ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 35, Number 4, 2005

A-COMPACTNESS AND MINIMAL SUBALGEBRAS OF C(X)

S.K. ACHARYYA AND D. DE

ABSTRACT. Let $\sum_{i}(X)$ be the set of all subalgebras of C(X) containing $C^*(X)$, where X is a Tychonoff space. Given $A(X) \equiv A \in \sum_{i}(X)$ there is associated a subset $v_A X$ of βX which is an A-analogue of the Hewitt real compactification vX of X. X is called A-compact if and only if $v_A X = X$. Redlin and Watson asked whether, for any real compact space X, there exists in some sense a minimal $A_m \in \sum_{i}(X)$ for which X becomes A_m -compact. Acharyya, Chattopadhyay and Ghosh answered this question in affirmative by defining a suitable preorder on $\sum_{i}(X)$, and they made the following conjecture that there does not exist any minimal subalgebra $A(\mathbf{N})$ of $C(\mathbf{N})$ containing $C^*(\mathbf{N})$, in the usual set inclusion sense for which \mathbf{N} is A-compact. In this paper we have shown that, given any real compact space X there does not exist any minimal member $A_m \in \sum_{i}(X)$, in the usual set inclusion sense for which X becomes A_m -compact and thereby proving the conjecture as a special case of it. From this result it has been further shown that for any $A(X) \neq C^*(X)$ in $\sum_{i}(X)$ there does not exist any minimal member $B(X) \in \sum_{i}(X)$ in the usual set inclusion sense for which sense for which $X = v_B X$.

1. Introduction. It is a remarkable fact in the theory of rings of continuous functions that the Stone-Čech compactification βX of a Tychonoff space X could be realized as the set of all maximal ideals of an arbitrary subalgebra A(X) of C(X) containing $C^*(X)$, equipped with hull kernel topology. Such subalgebras of C(X) were initiated and investigated in detail by Plank [7]. Let $\sum(X)$ be the family of all such subalgebras of C(X). Following Redlin and Watson [8], for any $A(X) \equiv A \in \sum(X)$, a maximal ideal M of A is called *real* provided that the quotient field A/M is isomorphic to the real field **R**, otherwise

Received by the editors on July 20, 2002.

Copyright ©2005 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 54X10, 58Y30, Secondary 55Z10.

Key words and phrases. Algebra of continuous functions, real compactification, Stone-Čech compactification, convex ring. This paper constitutes a portion of D. De's doctoral dissertation under the

This paper constitutes a portion of D. De's doctoral dissertation under the supervision of Prof. S.K. Acharyya. This research was supported by a CSIR fellowship.

S.K. ACHARYYA AND D. DE

M is called *hyper-real*. X is called A-compact if every real maximal ideal M of A is fixed in the sense that there is a point x in X at which every function in M vanishes. With every $A(X) \in \sum(X)$ we have associated a subset $v_A X$ of βX , which is an A-analogue of v X, the Hewitt real compactification of X. X is called A-compact if and only if $v_A X = X$. In this terminology every compact space is C^* -compact and every real compact space is C-compact. The last two authors proved that if $A, B \in \sum(X)$ and $A \subset B$ then the assumption X is A-compact implies that X is B-compact, in particular every A-compact space is real compact; quite naturally they asked the following question. Given any real compact space X, does there exist any minimal member Aof $\sum(X)$ in some sense for which X becomes A-compact? Acharyya, Chattopadhyay and Ghosh [1] offered an affirmative answer to this question after defining a suitable preorder on the class $\sum(X)$. But the minimal members of $\sum(X)$ thus discovered are no longer minimal in the usual set inclusion sense, and these three authors conjectured in the same paper that there does not exist any minimal subalgebra $A(\mathbf{N})$ of $C(\mathbf{N})$ containing $C^*(\mathbf{N})$ in the usual set inclusion sense for which **N** is A-compact. In the present paper we have shown that if X is a noncompact real compact space then there does not exist any minimal member $A_m(X)$ of $\sum(X)$ in the usual set inclusion sense for which X becomes A_m -compact. The conjecture mentioned in the last sentence is therefore an immediate corollary to this fact. Furthermore it has been deduced in this paper that for any $A(X) \neq C(X)$ in $\sum(X)$, there does not exist in the usual set inclusion sense any minimal member B(X)of $\sum(X)$ with the property $v_A X = v_B X$. Nevertheless the problem posed by Redlin and Watson [8] does not end with these results. It is still unknown whether there exists a minimal member A of $\sum(X)$ with respect to a suitable partial ordering on it, necessarily different from the usual set inclusion, for which X becomes A-compact. To conclude the authors would like to refer to [2] for the benefit of a reader who is new to the subject.

2. A-compactifications. In what follows X will stand for a Tychonoff space and for any f in C(X), $Z(f) \equiv \{x \in X : f(x)\} = 0$ will be called the zero set of f. For any ideal I in C(X), Z[I] consists of the sets Z[f] for f in I. Each member f of C(X) has a unique continuous extension $f^* : \beta X \to \mathbf{R}^* = \mathbf{R} \bigcup \{\infty\}$, where \mathbf{R}^* is the one-

1062

point compactification of **R**. If $f \in C^*(X)$, f^* is the same as f^β , the unique continuous extension of f over βX . For our convenience we record the following known result.

Theorem 2.1. If $p \in \beta X - X$ and f, g are in C(X) such that $f^*(p)$ and $g^*(p)$ are both real, then $(f + g)^*(p) = f^*(p) + g^*(p)$ and $(f.g)^*(p) = f^*(p).g^*(p)$.

Plank has shown in [7] that, given $A(X) \in \sum(X)$, the family of all the maximal ideals in A is exactly the set $\{M_A^p : p \in \beta X\}$ where $M_A^p = \{(f.g)^*(p) = 0 \text{ for all } g \in A\}$; and M_A^p is a free ideal if and only if $p \in \beta X - X$. Following Redlin and Watson [8], Acharyya, Chattopadhyay and Ghosh [1] defined a maximal ideal M in A to be real provided that the quotient field A/M is isomorphic to \mathbf{R} , otherwise M is called hyper-real. X is called A-compact if every real maximal ideal of A is fixed. Set $v_A X = \{p \in \beta X : M_A^p \text{ is real}\}$. We call it A-compactification of X. Then $v_C X$ and $v_{C^*} X$ are clearly the Hewitt real compactification vX and the Stone-Čech compactification βX of X, respectively. Also X is A-compact if and only if $v_A X = X$. Now as in [6] we have established the following results in [2].

Theorem 2.2. For any $p \in \beta X$, M_A^p is a real maximal ideal in A, if and only if $f^*(p) \neq \infty$ for all f in A(X).

Theorem 2.3. For any $A(X) \in \sum(X)$, $v_A X$ is the largest subspace of βX to which each member of A(X) can be extended continuously.

Let f^{v_A} be the unique continuous extension over $v_A X$ of f in A(X). Then $A^v = \{f^{v_A} : f \in A(X)\}$ is an algebra over **R** lying between $C^*(v_A X)$ and $C(v_A X)$, furthermore $v_A X$ is an A^v -compact space, see [2]. Also from Corollary 3.7 of [3] we get the following result.

Theorem 2.4. Let $A_1(X)$, $A_2(X)$ in $\sum(X)$ be such that $A_2(X) \subset A_1(X)$ and $p \in v_{A_2}X$. Then $M_{A_1}^p$ is hyperreal if and only if $M_{A_2}^p$ contains a unit of $A_1(X)$.

The result of this theorem can now be stated in a straightforward manner to establish the following:

Theorem 2.5. Let $A_1, A_2 \in \sum(X)$ with $A_2 \subset A_1$. Then $v_{A_1}X \subset v_{A_2}X$. In particular therefore if X is A_2 -compact, then it is A_1 -compact.

Remark 2.6. From the above theorem it clearly follows that every A-compact space X is real compact and therefore $v_A X$ is always real compact.

We define a relation '~' among the members of $\sum(X)$ as follows: $A \sim B$ if and only if $v_A X = v_B X$. Then '~' is an equivalence relation on $\sum(X)$; let us denote the equivalence class of A(X) by [A(X)]. Set $B(X) = \{h|_X : h \in C(v_A X)\}$. Then in view of Theorems 2.3 and 2.5, B(X) is a member of $\sum(X)$ containing A(X) with $v_A X = v_B X$. Also, if $B_1(X) \in \sum(X)$ is such that $v_{B_1} X = v_A X$ it is plain that $B_1(X) \subset B(X)$. Thus we have the following:

Theorem 2.7. Each equivalence class [A(X)] has a largest member, which consists precisely of those functions in C(X) which have continuous extensions over $v_A X$.

Remark 2.8. Since each function in $C^*(X)$ has a continuous extension over βX and no function in $C(X) \setminus C^*(X)$ has any such extension over βX it is clear that $[C^*(X)] = \{C^*(X)\}.$

We write down the following known fact from [1].

Theorem 2.9. A space X is A-compact if and only if for every $p \in \beta X \setminus X$, there exists an f in $C^*(X)$ such that f is a unit of A(X) and $f^{\beta}(p) = 0$ or, equivalently, X is A-compact if and only if for every $p \in \beta X \setminus X$, there exists a unit g of A(X) such that $g^{-1} \in C^*(X)$ and $g^*(p) = \infty$.

1064

We also take down the following known fact as given in Proposition 3.3 of [4].

Theorem 2.10. Each A(X) in $\sum(X)$ is absolutely convex, in particular, a lattice ordered ring.

3. The question of existence of minimal member of $\sum(X)$.

Theorem 3.1. Let X be a noncompact real compact space. Then there does not exist any minimal member $A(X) \in \sum(X)$ in the usual set inclusion sense for which X is A-compact.

Proof. Let $A(X) \in \sum(X)$ be such that X is A-compact. Since X is a noncompact real compact space it cannot be pseudocompact. Hence by result 1.21 of [6], X contains a closed discrete set $\{x_n : n \in \omega\}$ C-embedded in it. We fix any point $p \in \beta X$ which is a limit point of $\{x_n : n \in \omega\}$. Since X is A-compact, by Theorem 2.9 we can select an $f \in A$ such that $f \geq 1$ and $f^*(p) = \infty$. By using the continuity of f^* at p and the fact that p is in the closure of $\{x_n : n \in \omega\}$ in βX , we can construct an increasing sequence $\{k_n : n \in \omega\}$ of natural numbers so that $f(x_{k_n}) > n$ for each $n \in \omega$. Let N denote the subspace $\{x_{k_n} : n \in \omega\}$ of X, which is obviously a copy of **N** in X. Set $B = \mathcal{A}(C^*(N) \cup \{f|_N\})$, the smallest subalgebra of C(N) containing $C^*(N)$ and $f|_N$, and $D = \mathcal{A}(C^*(N) \cup \{\log_e(1+f)|_N\})$. Then, as in 4.1 of [1], $D \subseteq B$.

Let $D' = \{h \in A : h|_N \in D\}$. Clearly $C^*(X) \subset D'$ and D' is a proper subset of A as $f \in A \setminus D'$, also D' is an algebra over \mathbf{R} so that $D' \in \sum(X)$. For each $q \in \operatorname{cl}_{\beta X} N \setminus X$, $f^*(q) = \infty$, hence $h^*(q) = \infty$ where $h = \log_e(1 + f)$. We note that $h \in D'$. On the other hand, for each $q \in \beta X \setminus X \setminus \operatorname{cl}_{\beta X} N$, by Theorem 2.9, we can choose an $a \in A$ with $a \geq 1$ and $a^*(q) = \infty$; also by using just the complete regularity of βX we can have a $g \in C^*(X)$ with $g^*(q) = 1$ and g(N) = 0. It is clear that $a.g \in D'$ and $(a.g)^*(q) = \infty$. Altogether for any point $q \in \beta X \setminus X$ we can select an $h' \in D'$ with $h'^*(q) = \infty$. Hence by Theorem 2.9 X becomes D'-compact. The theorem is completely proved.

We conclude this article after observing that each equivalence class [A(X)] with $A(X) \neq C^*(X)$, in Theorem 2.7 is devoid of any minimal member with respect to the usual set inclusion relation.

Theorem 3.2. Let X be a noncompact Tychonoff space not necessarily real compact. Suppose $A(X) \neq C^*(X)$ is any member of $\sum(X)$. Then there exists an $A_0(X) \in \sum(X)$ such that $A_0(X) \subsetneq A(X)$ and $v_{A_0}X = v_A X$.

Proof. The case with X A-compact has already been proved in Theorem 3.1. Assume therefore that X is not A-compact. We recall the fact as mentioned after Theorem 2.3 that $v_A X$ is an A^v -compact space where $\{f^{v_A} : f \in A\} = A^v$ with f^{v_A} being the unique continuous extension of f to $v_A X$. Since X is not A-compact, $X \subsetneq v_A X$ and as $A(X) \neq C^*(X)$ in view of Remark 2.8 it is clear that $v_A X \neq$ βX . Therefore $v_A X$ is a noncompact real compact space. Hence, by Theorem 3.1 there exists a subalgebra $B(v_A X)$ of $C(v_A X)$ with $C^*(v_A X) \subseteq B(v_A X) \subseteq A^v$ such that $v_A X$ is $B(v_A X)$ -compact. Now set $A_0(X) = \{f|_X : f \in B(v_A X)\}$. Then $A_0(X) \in \sum(X)$ and $A_0(X) \subseteq A(X)$. To complete the theorem we shall show that $v_{A_0}X = v_A X$. As $A_0(X) \subset A(X)$ by Theorem 2.5 we have $v_A X \subset v_{A_0} X$. Now from Theorem 6.7 of [6] we can write $\beta(v_A X) = \beta X$. Then for any $p \in \beta X \setminus v_A X$, as $v_A X$ is $B(v_A X)$ -compact, by Theorem 2.9 there exists $f_p \in B(v_A X)$ such that $f_p^*(p) = \infty$. Let $f = f_p|_X$, so that $f \in A_0(X)$. It is clear that $f^*(p) = \infty$, i.e., $p \notin v_{A_0} X$ by Theorem 2.2. Since this is true for any $p \in \beta(v_A X) \setminus v_A X$ it follows that $v_{A_0} X \subset v_A X$. Hence $v_{A_0}X = v_A X.$

REFERENCES

1. S.K. Acharyya, K.C. Chattopadhyay and D.P. Ghosh, On a class of subalgebras of C(X) and the intersection of their free maximal ideals, Proc. Amer. Math. Soc. **125** (1997), 611–615.

2. — , A class of subalgebras of C(X) and the associated compactness, Kyungpook Math. J. **41** (2001), 323–324.

3. H.L. By un and S. Watson, Prime and maximal ideals of C(X), Topology Appl. **40** (1991), 45–62.

1066

4. J.M. Dominguege, J. Gomez and M.A. Mulero, Intermediate algebras between $C^*(X)$ and C(X) as rings of fractions of $C^*(X)$, Topology Appl. **77** (1997), 115-130.

5. D.P. Ghosh, Compactification, real compactification, and subsets of C(X), Ph.D. Thesis, Burdwan University, 1991.

6. L. Gillman and M. Jerison, Rings of continuous functions, Springer-Verlag, New York, 1976.

7. D. Plank, On a class of subalgebras of C(X) with application to $\beta X - X$, Fund. Math. 64 (1969), 41–54.

8. L. Redlin and S. Watson, Maximal ideals in subalgebras of C(X), Proc. Amer. Math. Soc. 100 (1987), 763-766.

DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF CALCUTTA, 35 BALLY-GUNGE CIRCULAR ROAD, KOLKATA-700019, INDIA $E\text{-}mail\ address:\ \texttt{sudipkumaracharyya@yahoo.co.in}$

DEPARTMENT OF MATHEMATICS, KRISHNAGAR WOMEN'S COLLEGE, KRISHNAGAR, Nadia-741101, India

E-mail address: d1dey_72@rediffmail.com