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GERMS OF HOLOMORPHIC FUNCTIONS
ON TOPOLOGICAL VECTOR SPACES

AND INVARIANT RINGS

E. BALLICO

ABSTRACT. Let V be a locally convex and Hausdorff
topological vector space and G a finite group of holomorphic
automorphisms of OV,0. Here we prove that the ring OG

V,0 of

all invariant germs is a C.M.∞-local ring.

1. Introduction. Let (X, OX) be a Hausdorff reduced complex
space locally embedded in a locally convex topological vector space,
i.e., a Cartan space with the terminology of [2, p. 65] and G a finite
group of holomorphic automorphisms of X. Let X/G be the set of all
G-orbits equipped with the quotient topology, and let f : X → X/G
be the quotient map. Since G is finite, X/G is Hausdorff. For any open
subset Ω of X/G, let H0(Ω, OΩ) := H0(π−1(Ω), Oπ−1(Ω))G be the set of
all G-invariant holomorphic functions on π−1(Ω). In this way we obtain
a sheaf OX/G of local C-algebras on X/G. In general the local rings
OX/G,P are not Noetherian. Here we study the Cohen-Macaulyness of
the local rings of X/G, X smooth, in the non-Noetherian case. For
a theory of grade in the non-Noetherian case, see [1] or [2, Chapter
1]. We recall here the definition of C.M.∞-local ring given in [2, pp.
34 35]. Let A be a unitary commutative ring and n a nonnegative
integer. For any A-module M , let Tn(M) denote the set of all x ∈ M
such that the annihilator of x has grade at least n. It is easy to see
that Tn(M/Tn(M)) = 0 and TnTn = Tn. Thus the functor Tn defines
a torsion theory, i.e., for all submodules N of M we may define the n-
closure of N in M as the inverse image in M of Tn(M/N). The ring A,
respectively the module M , is said to be n-Noetherian if each increasing
sequence of n-closed ideals of A, respectively n-closed submodules of
M , is stationary and ∞-Noetherian if it is n-Noetherian for all n. The
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ring A is said to be C.M.n if it is n-Noetherian and grade and height is
the same function on all prime n-closed ideals of A. The ring A is said
to be C.M.∞ if it is C.M.n for all n.

This definition is a very good extension to non-Noetherian local rings
of the notion of the Cohen-Macaulay ring. In this note we prove the
following result.

Theorem 1.1. Let V be a locally convex and Hausdorff topological
vector space and G a finite group of holomorphic automorphisms of
OV,0. Then the ring OG

V,0 of all invariant germs is a C.M.∞-local ring.

Remark 1.2. The C.M.∞-ness of the invariant ring OG
V,0 has the

following consequences, see [2, pp. 40 41].

(a) Every prime ideal of OG
V,0 has height equal to its grade.

(b) If J is an ideal of OG
V,0 generated by n elements, then the prime

ideals of OG
V,0 which are minimal among those containing J are finite

in number and have height at most n.

(c) For any ideal I of OG
V,0 and any integer n ≥ 1 there are only

finitely many ideals of height n associated to OG
V,0/I.

(d) The localization of OG
V,0 at any prime of finite length is a Cohen-

Macaulay ring.

2. The proof.

Proof of Theorem 1.1. Set R := OV,0 and A := OG
V,0 = RG. For any

x ∈ A, y ∈ R, I ⊆ A and J ⊆ R, set (I : x)A := {z ∈ A : zx ∈ I}
and (J : y)R := {z ∈ R : zy ∈ J}. For any x ∈ R, set α(x) =
(
∑

g∈G g ◦ x)/card (G) and β(x) =
∏

g∈G g ◦ x. Hence, β(x) ∈ A for
every x ∈ R, β(x) = xcard (G) if x ∈ A, α(x) ∈ A for every x ∈ R
and α(x) = x if and only if x ∈ A, i.e., α : R → A is a retraction of
the inclusion of A in R. Thus R is a flat A-module. Use α to show
that for every ideal J of A and any x ∈ A we have JR ∩ A = J and
(JR : x)R ∩ A = (J : x)R. Hence we obtain that n elements f1, . . . , fn

of the maximal ideal of A form a regular sequence in A if and only if
they form a regular sequence in R. For any ideal I of A, respectively
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J of R, grA(I), respectively grR(J), will denote its grade [2, Chapter
1]. By [2, Corollary, p. 42; Proposition 5.5, p. 144], we may use regular
sequences instead of the Koszul complex to compute the grade of proper
ideals of R. For any integer n ≥ 1 and any ideal I of A, respectively
J of R, set Tn,A(I) := {x ∈ A : grA((I : x)) > n}, respectively
Tn,R(J) := {x ∈ R : grR((J : x)) > n}). As in [2] we will say that
I, respectively J , is n-closed if Tn,A(I) = I, respectively Tn,R(J) = J ,
and that a ring is n-Noetherian if every increasing sequence of n-closed
ideals is stationary. By [2, Proposition 5.5, p. 144], R is n-Noetherian
for every n ≥ 1.

First claim. For every integer n ≥ 1, there are f1, . . . , fn ∈ A such
that f1(0) = · · · = fn(0) = 0 and the germ at 0 of the analytic set
{f1 = · · · = fn = 0} has pure codimension n in V at 0.

Proof of first claim. The case n = 1 is true, and we may take as
f1 any element of A \ {0} because R is factorial [2, Proposition 5.15,
p. 157; Proposition on p. 221]. Fix n ≥ 2 and assume that the first
claim is true for the integer n′ = n − 1. Take f1, . . . , fn−1 ∈ A with
f1(0) = · · · = fn−1(0) = 0 such that {f1 = · · · = fn−1 = 0} has pure
codimension n− 1 in V at 0. Since R is a C.M. ring, there is an h ∈ R
with h(0) = 0 and such that {f1 = · · · = fn−1 = h = 0} has pure
codimension n in V at 0. Since each germ fi is G-invariant, for every
g ∈ G we have g∗(h)(0) = 0, and the analytic set Z(g) := {f1 = · · · =
fn−1 = g∗(h) = 0} has pure codimension n in V at 0. Set fn := β(h).
We have fn ∈ R, fn(0) = 0 and {f1 = · · · = fn = 0} = ∪g∈GZ(g),
proving the first claim.

Second claim. Take f1, . . . , fn ∈ A as in the first claim. Then the
sequence f1, . . . , fn is a regular sequence in A.

Proof of second claim. The case n = 1 is obvious because A is an
integral domain. The sequence f1, . . . , fn is a regular sequence in R.
Apply the equality (JR : x)R ∩ A = (J : x)A to J := (f1, . . . , fn−1)
and use induction on the integer n.

By the second claim for every n ≥ 1 the maximal ideal of A has a
regular sequence of length n.
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Third claim. Let I be the proper ideal of A. If the extended ideal
IR contains an R-regular sequence of length n ≥ 1, then I contains an
A-regular sequence of length n.

Proof of third claim. The assumption on IR implies that the zero-
set Z(IR) of IR has codimension at least n in V at the origin. Since
Z(IR) is G-invariant, we may copy the proof of the first claim to obtain
f1, . . . , fn ∈ I with common zero-set of codimension n and then we are
finished by the second claim.

Fourth claim. For any proper ideal I of A we have Tn,R(IR)∩A =
Tn,A(I).

Proof of fourth claim. Take x ∈ A. By the third claim we have
grA((I : x)) = grR((IR : x)). Hence the fourth claim holds.

Completion of the proof. Let Ii, i ≥ 1, be an increasing sequence of n-
closed ideals of A. Since R is n-Noetherian [2, Proposition 5.5, p. 144],
the sequence Tn,R(IiR), i ≥ 1, is stationary. Since Tn,R(IiR) ∩ A = Ii

by the n-closedness of Ii and the fourth claim, the sequence Ii, i ≥ 1,
is stationary. Thus, for every positive integer n, the ring A is n-
Noetherian. By the third claim and the C.M.∞-ness of R, we obtain
that height and grade agree for any n-closed prime ideal of A, i.e., that
for every n ≥ 1, A is C.M.n [2, Definition 3.2], i.e., that A is C.M.∞.
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