − 1, we have the
following estimates for l ∈ Z+:

∑
k>0
k �=l

kα

|k − l|2β
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lα−2β+1 : 0 < β <
1
2

lα ln l : β =
1
2

lα :
1
2
< β < 1

(l −→ ∞).

We note that these sums diverge for every l when α ≥ 2β − 1.

Proof. From standard sum and integral estimates along with a change
of variables, we find, for 0 < β < 1,

(2.1)

∑
k>0
k �=l

kα

|k − l|2β
�

∫ ∞

1

(t+ l)α

|t|2β
dt

= lα+1−2β

∫ ∞

1/l

(w + 1)α

w2β
dw

� lα+1−2β

[ ∫ 1

1/l

w−2β dw +
∫ ∞

1

wα−2β dw

]
.

The second integral of (2.1) is finite for α < 2β − 1 while

∫ 1

1/l

w−2β dw �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 : 0 < β <
1
2

ln l : β =
1
2

l2β−1 :
1
2
< β < 1

(l −→ ∞).
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The combined estimates prove the claim.

Write

|Va,b(x)|β =
∞∑

k=1

(χk(x))βkaβ .

Now, supposing that z ∈ El for some l (for otherwise Va,b(z) = 0), for
some constant δ > 0, depending only on β, and for k = l,

(2.2)

∫ (
χk(x)

)β kaβ

|x− z|2β
dx ≤ δ · k

aβμ(Ek)
|k − l|2β

� kaβ−b

|k − l|2β
;

and, for k = l,

(2.3)

∫ (
χl(x)

)β laβ

|x− z|2β
dx ≤ δ · laβμ(El)

� laβ−b.

Let us set A|κ| as the associated operator (0.1) with V = Va,b. We now
apply estimates (2.2) and (2.3) along with Proposition 4 to estimate
[|A|κ||]β and [|A|κ||]1−β for 0 < β ≤ 1/2, thereby making estimates for
1/2 < β < 1 immediate.

For some positive constant δ̃, depending only on β, we have the
following estimates uniform for z ∈ ∪∞

l=1El: For 0 < β < 1/2 and
aβ − b− 2β < −1,∫

V β
a,b(x)V

β
a,b(z)

|x− z|2β
dx ≤ δ̃

[
laβ−b · laβ +

∑
k>0
k �=l

kaβ−b

|k − l|2β
laβ

]

� l2aβ−b + l1+aβ−b−2β · laβ

� l2aβ−b+1−2β ;
for a(1 − β) − b < −1 (noting that 1/2 < 1 − β < 1)∫
V 1−β

a,b (x)V 1−β
a,b (z)

|x− z|2−2β
dx ≤ δ̃

[
la(1−β)−b · la(1−β)+

∑
k>0
k �=l

ka(1−β)−b

|k−l|2(1−β)
la(1−β)

]

� l2a(1−β)−b + la(1−β)−b · la(1−β)

� l2a(1−β)−b;
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finally, for β = 1/2 and a/2 − b < −1,

∫
V

1/2
a,b (x)V 1/2

a,b (z)
|x− z| dx ≤ δ̃

[
la/2−b · la/2 +

∑
k>0
k �=l

ka/2−b

|k − l| l
a/2

]

� la−b + la/2−b · la/2 · ln l
� la−b(1 + ln l).

Since these estimates provide a finite supremum for l ∈ Z+, we have
that for 0 < β < 1/2 the quantities [|A|κ||]1−β and [|A|κ||]β are both
finite if 2aβ − b+ 1− 2β ≤ 0 and 2a(1− β)− b ≤ 0 and that [|A|κ||]1/2

is finite if a− b < 0.

We are now ready to prove

Theorem 1. Given 0 < β < 1, there are functions of the form Va,b

which are cl (2β)-class, but not Rollnik-class. Indeed, for each such β,
numbers a ≥ 0 and b > 0 may be chosen so that the associated operator
A|κ| is compact but not Hilbert-Schmidt.

Proof. First, we will show that, given any a ≥ 0 and b > 0 for which
a − b > −1/2, the function Va,b is not of Rollnik class. We note that,
since Ẽk ⊂ Ek for each k, given D as in property (iv) and y ∈ Ẽk,

Ek ⊂ {u+ y : |u| ≤ D}.
So, ∫∫ |Va,b(x)||Va,b(y)|

|x− y|2 dx dy

=
∫∫ |Va,b(u+ y)||Va,b(y)|

|u|2 du dy

≥
∫∫

|u|≤D

|Va,b(u+ y)||Va,b(y)|
|u|2 du dy

≥
∫∫

|u|≤D

∑
k,l≥1

χk(u+ y)χl(y)(kl)a

D2
du dy

≥
∫∫ ∑

k≥1
χk(u+ y)χk(y)(k)2a

D2
du dy
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≥ 1
D2

∞∑
k=1

(
μ(Ẽk)

)2
k2a

≥
(

π

32D

)2 ∞∑
k=1

k2(a−b).

Now, to find non-Rollnik potentials Va,b for which Lemma 1 applies,
we seek nonnegative numbers a and b which satisfy the following
simultaneous inequalities:

2aβ + 1 − 2β < b(2.4)
2a(1 − β) < b(2.5)

a+
1
2
> b(2.6)

for 0 < β ≤ 1. The lefthand sides (LHS) of inequalities (2.4) (2.6)
compare as follows:

LHS (2.4) < LHS (2.6) when a > [(1/2 − 2β)/(1 − 2β)] for 0 <
β ≤ 1/4, when a ≥ 0 for 1/4 < β < 1/2, and when a <
[(2β − 1/2)/(2β − 1)] for 1/2 < β < 1.

LHS (2.5) < LHS (2.6) when 0 < a < [(1/2)/(1 − 2β)] for 0 < β <
1/2 and when a ≥ 0 for 1/2 ≤ β < 1.

So, given 0 < β < 1, let b satisfy

max {LHS (2.4), LHS (2.5)} < b < LHS (2.6)

for which in the following cases consistent solutions exist:

i) [(1/2 − 2β)/(1 − 2β)] < a < [(1/2)/(1 − 2β)] for 0 < β ≤ 1/4;

ii) a ≥ 0 for 1/4 ≤ β < 1/2;

iii) a > 0 for β = 1/2;

iv) and, 0 ≤ a < [(2β − 1/2)/(2β − 1)] for 1/2 ≤ β < 1.

Remark 2.7. We note that, for a and b as above, Va,b /∈ L1(R3).

Remark 2.8. In case iii) above, the associated operator A|κ| is
bounded in Holmgren norm but not in Hilbert-Schmidt norm.
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3. Weak solutions to the Lippmann-Schwinger equation. In
this section we will analyze solutions to equation (0.2) in an abstract
sense, vis-à-vis [5], for a general subclass of cl (2β)-class potentials. We
proceed using the following result, whose proof closely follows part II
of the proof of Theorem XI.41 from [11]:

Theorem 2. Given V ∈ cl (2β) for some 0 < β ≤ 1, the operator
A|κ| +I is invertible on L2(R3) for all |κ| except, perhaps, for |κ|2 ∈ E,
where E is a certain set of Lebesgue measure zero.

Proof. We consider Aλ for complex λ. From the estimate (20.8) of
[1], we find

(4π)2||Aλ||2

≤ sup
z∈R3

∫
R6

|V (x)|βe−2βIm λ|x−y| |V (y)||V (z)|1−βe(−2+2β)Im λ|y−z|

|x− y|2β |y − z|2−2β
dx dy

≤ ||V ||22β .

So, by Fubini’s theorem and Morera’s theorem, Aλ is an analytic,
operator-valued function defined on the upper half-plane, Imλ >
0. (See the first two paragraphs of Section 4 in [2] for details.)
Furthermore, since

||Aλ1 −Aλ2 ||2β ≤ 2||A0||2β

for any real numbers λ1 and λ2, we have by the Lebesgue dominated
convergence theorem and the mean value theorem that ||Aλ||2β is
continuous for λ on the real axis, Imλ = 0, and, hence, so is ||Aλ||.
Similarly, one can show that

lim
Im λ→+∞

||Aλ|| = 0

where the limit is independent of Reλ. Therefore, there is a positive
number γo for which (Aλ + I)−1 is analytic whenever Imλ > γo. Now,
the statement of the theorem follows from a version of the analytic
Fredholm theorem (see Proposition of page 101 in [11] and the two
paragraphs which follow) whereby the exceptional set E ⊂ R is closed
and of Lebesgue measure 0.
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Remark 3.1. As in [11], we likewise note that, by the Riemann-
Lebesgue lemma, the set E is bounded.

Remark 3.2. Given a potential of the form cV where V ∈ cl (2β) for
some 0 < β ≤ 1 and c > 0 is sufficiently small, ||A|κ||| can be made so
small that (A|κ| + I)−1 exists for all |κ|; in which case, E is empty.

In the next theorem we consider, for certain measure spaces, solutions
to equation (0.2) as weak limits. For κ2 /∈ E , define for m = 1, 2, . . . the
bounded operators G|κ|,m

def= (A|κ| + I)−1gm on L2(R3) for functions
gR as in (1.15). Suppose V 1/2eiκ·x ∈ X∗, the dual space of a closed
subspace X of L2(R3), and let Y

def= (A|κ| + I)(X) (which, since A|κ|
is compact, is also a closed subspace of L2(R3)). We construct weak
solutions to (0.2) in the sense that G∗

|κ|,m(V 1/2eiκ·x) converges almost
everywhere to a function g ∈ Y∗. Indeed, we state

Theorem 3. For all |κ|2 /∈ E, the sequence of operators G∗
|κ|,m for

m = 1, 2, . . . , converges in the weak-∗ sense to an operator

G∗ : X∗ → Y∗.

In particular, G∗(eiκ·(·)V 1/2) ∈ Y∗.

Proof. Choose functions w ∈ Y and v ∈ X∗. Then, g def= (A|κ| +
I)−1(w) ∈ X and, therefore, for each m

(3.3)

∫
R3
G∗

|κ|,m(v)(x)w(x) dx =
∫
R3
v(x)gm(x)(A|κ|+I)−1(w)(x) dx

=
∫
R3
v(x)gm(x)g(x) dx.

The result now follows by the Lebesgue dominated convergence theo-
rem.

Before we state the next result, we make the following definitions.
We will denote by Cη,δ the open cone given by

Cη,δ
def=

{
x :

x · η
|x| > δ

}
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for some −1 < δ < 1 and for some unit vector η ∈ R3. Given δ, a
function φ(x) will be said to be rapidly decreasing on the cone Cη,δ if,
for every positive integer j,

lim
|x|→∞

sup
(x·η)/|x|>δ

|x|j |φ(x)| = 0

and the expression f ∼ h on Cη,δ will mean that the difference f − h
is rapidly decreasing on Cη,δ. Finally, a function f is said to be
polynomially bounded if f(x) � (1 + |x|)α for some α > 0.

In the context of Theorem 3, we find asymptotic relationships between
certain functions g(x) and the associated functions w(x) for large
r

def= |x|. Defining F def= V 1/2g, for |κ|2 /∈ E ⋃{0} we state

Theorem 4. Suppose that V (x) ∈ C∞(R3) is polynomially bounded
and that F as above is supported in the complement of a cone Cη,δ

where, for some γ > 3, F satisfies

∣∣∣∣ dj

d rj
F

∣∣∣∣ � (1 + r2)−(γ+j)/2

on R3 for each j = 0, 1, 2, . . . . Then, w(x) ∼ g(x) on C−η,δ′ for any δ′

such that δ < δ′ < 1.

Proof. For a given cone Cη,δ , we will show that w(x) = g(x) + φ(x)
where φ(x) = A|κ|(g)(x) is rapidly decreasing on C−η,δ′ . To this end,
it suffices to show that, for |κ|2 /∈ E ∪ {0},

T|κ|(g)(x)
def=

∫
R3

ei|κ||x−y|

|x− y| F (y) dy

is rapidly decreasing on C−η,δ′ . For ω def= (x/r), x = 0, fixed, we intro-

duce the variable u def= (y/r) − ω, and we define s def= |u| and ν
def= (u/s)
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to write

T|κ|(g)(x) = T|κ|(g)(rω)

=
∫
R3

eir|κ||ω−(y/r)|

r|ω − (y/r)| F (y) dy

=
∫
eir|κ||u|

|u| F
(
r(ω + u)

)
r2 du

= r2
∫

S2\Cη,δ

∫ ∞

0

eir|κ|ssF
(
r(ω + sν)

)
ds dΩ(ν).

Now, by the Lebesgue dominated convergence theorem and the Fubini-
Tonelli theorem, it suffices to show that

(3.4)
∫ ∞

0

eir|κ|ssF (r(ω + sν)) ds

rapidly decreases, as r → ∞, uniformly in ν. Supposing r ≥ 1, it
follows by induction and the chain rule that, for each j = 0, 1, 2, . . .
with d

def= δ′ − δ,

(3.5)

dj

d sj
[sF (r(ω + sν))] � rj(sj+2 + 1)

(1 + r2(s2 + 2sω · ν + 1))(γ+j)/2

� rj(sj+2 + 1)
(1 + r2(s− 1)2 + 2dr2s)(γ+j)/2

�
{

[(rjsj+2)/((rs)γ+j)] : s ≥ 2

[rj/((1 + r2s))(γ+j)/2] : 0 ≤ s < 2

� (s+ 1)2−γ

uniformly for r ≥ 1. In (3.5) we use that ω · ν ≥ 1 − d for ω ∈ C−η,δ

and sν ∈ suppF . Therefore,

dj

d sj
[sF (r(ω + sν))] ∈ L1(R, ds)

for each j and, hence, it follows from the Riemann-Lebesgue lemma
that the integral (3.4) indeed rapidly decreases, as r → ∞; so the
result is now immediate.
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We apply this result to some non-Rollnik, cl (2β)-class potentials: We
state

Corollary 2. For V = Va,b as in Theorem 1, the conclusion of
Theorem 1 holds for any g ∈ S(R3).

Proof. We need only to show that all derivatives of Va,b are polyno-
mially bounded. Using the chain rule,

∂j

∂ xj
1

χk(x) = kbj

(
∂j

∂ xj
1

χ1

)
((x1 + 1)kb − k, x2, x3)

and

∂j

∂ xj
l

χk(x) =
(
∂j

∂ xj
l

χ1

)
((x1 + 1)kb − k, x2, x3)

for l = 2, 3 so that for any 3-index variable α = (α1, α2, α3),

|∂α
x
χk(x)| ≤ kα1b|∂α

x
χk(x)|.

Now, for C = supx∈E1
|∂α

x
χ1(x)|, and for hk denoting the characteristic

function of the set Ek, we have

(3.6)

|∂α
xVa,b(x)| =

∣∣∣∣
∞∑

k=1

ka∂α
x
χk(x)

∣∣∣∣
≤

∞∑
k=1

ka|∂α
x
χk(x)|

=
∞∑

k=1

kα1b+a
∣∣(∂α

x
χ1)((x1 + 1)kb − k, x2, x3)

∣∣
≤

∞∑
k=1

kα1b+aChk(x)

so that
∂α

xVa,b(x) � (1 + |x|)b|α|+a.
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4. Resolvent and spectrum of H. We now consider operators
of the form H = Ho + cVa,b with real, nonzero (coupling) constants
c and potential Va,b as above. With fixed a and b, we estimate L2

inner products of the form (f,R(λ)g) for appropriate f and g where
R(λ) is the resolvent operator for H, given by R(λ) def= (H − λ)−1. We
then apply these results in the study of the spectrum of H. First, we
consider the operator Bλ, defined by

(Bλf)(x) = V
1/2
a,b (x)

∫
R3

ei
√

λ|x−y|

|x− y| f(y) dy,

and seek a closed subspace H̃ of L2(R3) for which the operator-valued
function Bλ takes values in L(H̃;L2(R3)). (We will take

√
λ to have

positive imaginary part for λ ∈ C \ [0,∞).) In particular, we proceed
to construct such a space of the form H̃ = L2(R3; dν) for a measure
ν equivalent to Lebesgue measure. To this end, we find a class of
functions φ ∈ L2(R3) for which suppφ = R3 and Bλ(φ) ∈ L2(R3).
Indeed, we have

Proposition 5. There are measurable functions φ which are positive
throughout R3 for which the operator-valued function

(4.1) λ �−→ Bλ ◦ φ

takes values of Hilbert-Schmidt class for each λ ∈ [0,∞).

In (4.1), φ represents the operation of multiplication by the func-
tion φ.

Proof. Denote by Sr the set

Sr
def=

{
(y1, y2, y3)|y1 ≥ 0,

√
y2
2 + y2

3 ≤ r

}

and write φ in the form φ2(y) = φ1(y)+φ2(y) where suppφ1 ⊂ S3 and
suppφ2 ⊂ R3 \ S2. Denote by D the set

D
def=

{
(y1, y2, y3)|0 ≤ y1 < 1,

√
y2
2 + y2

3 ≤ 3
}
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and for k ∈ N define Dk
def= {y − (k − 1, 0, 0) | y ∈ D}. Let φ1 be the

function, positive-valued on S3, given by

φ1(y) =
∞∑

l=1

l−αDl(y)

for α > a + 2 where Dl denotes the characteristic function of the set
Dl. We compute according to a change of variables as before∫∫

χ1(x)D1(y)
|x− y|2 dy dx ≤

∫
4π

∫ r0

0

χ1(x) dr dx

= 4πr0μ(E1)

where r0 = diam (D ∪ E1). For k ≥ 2,∫∫
χk(x)D1(y)
|x− y|2 dx dy ≤

∫∫
χk(x)D1(y)

(k − 1)2
dx dy

=
μ(Ek)μ(D1)

(k − 1)2

=
9πμ(Ek)
(k − 1)2

.

So, ∫∫
Va,b(x)D1(y)

|x− y|2 dx dy ≤ 4πr0μ(E1) + 9π
∞∑

k=2

kaμ(Ek)
(k − 1)2

which is finite for b− a > −1.

Now, for k ≥ l,

χk(x+ (l − 1, 0, 0)) ≤ χk−l+1(x)

so that, for l ≥ 2,∫∫ ∑
k≥l k

aχk(x)Dl(y)
|x− y|2 dx dy

=
∫∫ ∑∞

j=0(j + l)aχj+l(x)Dl(y)
|x− y|2 dx dy

≤
∫∫ ∑∞

j=0 l
a((j/l) + 1)aχj+1(x)D1(y)

|x− y|2 dx dy

≤ la
∫∫

Va,b(x)D1(y)
|x− y|2 dx dy.
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For k < l,

∫∫
kaχk(x)Dl(y)

|x− y|2 dx dy ≤ laμ(Ek)μ(D1)/(1/4)

so that

(4.3)
∫∫ ∑l−1

j=1
χj(x)Dl(y)

|x− y|2 dx dy ≤ 4la+1μ(E1)μ(D1).

Therefore, by (4.2) and (4.3) we have that, for some positive constant
C independent of l,

(4.4)
∫∫

Va,b(x)Dl(y)
|x− y|2 dx dy < Cla+1

and, hence, the integral

∫∫
Va,b(x)φ1(y)

|x− y|2 dx dy

converges.

Next, we consider functions φ2 with the following properties:

φ2 ∈ L1(C0)

where

C0
def= {(x1, x2, x3)|x1 < 0}

⋃{
(x1, x2, x3)|x1 ≥ 0, 2+x1 ≤

√
x2

2 + x2
3

}
;

and
φ2(x) ≤ e−(k+1)|x|2

on

Ck
def=

{
(x1, x2, x3)|x1 > 0, 2 +

1
k + 1

x1 <
√
x2

2 + x2
3 ≤ 2 +

1
k
x1

}

for each k ∈ N, respectively.
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Since d(Ek, C0) > k, we have, for some positive constant C, indepen-
dent of k,

∫
C0

∫
R3

χk(x)φ2(y)
|x− y|2 dx dy ≤ 1

k2
μ(Ek)

∫
C0

φ2(y) dy ≤ Ck−b−2

so that ∫
C0

∫
R3

Va,b(x)φ2(y)
|x− y|2 dx dy ≤

∞∑
k=1

C/kb−a+2

which is finite for b− a > −1.

For x ∈ suppV and y ∈ Ck−1 for k ≥ 2, we estimate |x− y|: It is not
difficult to show that for x = (x1, 1, 0) and y = (y1, 2 + (1/k)y1, 0)

(4.5)
|x− y|2 ≥ k2

(k2 + 1)2

[(
x1

k
+ 1

)2

+ (x1 + k)2
]

>
1
2

1
k2

[x1 + 1]2;

and, by the symmetry of these sets about the positive x1-axis, the same
estimate (4.5) holds for all y ∈ Ck−1 and x ∈ suppV .

Now, for y ∈ Ck−1, we have that φ2(y) ≤ e−k(4+y2
1) and that

∫
El

χl(x)
|x− y|2 dx ≤

∫
El

2k2

(1 + x1)2
dx ≤ 2k2μ(El)

(l + 1)2
.

So, we compute, using cylindrical coordinates with r2 = y2
2 + y2

3 ,

(4.6)∫∫
χl(x)φ2(y)
|x− y|2 dx dy ≤ 2π

∫
El

∫ ∞

0

∫ 2+(y1/k)

2+(y1/(k+1))

e−k(4−y2
1)

(1+x1)2
r dr dy1 dx

≤ πμ(El)e−4k

(l + 1)2

×
∫ ∞

0

k2

[(
2+

y1
k

)2

−
(

2+
y1
k+1

)2]
e−ky2

1 dy1

≤ Ce−4k

lb+2
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for some positive constant C independent of l and k. Hence, for each l,

∫∫
⋃∞

k=1
Ck

χl(x)φ2(y)
|x− y|2 dy dx ≤

∞∑
k=1

∫∫
Ck

χl(x)φ2(y)
|x− y|2 dx dy

≤ C

lb+2

∞∑
k=1

e−4k ≤ C̃

lb+2

for C̃ = C/(e4 − 1).

It follows that, for b− a > −1,

∫∫
⋃∞

k=1
Ck

Va,b(x)φ2(y)
|x− y|2 dx dy

also converges, and we are done.

Now, given φ as in Proposition 5, define the Hilbert space

H̃ def=
{
f ∈ L2(R3) :

f

φ
∈ L2(R3)

}
.

Since φ(x) ∈ L2(R3), H̃ ⊂ L1(R3) ∩ L2(R3). Hence, functions f ∈ H̃,
are of Rollnik class and satisfy |f |1/2 ∈ L2(R3). Therefore, the operator
|f |1/2(H0 − λ)−1|f |1/2 is of Hilbert-Schmidt class. This immediately
gives

Proposition 6. Given f ∈ H̃, the function λ→ (f, (H0 − λ)−1f) is
uniformly bounded for λ ∈ C \ [0,∞).

Noting that H̃ is dense in L2(R3), we apply the criteria of Theorem
XIII.19 [11] to demonstrate the absence of singular spectrum, σsing (H),
of H with V = cVa,b for certain nonzero constants c.

Theorem 5. Let 0 < s < t be chosen so that [s, t] ∩ E = ∅.

a) If (I +A√
λ)−1 is uniformly bounded for λ in a complex neighbor-

hood containing [s, t], then σsing(H)
⋂

[s, t] = ∅.
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b) If c is chosen so that the integral operator A|κ| satisfies for some
0 < β < 1

||A|κ|||2β < 1

for some, hence for all, κ, then σsing (H) = ∅.

Proof. It suffices to show that (f,R(λ)f) is uniformly bounded for
Reλ ∈ [s, t] as such for Imλ > 0. Choose f ∈ H̃ and note that Bλ̄ ◦ φ
and (I+A√

λ)−1◦Bλ◦φ are each Hilbert-Schmidt (bounded) operators.
For λ /∈ [0,∞),

Bλ = Va,b(H0 − λ)−1

so that, by using an identity from Section XI.6 [11], we obtain for
λ /∈ σ(H)

(H − λ)−1 = (Ho − λ)−1 − (Bλ̄)∗ ◦ [I +A√
λ]−1 ◦Bλ.

Therefore, for Imλ > 0,

(
f, (H − λ)−1f

) − (
f, (H0 − λ)−1f

)
= −

(
Bλ̄ ◦ φ

(
f

φ

)
, [I +A√

λ]−1Bλ ◦ φ
(
f

φ

))

= −
(
Bλ̄ ◦ φ

(
f

φ

)
, [I +A√

λ]−1Bλ ◦ φ
(
f

φ

))
.

With Proposition 5 in hand, the result of part a) follows since Bλ ◦ φ
and Bλ̄ ◦ φ are each uniformly bounded in λ.

To prove part b), we note that ||A√
λ|| ≤ ||A√

λ||2β < 1, so that
(I + A√

λ)−1 is uniformly bounded in λ.

Remark 4.7. We note that the absence of singular spectra for our
operators H = Ho + cVa,b may be shown simply by applying Stone’s
formula merely for a dense subspace of functions f . Yet, the method
above produces an actual weighted Hilbert space on which (f,R(λ)f)
for Imλ > 0 extends continuously to [0,∞) \ E .
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