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COHEN-MACAULAY DIMENSION OF
MODULES OVER NOETHERIAN RINGS

J. ASADOLLAHI AND SH. SALARIAN

ABSTRACT. We extend a criterion of Gerko for a ring to be
Cohen-Macaulay to arbitrary, not necessarily local, Noethe-
rian rings. Our version reads as follows: The Noetherian ring
R is Cohen-Macaulay if and only if, for all finitely generated
R-modules M , CM-dimRM is finite.

1. Introduction. There are many important homological dimen-
sions, defined for finitely generated module M over a commutative
Noetherian ring R. The classic one is projective dimension P-dim,
which characterizes regular rings by a famous result of Auslander,
Buchbaum and Serre. Another dimension corresponding to the com-
plete intersection property of ring is defined by Avramov, Gasharov
and Peeva [4] and is denoted by CI-dim. Gerko also defined a dimen-
sion which reflects the complete intersection property of the ring called
polynomial complete intersection dimension and denoted PCI-dim [7].
Oana Veliche [9] called it lower complete intersection dimension and
used notion CI∗-dim to denote it. The notion of G-dimension was
introduced by Auslander and Bridge, denoted G-dim, and has some
relation to the Gorenstein property of R [1]. There is another dimen-
sion, defined by Veliche, called upper Gorenstein dimension or G∗-
dimension, denoted G∗-dim that characterizes Gorenstein local rings.
Dimension which reflects Cohen-Macaulay property of rings is defined
also by Gerko, called Cohen-Macaulay dimension and denoted CM-dim
[7].

Putting them together and using the same terminology as in [9], we
have notions of homological dimensions of finitely generated module
M , denoted H-dimRM for H=P, CI, CI∗, G, G∗ or CM. We say that,
not necessary local, ring R has property (H) with H=P, (respectively,
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CI, CI∗, G, G∗ or CM), where R is regular (respectively, complete
intersection, complete intersection, Gorenstein, Gorenstein or Cohen-
Macaulay).

In case R is local, a feature common to all these dimensions states
that ring R has property H if and only if H-dimRM is finite for every
finitely generated R-module M . Case H=P is classical. For a proof
of the result, see [4, 1.3] (respectively, [7, 2.5], [1, 4.20], [9, 2.7] or [7,
3.9]) when H=CI (respectively, CI∗, G, G∗ or CM).

When H=G, Goto has generalized the above result to the nonlocal
case [8]. An extended version, when H=CI has been proved by Sega
[3, 6.2]. The main aim of this note is to extend the above result to
an assertion about arbitrary Noetherian ring, when H=CM. The main
theorem can be stated as follows:

Theorem 1.1. Let R be a commutative Noetherian ring. The
following are equivalent:

i) The ring R has property H;

ii) H-dimRM is finite for every finitely generated R-module M ;

iii) H-dimRR/I is finite for every ideal I of R;

iv) H-dimRR/m is finite for every maximal ideal m ∈ Max (R).

Our extension of H-dimension is as follows:

Definition 1.2. Let M be a finitely generated R-module. We define
the H-dimension of M by

H-dimRM = sup {H-dimRp
Mp : p ∈ SuppR(M)}.

Note that, by [7], in case R is local this definition is compatible with
the original one. We prepare the ground for the proof of Theorem 1.1
by introducing a new invariant related to any finitely generated R-
module M , called restricted dimension of M . Section 2 is devoted
to the study of this dimension. We show that it is well behaved
on short exact sequences, in the sense that if two terms of a short
exact sequence have finite restricted dimension then so does the third.
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Moreover it will be shown that it is a refitment of any of the above-
mentioned homological dimensions. As a corollary of this, we get,
for any ideal I of R and any finitely generated R-module M , an
inequality grade (I, R) ≤ H-dimRM + grade (I, M), which will be used
in proving Theorem 1.1. Throughout the paper R is a commutative
and Noetherian ring and M is a finitely generated R-module.

2. Restricted dimension. In this section we introduce and study
a new homological dimension assigning to any finitely generated R-
module.

Definition 2.1. Let M be a finitely generated R-module. We define
the restricted dimension r-dimRM of M by

r-dimRM = sup {depthRp − depthRp
Mp : p ∈ Spec(R)}.

The restricted dimension is often finite. Moreover, it follows from
[2, Theorem 2.4] that r-dimRM ≤ dimR for all R-module M . In [6],
this invariant is introduced and called (large) restricted flat dimension.
In the following we summarize some basic properties of the restricted
dimension.

Proposition 2.2. Let 0 → M → M ′ → M ′′ → 0 be an exact
sequence of R-modules. If two of them have finite restricted dimension,
then so does the third.

Proof. Suppose, for instance, that r-dimRM and r-dimRM ′ are finite.
So there exists an integer t such that for any prime ideal p ∈ Spec (R),

depthRp − depthRp
Mp ≤ t and depthRp − depthRp

M ′
p ≤ t.

On the other hand, it is easy, using the long exact sequence of ‘Ext’
modules for instance, to see that, for any p ∈ Spec (R),

depthRp
M ′′

p ≥ Max {depthRp
Mp, depthRp

M ′
p} − 1.

Therefore

depthRp − depthRp
M ′′

p

≤ depthRp − Max {depthRp
Mp, depthRp

Mω
p } + 1
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The result now follows, in this case by taking supremum on both end.
The other cases can be proved by using a similar argument.

Proposition 2.3. Let M be a finitely generated R-module. Let
x = x1, . . . , xn be an R-regular sequence such that xM = 0. Then

r-dimR̄M = r-dimRM − n,

where R̄ = R/(x).

Proof. Let p be a prime ideal in SuppR(M). It follows from the
isomorphism

Extn
Rp

(
Rp

pRp
, Mp

)
∼= Extn

Rp

(
Rp

pRp

, Mp

)

that depthRp
Mp = depthRp

Mp, where p denotes p/(x). Also we have

depthRp = depthRp + r.

Hence

sup{depthRp − depthRMp : p ∈ SuppR̄(M)}
= sup{depthRp − depthRp

Mp : p ∈ SuppR(M)} − r.

Proposition 2.4. Let I be an ideal of R and x an R/I-regular
element. Then

r-dimRR/I = Max {r-dimR(R/(I + xR)) + 1, r-dimR(Rx/IRx)}.

Proof. Set A := {p ∈ Spec(R) : p ⊇ I, x ∈ p} and B := {p ∈
Spec(R) : p ⊇ I, x /∈ p}. So sup{depthRp − depth(R/I)p : p ⊇ I} is
equal to the maximum of the following two numbers sup{depthRp −
depth(R/I)p : p ∈ A} and sup{depthRp − depth(R/I)p : p ∈ B}.
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For p ∈ A, since x is a nonzero divisor over Rp/IRp,

depth
Rp

(I + Rx)Rp
= depth

Rp

IRp
− 1.

For p ∈ B, Rp
∼= (Rx)pRx

, so we have depth Rp = depth (Rx)pRx
and

depth (R/I)p = depth (Rx/IRx)pRx
. The result now is clear.

Proposition 2.5. For any R-module M , there exists an inequality

r-dimRM ≤ H-dimRM

with equality when H-dimRM is finite.

Proof. It suffices to assume that H-dimRM is finite. Since, for any
q ∈ SuppR(M), H-dimRq

Mq is less than or equal to H-dimRM , it is
also finite and hence by [9, 1.5] is equal to depthRq − depthRq

Mq. So
the result follows.

Proposition 2.6. If I is an ideal of R and M a finitely generated
R-module, then

grade (I, R) − grade (I, M) ≤ r-dimRM.

In particular,

grade (I, R) − grade (I, M) ≤ H-dimRM.

Proof. By [5, 1.2.10(i)], there is the equality

grade (I, M) = inf {depthRq
Mq | I ⊆ q with q ∈ Spec(R)}.

Let p be a prime containing I such that grade (I, M) = depthRp
Mp.

If p /∈ SuppR(M), then depthRp
Mp = ∞ and the inequality holds.

Suppose that p ∈ SuppR(M). Since, by [5, 1.2.10(i)],

grade (I, R) = inf {depthRq | I ⊆ q with q ∈ Spec (R)}
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the inequality grade (I, R) ≤ depthRp holds for the chosen p. Therefore

grade (I, R) − grade (I, M) ≤ depthRp − depthRp
Mp

≤ sup {depthRq − depthRq
Mq | q ∈ SuppR(M)}.

The last assertion follows immediately from the previous proposition.

3. Proof of theorem. We are now in a position to put all the
various results of Section 2 together to produce a proof of the main
theorem of this paper. The idea for the proof is motivated by the
Goto’s proof of [8, Theorem 1]. So the reader is referred to that paper
for the proof of similar steps.

Proof of Theorem 1.1. (i) ⇒ (iii). Let I be an ideal of R. Since R
has property H, for any prime p ∈ Spec (R), Rp has the same property.
So by [9, 1.7], H-dimRp

(R/I)p is finite and hence, by [9, 1.5], it is
equal to depthRp − depthRp

(R/I)p. So, in fact, we should show that
r-dimRR/I = sup{depthRp − depthRp

(R/I)p | p ∈ Spec (R)} is finite.
Suppose to the contrary that there exists an ideal I of R such that
r-dimRR/I is not finite. Using the Noetherian property of R, choose
I to be maximal among such counterexamples. By the same argument
as in [8], one can prove that I has to be prime.

Let n = htRI be the height of I. So grade (I, R) = n as R is
Cohen-Macaulay. Let x = x1, . . . , xn be a maximal R-sequence in
I. By Proposition 2.3, we may pass through R = R/(x1, . . . , xn) and
reduce the problem to the case that htRI = 0. Let MinR denote
the set of all minimal primes of R. Choose x ∈ ∩p∈Min R\{I}p \ I.
Using Proposition 2.4, after localizing at x and passing through Rx, we
may assume that Min R = {I}. Now, by the same argument as in [8,
Theorem 1], we can see that R/I is Cohen-Macaulay.

Let p be a prime ideal of R. So Rp/IRp is a Cohen-Macaulay
Rp-module with dim Rp/IRp = dim Rp, and hence depthRp/IRp =
depthRp, which implies that

sup{depthRp − depth (Rp/IRp) : p ∈ Spec(R)} = 0.

This is the desired contradiction, which completes the proof.
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(iii) ⇒ (iv). Obvious.

(iv) ⇒ (i). Let m be an arbitrary maximal ideal of R. Since
H-dimRR/m is finite, H-dimRRm/mRm is finite, and so by [9, 1.7],
Rm has property H, which concludes the result, as m was arbitrary.

(ii) ⇔ (iii). Only the ‘if’ part needs proof. We prove it, using
induction on the numbers of generators of M . Let M be cyclic. So
it is isomorphic to R/I, for an ideal I of R, and hence the result
is clear in this case. Suppose M is generated by n elements, where
n > 1, and the result is true for all modules which can be generated
by less than n elements. By the equivalence (i) ⇔ (iii), it is enough to
show that r-dimRM is finite. To this end, consider the exact sequence
0 → L → M → N → 0, where L and N are generated by less
than n elements and use induction assumption in conjunction with
Proposition 2.2.

Corollary 3.1. The Noetherian ring R is Cohen-Macaulay if and
only if, for any finitely generated R-module M and any ideal I of R,

ht I ≤ grade (I, M) + CM-dimRM.

Proof. For the ‘if’ part it is enough to put M = R and use
the fact that CM-dimRR = 0. The ‘only if’ part is a consequence
of Proposition 2.6 in view of the fact that, for any R-module M ,
CM-dimRM ≤ H-dimRM .
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