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INFINITELY MANY RADIAL AND
NON-RADIAL SOLUTIONS FOR A CLASS
OF HEMIVARIATIONAL INEQUALITIES

ALEXANDRU KRISTÁLY

ABSTRACT. This paper is concerned with the existence
of infinitely many radial respective non-radial solutions for a
class of hemivariational inequalities, applying the non-smooth
version of the fountain theorem. The main tool used in our
framework is the principle of symmetric criticality for a locally
Lipschitz functional which is invariant under a group action.

1. Introduction. Let F : RN ×R → R be a Carathéodory function
which is locally Lipschitz in the second variable, fulfilling the following
condition:

(F1) there exist c1 > 0 and p ∈ ]2, 2∗[ such that

|ξ| ≤ c1(|s| + |s|p−1), ∀ ξ ∈ ∂F (x, s), for a.e. x ∈ RN , ∀ s ∈ R,

where N ≥ 2 and p ∈ ]2, 2∗[, 2∗ = 2N/(N − 2), if N ≥ 3 and 2∗ = ∞,
if N = 2, and F (x, 0) = 0 almost everywhere x ∈ RN .

The set

∂F (x, s) = {ξ ∈ R : ξz ≤ F 0
x (x, s; z) for all z ∈ R}

is the generalized gradient of F (x, ·) at s ∈ R, where

F 0
x (x, s; z) = lim sup

y→s

t→0+

F (x, y + tz) − F (x, y)
t

,

is the generalized directional derivative of F (x, ·) at the point s ∈ R in
the direction z ∈ R, see Clarke [9].
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The purpose of this paper is to study the following hemivariational
inequality problem:

(P) find u ∈ H1(RN ) such that

∫
RN

(∇u∇w + uw) dx+
∫
RN

F 0
x (x, u(x);−w(x)) dx ≥ 0,

∀w ∈ H1(RN ).

The development of the mathematical theory of hemivariational in-
equalities, as well as their applications in economics, mechanics or en-
gineering, began with the work of Panagiotopoulos [20, 21]. Con-
cerning the existence of solutions of hemivariational inequalities, one
can find results by Naniewicz and Panagiotopoulos [18] (based on
pseudomonotonicity); Motreanu and Panagiotopoulos [15], Motreanu
and Rădulescu [16] (based on compactness arguments), and references
therein.

Remark 1.1. In particular, if f : RN × R → R is a measurable, not
necessarily continuous function, and there exists c > 0 such that

(1) |f(x, s)| ≤ c(|s| + |s|p−1), for a.e. x ∈ RN , ∀ s ∈ R,

and F : RN × R → R is defined by

(2) F (x, s) =
∫ s

0

f(x, t) dt, for a.e. x ∈ RN , ∀ s ∈ R.

Then F is a Carathéodory function which is also locally Lipschitz in
the second variable and F (x, 0) = 0, almost everywhere x ∈ RN .
Moreover, F satisfies the growth condition from (F1). Indeed, since
f(x, ·) ∈ L∞

loc(R) almost everywhere x ∈ RN , by [15, Proposition 1.7,
p. 13] we have

∂F (x, s) = [f(x, s), f̄(x, s)], for a.e. x ∈ RN , ∀ s ∈ R,

where
f(x, s) = lim

δ→0+
essinf{f(x, t) : |t− s| < δ},
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and
f̄(x, s) = lim

δ→0+
esssup{f(x, t) : |t− s| < δ}.

From the above relation and (1) the desired inequality is obtained.

Moreover, when f ∈ C0(RN ×R,R), due to (2), the inequality from
(P) takes the form∫

RN

(∇u∇w + uw) dx−
∫
RN

f(x, u(x))w(x) dx = 0,

∀w ∈ H1(RN ),

i.e., u ∈ H1(RN ) is a weak solution of

(P′)
{−	v + v = f(x, v),
v ∈ H1(RN ).

Many papers are concerned with the existence and multiplicity of
solutions for problems related to (P′), see Bartsch and Willem [5, 6],
Bartsch and Wang [4], Strauss [24] (in the autonomous case), Gidas,
Ni and Nirenberg [12], Gazzola and Rădulescu [11], and the references
therein. The interest in this equation comes from various problems in
mathematics and physics (cosmology, constructive field theory, solitary
waves, nonlinear Klein-Gordon or Schrödinger equations), see [1, 10,
24, 33].

Under suitable hypotheses mainly on f , Strauss [24], Bartsch and
Willem [6], Berestycki and Lions [7], Struwe [25] obtained existence
results concerning the radial solutions of problems closely related to
(P′). Bartsch and Willem [5] observed that a careful choice of a sub-
group of O(N) in certain dimensions assures the existence of infinitely
many non-radial solutions of (P′). In general, a functional of class C1

is constructed which is invariant under a subgroup action of O(N),
whose restriction to the appropriate subspace of invariant functions
admits critical points. Due to the principle of symmetric criticality
of Palais [19], these points will be also critical points of the original
functional, and they are exactly the radial, respectively non-radial, so-
lutions of (P′), depending on the choice of the subgroup of O(N). We
emphasize that in the above works the nonlinear term f is continuous.
A good survey for these problems is the book of Willem [26].
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In practical problems, in (P′) may appear functions f which are
not continuous, see Gazzola and Rădulescu [11] and the very recent
monograph of Motreanu and Rădulescu [16]. Clearly, in this case
the classical framework, described above, is not working. Starting
from this point of view, we propose a more general problem, i.e., to
study the existence of radial, respectively non-radial, solutions of (P).
To the best of my knowledge, no investigation has been devoted to
establish results in this direction. Our appropriate functional will be
O(N)-invariant and only locally Lipschitz; therefore, we cannot apply
the classical machinery described above. Thanks to the ingenious
principle of symmetric criticality of Krawcewicz and Marzantowicz [13]
for invariant locally Lipschitz functionals, we are able to guarantee
critical points (in the sense of Chang [8]) of the above-mentioned
functionals, applying the fountain theorem of Bartsch [2] in the non-
smooth case, proved by Motreanu and Varga [17]; the corresponding
critical points will be radial, respectively non-radial, solutions of (P).
These existence theorems improve some results from [5, 6, 24, 26].
On the other hand, we emphasize that our main results can be applied
to several concrete cases where the earlier results fail and they seem
to be the first applications of the principle of symmetric criticality for
non-smooth functionals.

The paper is divided into four sections. Basic definitions and pre-
liminary results are collected in the second section. The main results
are presented in the third section, where we establish the existence of
infinitely many radial respective non-radial solutions of (P). In the last
part a numerical example is presented.

2. Preliminaries and key results. Let (X, ‖ · ‖) be a real Banach
space and X∗ its dual. A function h : X → R is called locally Lipschitz
if each point u ∈ X possesses a neighborhood Uu of u such that

|h(u1) − h(u2)| ≤ L‖u1 − u2‖, ∀u1, u2 ∈ Uu,

for a constant L > 0 depending on Uu. The generalized gradient of h
at u ∈ X is defined as being the subset of X∗

∂h(u) = {x∗ ∈ X∗ : 〈x∗, z〉 ≤ h0(u; z) for all z ∈ X},
which is nonempty, convex and w∗-compact, where 〈·, ·〉 is the duality
pairing between X∗ and X, h0(u; z) being the generalized directional
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derivative of h at the point u ∈ X along the direction z ∈ X, namely,

h0(u; z) = lim sup
w→u
t→0+

h(w + tz) − h(w)
t

,

see [9]. Moreover, h0(u; z) = max{〈x∗, z〉 : x∗ ∈ ∂h(u)}, for all
z ∈ X. It is easy to verify that (−h)0(u; z) = h0(u;−z), and, for
locally Lipschitz functions h1, h2 : X → R, one has (h1 + h2)0(u; z) ≤
h0

1(u; z) + h0
2(u; z), for all u, z ∈ X. The Lebourg’s mean value

theorem says that for every u, v ∈ X there exist θ ∈]0, 1[ and x∗θ ∈
∂h(θu+(1−θ)v) such that h(u)−h(v) = 〈x∗θ, u−v〉. If h2 is continuously
Gâteaux differentiable, then ∂h2(u) = h′2(u); h

0
2(u; z) coincides with

the directional derivative h′2(u; z) and the above inequality reduces to
(h1 + h2)0(u; z) = h0

1(u; z) + h′2(u; z), for all u, z ∈ X. A point u ∈ X
is a critical point of h if 0 ∈ ∂h(u), i.e., h0(u;w) ≥ 0, for all w ∈ X.
We define λh(u) = inf {‖x∗‖ : x∗ ∈ ∂h(u)}. Of course, this infimum is
attained, since ∂h(u) is w∗-compact.

We say that h satisfies the (PS) condition at level c in the sense
of Chang (shortly (PS)c), if every sequence {xn} ⊂ X such that
h(xn) → c and λh(xn) → 0, contains a convergent subsequence in
X, see [8].

Now, we define the functional ψ : H1(RN ) → R by

(3) ψ(u) =
∫
RN

F (x, u(x)) dx, ∀u ∈ H1(RN ).

As usual, H1(RN ) is the Sobolev space with the inner product (u, v)1 =∫
RN [∇u(x)∇v(x) + u(x)v(x)] dx and the corresponding norm ‖u‖1 =[∫
RN (|∇u(x)|2 + |u(x)|2) dx]1/2.

Suppose now that (F1) holds. Let us fix s1, s2 ∈ R arbitrary.
By using Lebourg’s mean value theorem, there exist θ ∈ ]0, 1[ and
ξθ ∈ ∂F (x, θs1 + (1 − θ)s2) such that

F (x, s1) − F (x, s2) = ξθ(s1 − s2).

By (F1) we can conclude that, for almost every x ∈ RN

(4)

|F (x, s1)−F (x, s2)| ≤ c2|s1−s2| ·
[|s1| + |s2| + |s1|p−1+ |s2|p−1

]
,

∀ s1, s2 ∈ R,
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where c2 = c2(c1, p) > 0. In particular, if u ∈ H1(RN ), we obtain that

|ψ(u)| ≤
∫
RN

|F (x, u(x))|dx ≤ c2(‖u‖2
1 + ‖u‖p

p) <∞,

i.e., the functional ψ is well-defined (due to the fact that the embedding
H1(RN ) ↪→ Lp(RN ) is continuous). The norm on Lp(RN ) is ‖u‖p =
(
∫
RN |u(x)|p dx)1/p. Moreover, thanks to relation (4), there exists

c3 > 0 such that for every u, v ∈ H1(RN )

|ψ(u) − ψ(v)| ≤ c3‖u− v‖1

[
‖u‖1 + ‖v‖1 + ‖u‖p−1

1 + ‖v‖p−1
1

]
.

Therefore, ψ is a locally Lipschitz functional on H1(RN ) and we have
the following key inequality.

Proposition 2.1. Let E be a closed subspace of H1(RN ), ψE the
restriction of ψ to E. If (F1) holds, we have

ψ0
E(u; v) ≤

∫
RN

F 0
x (x, u(x); v(x)) dx

for every u, v ∈ E.

Proof. Let us fix u and v in E. Since F (x, ·) is continuous,
F 0

x (x, u(x); v(x)) can be expressed as the upper limit of [F (x, y+tv(x))
−F (x, y)]/t, where t→ 0+ taking rational values and y → u(x) taking
values in a countable dense subset of R. Therefore, the map x �→
F 0

x (x, u(x); v(x)) is measurable as the “countable limsup” of measurable
functions of x. According to (F1), the map x �→ F 0

x (x, u(x); v(x)) is
from L1(RN ).

Since E is separable (being a closed subspace of a separable Hilbert
space), there are functions wn ∈ E and numbers tn → 0+ such that
wn → u in E and

ψ0
E(u; v) = lim

n→∞
ψE(wn + tnv) − ψE(wn)

tn
,

and, without loss of generality, we may assume wn(x) → u(x) almost
everywhere x ∈ RN , as n→ ∞.
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We define gn : RN → R ∪ {+∞} by

gn(x) = −F (x,wn(x) + tnv(x)) − F (x,wn(x))
tn

+ c2|v(x)|
· [|wn(x)+tnv(x)| |wn(x)|+|wn(x)+tnv(x)|p−1+|wn(x)|p−1

]
.

The maps gn are measurable and non-negative, see (4). From Fatou’s
lemma we have

J =
∫
RN

lim sup
n→∞

[−gn(x)]dx ≥ lim sup
n→∞

∫
RN

[−gn(x)] dx = I.

Let gn = −An +Bn, where

An(x) =
F (x,wn(x) + tnv(x)) − F (x,wn(x))

tn
,

and

Bn(x) = c2|v(x)|
[|wn(x) + tnv(x)| + |wn(x)|

+ |wn(x) + tnv(x)|p−1 + |wn(x)|p−1
]
.

Introducing the notation bn =
∫
RN

Bn(x) dx, we have

(5) I = lim sup
n→∞

(∫
RN

An(x)dx− bn

)
.

Denote by ‖ · ‖E the restriction of ‖ · ‖1 to E. After an elementary
calculation we obtain the following estimation:∣∣∣∣bn − 2c2

∫
RN

|v(x)| (|u(x)| + |u(x)|p−1
)
dx

∣∣∣∣
≤ c2

{
2‖v‖E‖wn − u‖E + tn‖v‖2

E + (p− 1)2p−2‖v‖p

× [‖wn − u‖p

(‖u‖p−2
p + ‖wn‖p−2

p

)
+(‖wn − u‖p + tn‖v‖p)

(‖u‖p−2
p + (‖wn‖p + tn‖v‖p)p−2

)]}
.

Since the embedding E ⊆ H1(RN ) ↪→ Lp(RN ) is continuous, 2 < p <
2∗, and ‖wn − u‖E → 0, tn → 0+, we obtain that the sequence {bn} is
convergent, its limit being

lim
n→∞ bn = 2c2

∫
RN

|v(x)| (|u(x)| + |u(x)|p−1
)
dx.
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From (3) and (5), we have

I = lim sup
n→∞

ψE(wn + tnv) − ψE(wn)
tn

− lim
n→∞ bn

= ψ0
E(u; v) − 2c2

∫
RN

|v(x)| (|u(x)| + |u(x)|p−1
)
dx.

Now we estimate J . Denoting by

JA =
∫
RN

lim sup
n→∞

An(x) dx and JB =
∫
RN

lim inf
n→∞ Bn(x) dx,

we have J ≤ JA − JB.

Since wn(x) → u(x) almost everywhere on RN and tn → 0+, we have

JB = 2c2
∫
RN

|v(x)| (|u(x)| + |u(x)|p−1
)
dx.

On the other hand, we obtain

JA =
∫

RN

lim sup
n→∞

F (x,wn(x) + tnv(x)) − F (x,wn(x))
tn

dx

≤
∫

RN

lim sup
y→u(x)

t→0+

F (x, y + tv(x)) − F (x, y)
t

dx

=
∫
RN

F 0
x (x, u(x); v(x)) dx.

From the above estimations we obtain the desired relation.

Remark 2.1. The above inequality has been proved only for bounded
domains of RN by Clarke [9], Motreanu and Panagiotopoulos [15],
where the growth conditions are different than in our situation.

Let G be a compact Lie group which acts linear isometrically on the
real Banach space (X, ‖ · ‖), i.e., the action G×X → X : [g, u] �→ gu
is continuous and for every g ∈ G, the map u �→ gu is linear such that
‖gu‖ = ‖u‖, for every u ∈ X. A function h : X → R is G-invariant if
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h(gu) = h(u), for all g ∈ G, u ∈ X. The action on X induces an action
of the same type on the dual space X∗ defined by (gx∗)(u) = x∗(gu),
for all g ∈ G, u ∈ X and x∗ ∈ X∗. We have ‖gx∗‖ = ‖x∗‖, for all
g ∈ G, x∗ ∈ X∗. Supposing that h : X → R is a G-invariant, locally
Lipschitz functional, then g∂h(u) = ∂h(gu) = ∂h(u), for all g ∈ G,
u ∈ X. Therefore the function u �→ λh(u) is G-invariant.

Let XG = {u ∈ X : gu = u, ∀ g ∈ G}. We recall the Principle of
Symmetric Criticality of Krawcewicz and Marzantowicz [13, p. 1045],
which will be crucial in the proof of our main theorems. This result
was established for Banach G-manifolds of class C2; we will use only a
particular form of this one which works on Banach spaces.

Proposition 2.2. Let u ∈ XG and h : X → R be a G-invariant,
locally Lipschitz functional. Then u is a critical point of h if and only
if u is a critical point of hG := h|XG : XG → R.

At the end of this section we recall the non-smooth version of the
fountain theorem, due to Motreanu and Varga [17, Corollary 3.4].
This result was obtained for a compact Lie group G acting on finite
dimensional vector space satisfying the admissibility condition in the
sense of Bartsch [3]; here we recall this one for G := Z2. First, the
fountain theorem was established by Bartsch [2] for functionals of class
C1.

Proposition 2.3. Let E be a Hilbert space, {ej : j ∈ N} an
orthonormal basis of E, and set Ek = span {e1, . . . , ek}. Let h : E → R
be a locally Lipschitz functional which satisfies the following hypotheses:

(i) h(−u) = h(u), for all u ∈ E;

(ii) for every k ≥ 1, there exists Rk > 0 such that h(u) ≤ h(0), for
all u ∈ Ek with ‖u‖ ≥ Rk;

(iii) there exist k0 ≥ 1, b > h(0) and ρ > 0 such that h(u) ≥ b for
every u ∈ E⊥

k0
with ‖u‖ = ρ;

(iv) h satisfies the (PS)c condition for every c ∈ R.

Then h possesses a sequence of critical values {ck} such that ck → ∞
as k → ∞.
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3. Main results.

Lemma 3.1. Suppose that (F1) holds. Let ϕ : H1(RN ) → R defined
by

ϕ(u) =
1
2
‖u‖2

1 − ψ(u), ∀u ∈ H1(RN ),

where ψ is defined by (3). Then the critical points of ϕ are solutions of
(P).

Proof. Clearly, u �→ ‖u‖2
1/2 is of class C1; therefore, the map

ϕ is locally Lipschitz. Let u be a critical point of ϕ. Applying
Proposition 2.1 for E := H1(RN ), we have for every w ∈ H1(RN )

0 ≤ ϕ0(u;w) = (u,w)1 + (−ψ)0(u;w)
= (u,w)1 + ψ0(u;−w)

≤ (u,w)1 +
∫
RN

F 0
x (x, u(x);−w(x)) dx,

i.e., u is a solution of (P).

In order to obtain existence results, we impose further assumptions
on F :

(F2) F (x,−s) = F (x, s) for almost every x ∈ RN , for all s ∈ R;

(F3) F (gx, s) = F (x, s), for almost every x ∈ RN , for all g ∈ O(N),
for all s ∈ R;

(F4) there exist α > 2, λ ∈ [0, (α− 2)/2[ and c4 > 0 such that for
almost every x ∈ RN and all s ∈ R

(F4 − a) αF (x, s) + F 0
x (x, s;−s) − λs2 ≤ 0,

and

(F4 − b) c4(|s|α − |s|2) ≤ F (x, s);

(F5) lims→0 max{|ξ| : ξ ∈ ∂F (x, s)}/s = 0 uniformly for almost every
x ∈ RN .
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Lemma 3.2. Let E be a closed subspace of H1(RN ) which is
compactly embedded in Lp(RN ). Denoting by ϕ̂ the restriction of ϕ
to E and assuming that (F1), (F4 − a) and (F5) hold, then ϕ̂ satisfies
the (PS)c condition, c ∈ R.

Proof. Let {un} ⊂ E be a sequence such that ϕ̂(un) → c and
λ

ϕ̂
(un) → 0 as n → ∞. Therefore, for every n ∈ N, there exists

z∗n ∈ ∂ϕ̂(un) such that ‖z∗n‖ = λ
ϕ̂
(un). Since E is a Hilbert space,

from the Riesz’s representation theorem, for every n ∈ N, there exists
zn ∈ E such that ‖zn‖E = ‖z∗n‖ and (zn, w)E = 〈z∗n, w〉, for all w ∈ E.
Let us denote by ψ̂ the restriction of ψ to E. Using Proposition 2.1
and (F4 − a), for n large enough, we obtain

c+ 1 + ‖un‖E ≥ ϕ̂(un) − 1
α
ϕ̂0(un;un)

=
1
2
‖un‖2

E − ψ̂(un) − 1
α

(
‖un‖2

E + ψ̂0(un;−un)
)

≥
(

1
2
− 1
α

)
‖un‖2

E

−
∫
RN

[
F (x, un(x)) +

1
α
F 0

x (x, un(x);−un(x))
]
dx

≥
(

1
2
− 1
α

)
‖un‖2

E − λ

α

∫
RN

|un(x)|2 dx

≥
(

1
2
− 1
α

)
‖un‖2

E − λ

α
‖un‖2

E

=
1
α

(
α− 2

2
− λ

)
‖un‖2

E .

Therefore, the sequence {un} is bounded in E.

Since the embedding E ↪→ Lp(RN ) is compact, passing to a subse-
quence if necessary, we may suppose that un ⇀ u in E and un → u in
Lp(RN ).

On the other hand, we have

ϕ̂0(un;u− un) = (un, u− un)E + ψ̂0(un;un − u),

ϕ̂0(u;un − u) = (u, un − u)E + ψ̂0(u;u− un).
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Adding these relations, we obtain

‖un− u‖2
E

=
[
ψ̂0(un;un−u) + ψ̂0(u;u−un)

]− ϕ̂0(un;u−un)− ϕ̂0(u;un−u)
= I1

n − I2
n − I3

n.

Now we will estimate Ii
n, i = 1, 3. To this end, from (F1) and (F5),

we have that for all ε > 0 there exists cε > 0 such that

(6) |ξ| ≤ ε|s| + cε|s|p−1, ∀ ξ∈∂F (x, s), for a.e. x∈RN , ∀ s∈R.

From Proposition 2.1 and (6) we have

I1
n = ψ̂0(un;un − u) + ψ̂0(u;u− un)

≤
∫
RN

F 0
x (x, un(x);un(x) − u(x)) dx

+
∫
RN

F 0
x (x, u(x);u(x)− un(x)) dx

=
∫
RN

max{ξn(x)(un(x) − u(x)) : ξn(x) ∈ ∂F (x, un(x))} dx

+
∫
RN

max{ξ(x)(u(x)− un(x)) : ξ(x) ∈ ∂F (x, u(x))} dx

≤
∫
RN

[ε (|un(x)| + |u(x)|)

+cε
(|un(x)|p−1 + |u(x)|p−1

)] |un(x) − u(x)| dx
≤ 2ε(‖un‖2

E + ‖u‖2
E) + cε‖un − u‖p

(‖un‖p−1
p + ‖u‖p−1

p

)
.

On the other hand,

I2
n = ϕ̂0(un;u−un) ≥ 〈z∗n, u−un〉 = (zn, u−un)E ≥ −‖zn‖E‖u−un‖E .

Moreover, let us fix a z∗ ∈ ∂ϕ̂(u). We have I3
n = ϕ̂0(u;un − u) ≥

〈z∗, un −u〉 and therefore we have a z ∈ E such that I3
n ≥ (z, un −u)E .

Since {un} is bounded in E, letting ε → 0+ and keeping in mind
that un → u in Lp(RN ), ‖zn‖E → 0 and un ⇀ u in E, from the above
estimations we obtain that ‖un − u‖E → 0 as n→ ∞.
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Let

H1
O(N)(R

N ) := H1(RN )O(N) = {u ∈ H1(RN ) : gu = u, ∀ g ∈ O(N)}.

The action of O(N) on H1(RN ) is gu(x) = u(g−1x) for every g ∈
O(N), u ∈ H1(RN ) and for almost every x ∈ RN . The elements of
H1

O(N)(R
N ) are exactly the radial functions of H1(RN ).

Theorem 3.1. If the assumptions (F1) (F5) hold, then the problem
(P) has infinitely many radial solutions.

Proof. For abbreviation, we choose E := H1
O(N)(R

N ) and G :=
O(N). Denote by (·, ·)E the restriction of (·, ·)1 to E.

By assumption (F3) and from the fact that G acts linear isometrically
on H1(RN ), the functional ϕ is G-invariant. Let ϕ̂ again be the
restriction of ϕ to E. Due to Proposition 2.2 and Lemma 3.1, any
critical point of ϕ̂ is a radial solution of (P). Therefore, it suffices
to prove the existence of an unbounded sequence of critical points
{un} ⊂ E of ϕ̂. To this end, we will verify the requirements from
Proposition 2.3 for E and h := ϕ̂.

By assumption (F2), ϕ̂ is an even function. Let us choose an
orthonormal basis {ej} of E and set Ek = span {e1, . . . , ek}, k ≥ 1.

Let us fix k ≥ 1. From (F4 − b), we obtain

ϕ̂(u) ≤ 1
2
‖u‖2

E − c4‖u‖α
α + c4‖u‖2

2.

The requirement (ii) from Proposition 2.3 follows for Rk > 0 large
enough, since α > 2, ϕ̂(0) = 0 and all norms on the finite dimension
space Ek are equivalent.

Using (6) instead of (F1), a similar calculation as in (4) shows that

ψ(u) ≤ ε‖u‖2
1 + cε‖u‖p

p, ∀u ∈ H1(RN ).

If u ∈ E⊥
k , then

ϕ̂(u) ≥
(

1
2
− ε

)
‖u‖2

E − cε‖u‖p
p ≥

(
1
2
− ε

)
‖u‖2

E − cεμ
p
k‖u‖p

E ,
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where

μk = sup
u∈E⊥

k
u �=0

‖u‖p

‖u‖E
.

It is well known that μk → 0 as k → ∞, see [5, Lemma 3.3]. Choosing
ε < (p− 2)/2p and rk = (pcεμ

p
k)1/(2−p), we have

ϕ̂(u) ≥
(

1
2
− ε− 1

p

)
r2k,

for every u ∈ E⊥
k with ‖u‖E = rk. Due to the choice of ε and since

μk → 0 as k → ∞, the assumption (iii) from Proposition 2.3 is verified.

Since the embedding H1
O(N)(R

N ) ↪→ Lp(RN ) is compact, N ≥ 2 and
p ∈ ]2, 2∗[ , see [24] or [26, Corollary 1.26], the (PS)c condition follows
from Lemma 3.2.

Now, Proposition 2.3 guarantees the existence of an unbounded
sequence of critical points of ϕ̂, which completes the proof.

The purpose of the following result is to establish the existence of
non-radial solutions of (P). This is a non-smooth version of the result
of Bartsch and Willem, see [26, Theorem 3.13, p. 63].

Theorem 3.2. If the assumptions (F1) (F5) hold and N = 4 or
N ≥ 6, then the problem (P) has infinitely many non-radial solutions.

Proof. It suffices to adapt the argument of [26, Theorem 1.31, p. 20],
where the space (denoted by E) of non-radial functions is constructed.
Using the result of Lions [14. Theorem 4.1], the embedding E ↪→
Lp(RN ) is compact. Applying Lemma 3.2 to our restricted functional
to E, the (PS)c holds, c ∈ R. The rest of the proof is similar to that
of Theorem 3.1.

Remark 3.1. When f ∈ C0(RN × R,R) is a function which fulfills
(1), and F is defined as in (2), (F4 − a) takes the form

(7) αF (x, s) − f(x, s)s− λs2 ≤ 0,
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which is a weaker condition than those in [4, 24, 26], due to the
third member involving λ. We will see in the next section that in some
applications the presence of this member is essential. Moreover, if there
exists R > 0 such that

inf
x∈RN

|s|≥R

F (x, s) > 0,

see [26, p. 62] and [24, Rel. (42)], then from (1) and (7) for λ = 0, we
can deduce after an integration the relation (F4−b). If f satisfies further
hypotheses as in [26, Theorem 3.12], our theorems improve the results
from [24], [26, Theorem 3.12], [5, Theorem 2.1] and [26, Theorem
3.13]. Moreover, in the next section we give a concrete example where
the earlier results fail and we can apply Theorem 3.1 and Theorem 3.2.

4. An example. We denote by �u� the nearest integer to u ∈ R, if
u+ 1/2 /∈ Z; otherwise, we put �u� = u.

Example. Let F : R → R be defined by

F (s) =
∫ s

0

�|t|t� dt.

Then the conclusion of Theorem 3.1 holds for N ∈ {2, 3, 4, 5}. More-
over, if N = 4, the conclusion of Theorem 3.2 holds too.

Proof. We verify the hypotheses for p := 3. To have p < 2∗, we need
N ∈ {2, 3, 4, 5}. It is easy to show that F is an even function; therefore,
(F2) holds. Moreover, according to Remark 1.1, (F1) holds too. Since
F (s) = 0 for every s ∈ [−1/

√
2, 1/

√
2
]
, (F5) holds. Since F is even, it

is enough to verify (F4) only for nonnegative numbers, choosing α := 3,
λ := 1/4 and c4 := 1/3.

One has

(8) F (s) =
{

0, s ∈ [0, (1/√2)
]
,

Fn(s), s ∈ In,

where In =
(√

(2n− 1)/2,
√

(2n+ 1)/2
]
, n ∈ N∗ and Fn(s) =

ns− (1 +
√

3 + · · · + √
2n− 1)/

√
2, s ∈ In. Now, we use the following
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inequalities for every n ∈ N∗:

(In
≤) 2n

√
2n+ 1

2
− 3 · 1 +

√
3 + · · · + √

2n− 1√
2

− 2n+ 1
8

≤ 0,

and

(In
≥)

4n+ 1
2

√
2n− 1

2
− 3 · 1 +

√
3 + · · · + √

2n− 1√
2

+
2n− 1

2
≥ 0.

Let us fix s ≥ 0. If s ∈ [0, 1/√2
]
, then the two inequalities from (F4)

are trivial. Otherwise, there exists a unique n ∈ N∗ such that s ∈ In.
If s ∈ int In, then F 0(s;−s) = −ns and due to (8), we need

3

(
ns− 1 +

√
3 + · · · + √

2n− 1√
2

)
− ns− s2

4
≤ 0,

which follows from (In
≤). If sn =

√
(2n+ 1)/2, then F 0(sn;−sn) =

−n√(2n+ 1)/2. In this case, (F4 − a) reduces exactly to (In
≤).

Since the function x �→ (x3 − x2)/3− nx is decreasing in In, n ∈ N∗,
to show (F4 − b), it is enough to verify that

1
3

((
2n− 1

2

)3/2

− 2n− 1
2

)
≤ n

√
2n− 1

2
− 1 +

√
3 + · · · + √

2n− 1√
2

,

which is exactly (In
≥). This completes the proof.
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22. P.H. Rabinowitz, Minimax methods in critical point theory with applications
to differential equations, CBMS Regional Conf. Ser. in Math., Vol. 65, Amer. Math.
Soc., Providence, RI, 1986.

23. , On a class of nonlinear Schrödinger equations, Z. Angew. Math.
Phys. 43 (1992), 270 291.

24. W.A. Strauss, Existence of solitary waves in higher dimensions, Comm.
Math. Phys. 55 (1977), 149 162.

25. M. Struwe, Multiple solutions of differential equations without Palais-Smale
condition, Math. Ann. 261 (1982), 399 412.

26. M. Willem, Minimax theorems, Birkhäuser, Basel, 1995.
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Cluj-Napoca, Romania
E-mail address: alexandrukristaly@yahoo.com


