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JACOBI AND MODULAR FORMS
ON SYMMETRIC DOMAINS

MIN HO LEE

ABSTRACT. We prove that there is an isomorphism be-
tween the space of Jacobi forms on a symmetric domain asso-
ciated to an equivariant holomorphic map and the space of a
certain vector-valued modular form of half-integral weight on
the given symmetric domain. We also construct Eisenstein se-
ries for Jacobi forms on symmetric domains and express those
in terms of theta functions.

1. Introduction. Jacobi forms on the Poincaré upper half plane
or more generally on Siegel upper half spaces generalize classical theta
functions, and they arise naturally as coefficients of Siegel modular
forms, cf., [3, 17]. As is expected, they play an important role in
number theory, and various arithmetic aspects of such Jacobi forms
have been investigated in numerous papers, see, e.g., [5, 7, 11, 14].
On the geometric side, they are closely linked to elliptic surfaces over
modular curves or families of abelian varieties parametrized by Siegel
modular varieties, see [8, 15]. Jacobi forms are also related to elliptic
genera of complex manifolds, and they appear as partition functions
of super symmetric sigma models whose target spaces are Calabi-Yau
manifolds, see [4].

The Poincaré upper half plane and Siegel upper half spaces are special
cases of (Hermitian) symmetric domains, and Jacobi forms can also be
defined on symmetric domains. For example, Borcherds studied Jacobi
forms on symmetric domains associated to orthogonal groups, cf., [1,
2]. We are interested in symmetric domains which allow equivariant
holomorphic maps into Siegel upper half spaces. Let D be a symmetric
domain associated to a semi-simple Lie group G of Hermitian type, and
let Hn be the Siegel upper half space of degree n. We assume that there
is a holomorphic map τ : D → Hn that is equivariant with respect to a
homomorphism ρ : G → Sp (n) of Lie groups. Then we can construct
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Jacobi forms on D by essentially pulling back the usual ones on Hn via
τ , cf., [10]. If Γ is a torsion-free discrete subgroup of G, a family of
abelian varieties parametrized by the locally symmetric space Γ\D can
be constructed. In fact, this family is given by a fiber bundle over Γ\D
whose fibers are abelian varieties, and the total space of this bundle
is known as a Kuga fiber variety. Jacobi forms on D of this type can
be identified with sections of a line bundle over a Kuga fiber variety,
cf., [9], and they can be used to prove the algebraicity of Kuga fiber
varieties, see [12, Section IV.8].

In addition to their occurrence as Fourier coefficients of Siegel mod-
ular forms described above, Jacobi forms on Siegel upper half spaces
are also closely connected with modular forms in other ways. One such
connection can be provided via an isomorphism between the space of
Jacobi forms and the space of certain vector-valued modular forms of
half-integral weight, see, e.g., [5, 13, 16]. In this paper we establish
such an isomorphism for Jacobi forms on symmetric domains associated
to equivariant holomorphic maps. We also construct Eisenstein series
for such Jacobi forms and express those in terms of theta functions.

2. Jacobi forms on Siegel upper half spaces. In this section we
review some of the properties of Jacobi forms on Siegel upper half spaces
as well as associated Jacobi groups. We also discuss theta functions on
Siegel upper half spaces and their relations with such Jacobi forms.

We fix a positive integer n, and denote by H the Heisenberg group
associated to Rn. Thus H consists of the triples [u, v, λ] with u, v ∈ Rn

and λ ∈ R whose multiplication operation is given by

[u, v, λ] · [u′, v′, λ′] = [u + u′, v + v′, λ + λ′ + uv′t − vu′t]

for λ, λ′ ∈ R and u, v, u′, v′ ∈ Rn considered as row vectors. Then the
symplectic group Sp (n,R) acts on H on the right by

[u, v, λ] · M = [(u, v)M, λ]

for M ∈ Sp (n,R) and [u, v, λ] ∈ H, where (u, v)M is the matrix
product of the row vector (u, v) ∈ R2n and the matrix M . The
associated Jacobi group GJ

n is the semi-direct product Sp (n,R) � H
with respect to this action, so that its multiplication operation is given



JACOBI AND MODULAR FORMS 1193

by

(M, [u, v, λ]) · (M ′, [u′, v′, λ′])
= (MM ′, ([u, v, λ] · M ′) · [u′, v′, λ′])
= (MM ′, [û + u′, v̂ + v′, λ + λ′ + ûv′t − v̂u′t]),

where û, v̂ ∈ Rn with (û, v̂) = (u, v)M ′.

Denoting by Hn the Siegel upper half space of degree n, the symplec-
tic group Sp (n,R) operates on Hn as usual by

M〈ζ〉 = (Aζ + B)(Cζ + D)−1

for all ζ ∈ Hn and M =
(

A B

C D

)
∈ Sp (n,R), and the Jacobi group GJ

n

acts on Hn × Cn by

(2.1) (M, [u, v, λ]) · (ζ, w) = (M〈ζ〉, (w + uζ + v)(Cζ + D)−1)

for M ∈ Sp (n,R), [u, v, λ] ∈ H and (ζ, w) ∈ Hn × Cn. Let
Γn = Sp (n,Z), and consider the associated discrete subgroup

(2.2) ΓJ
n = {(M, [u, v, λ]) ∈ GJ

n | M ∈ Γn; u, v ∈ Zn; λ ∈ Z}
of GJ

n. Given positive integers � and m, we define the map J�,m :
GJ

n × (Hn × Cn) → C by

(2.3) J�,m((M, [u, v, λ]), (ζ, w))
= det(Cζ+ D)�em((w + uζ+ v)(Cζ+ D)−1C(w + uζ+ v)t

− uζut − 2uwt − uvt − λ)

for M =
(

A B

C D

)
∈ Sp (n,R), [u, v, λ] ∈ H and (ζ, w) ∈ Hn × Cn,

where em(∗) = e2πmi(∗). Then J�,m is an automorphy factor of GJ
n,

which means that it satisfies the relation

(2.4) J�,m(M̃M̃ ′, (ζ, w)) = J�,m(M̃, M̃ ′ · (ζ, w)) · J�,m(M̃ ′, (ζ, w))

for M̃, M̃ ′ ∈ GJ
n and (ζ, w) ∈ Hn×Cn. Given a function F : Hn×Cn →

C, we set

(2.5) (F |�,m M̃)(ζ, w) = J�,m(M̃, (ζ, w))−1F (M̃ · (ζ, w))

for all M̃ ∈ GJ
n and (ζ, w) ∈ Hn × Cn.
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Definition 2.1. A Jacobi form of weight � and index m for ΓJ
n is

a holomorphic function F : Hn × Cn → C satisfying the following
conditions:

(i) F |�,m M̃ = F for all M̃ ∈ ΓJ
n.

(ii) For each M ∈ Γn = Sp (n,Z) the function F |�,m (M, [0, 0, 0])
has a Fourier expansion of the form

(F |�,m (M, [0, 0, 0]))(ζ, w) =
∑
T,r

a(T, r) · e(Tr (Tζ)/ν) · e(rwt)

for some ν ∈ Z, where T runs over n × n symmetric half integral
matrices and r over the elements of Zn, and a(T, r) �= 0 only if the
matrix

(
T/ν r/2

rt/2 m

)
is positive semi-definite.

Remark 2.1. It is well-known that Koecher’s principle holds for
Jacobi forms, which means that the condition (ii) in Definition 2.1
is automatically satisfied for n > 1, assuming that the condition (i)
holds.

Given rational vectors a, b ∈ Qn, we denote by θa,b the associated
theta function on the Siegel upper half space Hn given by

(2.6) θa,b(ζ, w) =
∑

q∈Zn

e
(

1
2
(q + a)ζ(q + a)t + (q + a)(w + b)t

)

for all ζ ∈ Hn and w ∈ Cn. For fixed ζ ∈ Hn and a positive integer
m, let Rm(ζ) be the complex vector space of all holomorphic functions
h : Cn → C satisfying

h(w + λζ + μ) = em

(
−1

2
λζλt − λwt

)
h(w)

for all λ, μ ∈ Zn and w ∈ Cn. We denote by Ξm the subset of Qn given
by
(2.7)

Ξm = {r = (r1, . . . , rn) ∈ Qn | 0 ≤ ri < 1, 2mri ∈ Z for 1 ≤ i ≤ n}.
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Thus Ξm is in fact a set of representatives of the abelian group
(1/2m)Zn modulo Zn.

Proposition 2.1. Given ζ ∈ Hn and a positive integer m, the set

{θr,0(2mζ, 2mw) | r ∈ Ξm}
of functions w 	→ θr,0(2mζ, 2mw) on Cn with r ∈ Ξm is a basis for
Rm(ζ). In particular, the dimension of Rm(ζ) is (2m)n.

Proof. This follows from the remarks given on page 187 in [6].

Proposition 2.2. If M =
(

A B

C D

)
∈ Γn and r ∈ Ξm, then we have

(2.8) θr,0(2mMζ, 2mw(Cζ + D)−1)

= det(Cζ + D)1/2em(w(Cζ + D)−1Cwt)

×
∑

s∈Ξm

urs(M)θs,0(2mζ, 2mw)

for all (ζ, w) ∈ Hn × Cn, where the matrix (urs(M)) is a constant
unitary (2m)n × (2m)n matrix depending on the choice of det(Cζ +
D)1/2.

Proof. This follows from Theorem 6 in [6, Section II.5], see also [16,
Proposition 2.5].

3. Jacobi forms on symmetric domains. In this section we
consider Jacobi forms as well as modular forms on symmetric domains
which allow equivariant holomorphic maps into Siegel upper half spaces.
We then establish a correspondence between such Jacobi and modular
forms.

Let G be a semi-simple Lie group of Hermitian type. Thus, if K is
a maximal compact subgroup of G, the associated symmetric space
D = G/K is a symmetric domain. We assume that there are a
homomorphism ρ : G → Sp (n,R) of Lie groups and a holomorphic
map τ : D → Hn such that

(3.1) τ (gz) = ρ(g)τ (z)
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for all z ∈ D and g ∈ G. Then G operates on the Heisenberg group
H = Rn × Rn × R described in Section 2 by

[u, v, λ] · g = [(u, v) · ρ(g), λ]

for g ∈ G and [u, v, λ] ∈ H. We define the generalized Jacobi group GJ

to be the semi-direct product G � H with multiplication given by

(g, [u, v, λ]) · (g′, [u′, v′, λ′]) = (gg′, ([u, v, λ] · g) · [u′, v′, λ′])
= (gg′, [û + u′, v̂ + v′, λ + λ′ + ûv′t − v̂u′t]),

where û, v̂ ∈ Rn with (û, v̂) = (u, v)ρ(g′).

Given positive integers � and m, we denote by Jρ,τ
�,m : GJ×(D×Cn) →

C the map given by

(3.2) Jρ,τ
�,m((g, [u, v, λ]), (z, w)) = J�,m((ρ(g), [u, v, λ]), (τ (z), w))

for all (g, [u, v, λ]) ∈ GJ and (z, w) ∈ D × Cn. Then, using (2.4) and
(3.1), it can be easily shown that the map Jρ,τ

�,m is an automorphy factor
of GJ , that is, it satisfies

(3.3) Jρ,τ
�,m(g̃g̃′, (z, w)) = Jρ,τ

�,m(g̃, g̃′ · (z, w)) · Jρ,τ
�,m(g̃′, (z, w))

for g̃, g̃′ ∈ GJ and (z, w) ∈ D×Cn. We also see that the action in (2.1)
can be extended to the action of GJ on D × Cn given by

(g, [u, v, λ]) · (z, w) = (gz, (w + uτ (z) + v)(Cρz + Dρ)−1)

for all (z, w) ∈ D×Cn, [u, v, λ] ∈ H and g ∈ G with ρ(g) =
(

AρBρ

CρDρ

)
∈

Sp (n,R). Thus, for such g ∈ G and (z, w) ∈ D × Cn, we obtain an
operation of GJ on complex-valued functions F on D × Cn by setting

(3.4) (F |ρ,τ
�,m (g, [u, v, λ]))(z, w)

= Jρ,τ
�,m((g, [u, v, λ]), (z, w))−1 · F ((g, [u, v, λ]) · (z, w))

= Jρ,τ
�,m((g, [u, v, λ]), (z, w))−1 · F (gz, (w + uτ (z) + v)(Cρz + Dρ)−1).

We now take a discrete subgroup Γ of G such that ρ(Γ) ⊂ Γn =
Sp (n,Z), and set

ΓJ = {(γ, [u, v, λ]) ∈ GJ | γ ∈ Γ; u, v ∈ Zn; λ ∈ Z},

so that ΓJ becomes a discrete subgroup of GJ .
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Definition 3.1. A holomorphic map F : D × Cn → C is a Jacobi
form of weight � and index m for ΓJ associated to ρ and τ if

F |ρ,τ
�,m g̃ = F

for all g̃ ∈ ΓJ . We denote by J�,m(ΓJ , ρ, τ) the set of all Jacobi forms
of weight � and index m for ΓJ associated to ρ and τ .

Given a, b ∈ Qn and a positive integer m, we consider the associated
theta function ϑm

a,b(z, w) on D × Cn defined by

(3.5) ϑm
a,b(z, w) = θa,b(2mτ (z), 2mw)

for all (z, w) ∈ D × Cn, where θa,b is the theta function in (2.6).

Proposition 3.1. If Φ : D×Cn → C is an element of J�,m(ΓJ , ρ, τ),
then there are holomorphic functions fr : D → C with r ∈ Ξm such
that

(3.6) Φ(z, w) =
∑

r∈Ξm

fr(z)ϑm
r,0(z, w)

for all z ∈ D and w ∈ Cn, where Ξm is as in (2.7).

Proof. Given z ∈ D, using (3.5) and Proposition 2.1, we see that the
set {ϑm

a,b(z, ·) | r ∈ Ξm} of functions w 	→ ϑm
a,b(z, w) on Cn is a basis

for Rm(τ (z)). If Φ(z, w) ∈ J�,m(ΓJ , ρ, τ), the function w 	→ Φ(z, w) is
an element of Rm(τ (z)); hence we obtain

Φ(z, w) =
∑

r∈Ξm

fr(z)ϑm
r,0(z, w)

for some functions fr : D → C with r ∈ Ξm. It can be shown that each
fr is holomorphic by adopting the argument used in [13, Lemma 3.4]
and the fact that the symmetric domain D can be realized as a bounded
domain in Cp for some positive integer p; hence the proposition follows.
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Proposition 3.2. Let r be an element of Ξm, and let γ ∈ Γ with
ρ(γ) =

(
AρBρ

CρDρ

)
∈ Sp (n,Z). Then we have

(3.7) ϑm
r,0(γz, w(Cρτ (z) + Dρ)−1)

= det(Cρτ (z) + Dρ)1/2em(w(Cρτ (z) + Dρ)−1Cρw
t)

×
∑

s∈Ξm

uρ
rs(γ)ϑm

r,0(z, w)

for all z ∈ D and w ∈ Cn, where the matrix (uρ
rs(γ)) is a constant

unitary (2m)n×(2m)n matrix depending on the choice of det(Cρτ (z)+
Dρ)1/2.

Proof. Using (2.8), (3.1) and (3.5), we have

ϑm
r,0(γz, w(Cρτ (z) + Dρ)−1)

= θr,0(2mρ(γ)τ (z), 2mw(Cρτ (z) + Dρ)−1)

= det(Cρτ (z) + Dρ)1/2em(w(Cρτ (z) + Dρ)−1Cρw
t)

×
∑

s∈Ξm

urs(ρ(γ))ϑm
s,0(z, w)

for all z ∈ D. Thus we obtain (3.7) by setting uρ
rs(γ) = urs(ρ(γ)).

Definition 3.2. Let W : Γ → Ck,k be a function on Γ with values
in the space Ck,k of complex k × k matrices, and let j ∈ (1/2)Z. A
Cn-valued holomorphic function h = (h1, . . . , hk) : D → Cn on D is a
vector-valued modular form for Γ of weight j with respect to W , ρ and
τ if

h(γz)W (γ) = det(Cρτ (z) + Dρ)jh(z)

for all z ∈ D and γ ∈ Γ with ρ(γ) =
(

AρBρ

CρDρ

)
∈ Sp (n,Z). We denote by

MW
j (Γ, ρ, τ) the complex vector space consisting of all vector-valued

modular forms for Γ of weight j with respect to W , ρ and τ .

Theorem 3.1. Let U : Γ → C2m,2m be the map given by U(γ) =
(uρ

rs(γ)) for all γ ∈ Γ, where the functions uρ
rs : Γ → C are as in
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Proposition 3.2. Then the space J�,m(ΓJ , ρ, τ) of Jacobi forms of weight
� and index m for ΓJ associated to ρ and τ is canonically isomorphic
to the space MU

�−1/2(Γ, ρ, τ ) of vector-valued modular forms for Γ of
weight � − 1/2 with respect to U , ρ and τ .

Proof. Let Φ(z, w) ∈ J�,m(ΓJ , ρ, τ), and let γ ∈ Γ with ρ(γ) =(
AρBρ

CρDρ

)
∈ Sp (n,Z). Using (2.3), (3.2) and (3.4), we have

Φ(z, w) = Φ |ρ,τ
�,m (γ, [0, 0, 0])(z, w)

= Jρ,τ
�,m((γ, [0, 0, 0]), (z, w))−1Φ(γz, w(Cρτ (z) + Dρ)−1)

= det(Cρτ (z) + Dρ)−�em(−w(Cρτ (z) + Dρ)−1Cρw
t)

× Φ(γz, w(Cρτ (z) + Dρ)−1)

for all (z, w) ∈ D × Cn. Thus we see that

(3.8) Φ(γz, w(Cρτ (z) + Dρ)−1)
= det(Cρτ (z) + Dρ)�em(w(Cρτ (z) + Dρ)−1Cρw

t)Φ(z, w).

Let (fr(z))r∈Ξm
be the system of holomorphic functions on D associated

to Φ(z, w) satisfying (3.6). Then the relation (3.8) can be written in
the form∑

r∈Ξm

fr(γz)ϑm
r,0(γz, w(Cρτ (z) + Dρ)−1)

= det(Cρτ (z) + Dρ)�em(w(Cρτ (z) + Dρ)−1Cρw
t)

×
∑

r∈Ξm

fr(z)ϑm
r,0(z, w).

Thus, by using (3.7) we see that∑
s∈Ξm

∑
r∈Ξm

fr(γz)uρ
rs(γ)ϑm

r,0(z, w)

= det(Cρτ (z) + Dρ)�−1/2
∑

s∈Ξm

fs(z)ϑm
r,0(z, w).

Hence we obtain∑
r∈Ξm

fr(γz)uρ
rs(γ) = det(Cρτ (z) + Dρ)�−1/2fs(z)
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for each s ∈ Ξm, and therefore it follows that C2n-valued function
f(z) = (fr(z))r∈Ξm

is an element of MU
�−1/2(Γ, ρ, τ). On the other

hand, if f(z) = (fr(z))r∈Ξm
is an element of MU

�−1/2(Γ, ρ, τ), the
relations used above show that the function Φ(z, w) given by (3.6) is
an element of J�,m(ΓJ , ρ, τ ); hence the theorem follows.

4. Eisenstein series. In this section we construct Eisenstein series
for a discrete subgroup of the Jacobi group associated to a semi-simple
Lie group of Hermitian type, which provide examples of Jacobi forms on
symmetric domains. We also express those in terms of theta functions
on symmetric domains.

Let GJ
n be the Jacobi group associated to Sp (n,R) described in

Section 2, and set

Γn,0 =
{(

A B
C D

)
∈ Sp (n,Z)

∣∣∣∣ C = 0
}

,

ΓJ
n,0 =

{
(γ, [u, v, λ]) ∈ ΓJ

n | γ ∈ Γn,0, u = 0
}
,

where ΓJ
n ⊂ GJ

n is as in (2.2). By (2.5) the constant function 1 on
Hn ×Cn satisfies 1 |�,m M̃ = 1 for all M̃ ∈ ΓJ

n,0; hence we can consider
the Eisenstein series for Jacobi forms for the Siegel upper half space
Hn given by

(4.1) E�,m(ζ, w) =
∑

M̃∈ΓJ
n,0\ΓJ

n

(1 |�,m M̃)(ζ, w)

for all (ζ, w) ∈ Hn × Cn, see [16].

Let D, G, ρ, τ , GJ , Γ ⊂ G and ΓJ ⊂ GJ be as in Section 3, and
define the subgroup ΓJ

0 of ΓJ by

(4.2) ΓJ
0 =

{
(γ, [u, v, λ]) ∈ ΓJ | ρ(γ)g ∈ Γn,0, u = 0

}
.

Then by using (2.3) and (3.2) we see that the constant function 1 on
D × Cn satisfies 1 |ρ,τ

�,m δ̃ = 1 for all δ̃ ∈ ΓJ
0 . Thus we can consider the

Eisenstein series defined by

(4.3) Eρ,τ
�,m(z, w) =

∑
δ̃∈ΓJ

0 \ΓJ

(1 |ρ,τ
�,m δ̃)(z, w)

for (z, w) ∈ D × Cn.
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Using (3.3) and (3.4), for each γ̃ ∈ ΓJ we have

(Eρ,τ
�,m |ρ,τ

�,m γ̃)(z, w) =
∑

δ̃∈ΓJ
0 \ΓJ

(1 |ρ,τ
�,m δ̃ |ρ,τ

�,m γ̃)(z, w)

=
∑

δ̃∈ΓJ
0 \ΓJ

(1 |ρ,τ
�,m δ̃γ̃)(z, w) = Eρ,τ

�,m(z, w).

Thus we see that Eρ,τ
�,m(z, w) satisfies the transformation formula for

Jacobi forms of weight � and index m for ΓJ associated to ρ and τ .
The fact that Eρ,τ

�,m(z, w) is indeed an element of J�,m(ΓJ , ρ, τ) follows
from the next theorem.

Theorem 4.1. Let � be an even integer with � > n + 2. Then the
Eisenstein series in (4.2) converges absolutely and uniformly on any
compact subset of D × Cn. Furthermore, it can be written in the form

(4.4) Eρ,τ
�,m(z, w) =

∑
γ∈Γ0\Γ

(ϑm
0,0 |ρ,τ

�,m (γ, [0, 0, 0]))(z, w)

for all (z, w) ∈ D × Cn, where Γ0 = {γ ∈ Γ | ρ(γ) ∈ Γn,0}.

Proof. If δ̃ = (δ, [u, v, λ]) ∈ ΓJ , then by (2.5), (3.2) and (3.3) we see
that

(1 |ρ,τ
�,m δ̃)(z, w) = Jρ,τ

�,m((δ, [u, v, λ]), (z, w))−1

= J�,m((ρ(δ), [u, v, λ])), (τ (z), w))−1

= (1 |�,m (ρ(δ), [u, v, λ])))(τ (z), w)

for all (z, w) ∈ D × Cn. Thus by using this and (4.3) we obtain

Eρ,τ
�,m(z, w) =

∑
δ̃∈ΓJ

0 \ΓJ

(1 |ρ,τ
�,m (δ, [u, v, λ]))(z, w)

=
∑

δ̃∈ΓJ
0 \ΓJ

(1 |�,m (ρ(δ), [u, v, λ]))(τ (z), w).

However, (ρ(δ), [u, v, λ]) belongs to ΓJ
n, respectively ΓJ

n,0, if (δ, [u, v, λ])
belongs to ΓJ , respectively ΓJ

0 ; hence, we see that Eρ,τ
�,m(z, w) is a
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subseries of E�,m(τ (z), w). Thus the convergence of Eρ,τ
�,m(z, w) follows

from the corresponding property of the Eisenstein series E�,m(ζ, w) on
the Siegel upper half space Hn in (4.1), see [16, Theorem 3.1]. On the
other hand, if Δ is a complete set of representatives of Γ0\Γ, then the
set

{(γ, [(u, 0)ρ(γ), 0]) ∈ ΓJ | γ ∈ Δ, u ∈ Zn}
is a complete set of representatives of ΓJ

0 \ΓJ . If γ ∈ Δ with ρ(γ) =(
Aρ Bρ

Cρ Dρ

)
∈ Sp (n,R), then we have (u, 0)ρ(γ) = (uAρ, uBρ) and

(1 |ρ,τ
�,m (γ, [(u, 0)ρ(γ), 0]))(z, w) = det(Cρτ (z) + Dρ)−�em(S)

for all u ∈ Zn, where

S = −(w + uAρτ (z) + uBρ)(Cρτ (z) + Dρ)−1Cρ(w + uAρτ (z) + uBρ)t

+ uAρτ (z)(uAρ)t + 2uAρw
t + uAρ(uBρ)t.

Using the fact that the matrix (Cρτ (z)+Dρ)−1Cρ is symmetric, we see
that

(4.5)

S = −w(Cρτ (z) + Dρ)−1Cρw
t + uAρB

t
ρu

t

+ u(Aρτ (z)At
ρ − (Aρτ (z) + Bρ)(Cρτ (z) + Dρ)−1

× Cρ(Aρτ (z) + Bρ)t)ut

+ 2u(Aρ − (Aρτ (z) + Bρ)(Cρτ (z) + Dρ)−1Cρ)wt.

Since the matrix τ (z) ∈ Hn is symmetric and AρD
t
ρ − BρC

t
ρ = I, we

have

(4.6) Aρ − (Aρτ (z) + Bρ)(Cρτ (z) + Dρ)−1Cρ

= Aρ − (Aρτ (z) + Bρ)Ct
ρ((Cρτ (z) + Dρ)−1)t

= (Aρ(Cρτ (z) + Dρ)t − (Aρτ (z) + Bρ)Ct
ρ)((Cρτ (z) + Dρ)−1)t

= ((Cρτ (z) + Dρ)−1)t.

Hence, we obtain

(4.7) Aρτ (z)At
ρ − (Aρτ (z) + Bρ)(Cρτ (z) + Dρ)−1Cρ(Aρτ (z) + Bρ)t

= Aρτ (z)At
ρ − (Aρ − ((Cρτ (z) + Dρ)−1)t)(Aρτ (z) + Bρ)t

= −AρB
t
ρ + (Aρτ (z) + Bρ)(Cρτ (z) + Dρ)−1.
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Thus, using (4.6), (4.7) and the relation

(Aρτ (z) + Bρ)(Cρτ (z) + Dρ)−1 = ρ(γ)τ (z) = τ (γz),

we see that (4.5) reduces to

S = uτ (γz)ut + 2u(Cρτ (z) + Dρ)−1wt − w(Cρτ (z) + Dρ)−1Cρw
t.

Hence we have

Eρ,τ
�,m(z, w) =

∑
γ∈Γ0\Γ

∑
u∈Zn

det(Cρτ (z) + Dρ)−1em(S)

=
∑

γ∈Γ0\Γ
det(Cρτ (z) + Dρ)−1

× em(−w(Cρτ (z) + Dρ)−1Cρw
t)

×
∑

u∈Zn

em(uτ (γz)ut + 2u(Cρτ (z) + Dρ)−1wt)

=
∑

γ∈Γ0\Γ
det(Cρτ (z) + Dρ)−1

× em(−w(Cρτ (z) + Dρ)−1Cρw
t)

× ϑm
0,0(γz, w(Cρτ (z) + Dρ)−1),

where we used (2.6) and (3.5). Thus we obtain (4.4) by using this and
(3.4).
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