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A BEST APPROXIMATION THEOREM FOR
NONEXPANSIVE SET-VALUED MAPPINGS

IN HYPERCONVEX METRIC SPACES

JACK T. MARKIN

1. Introduction. Recent results have shown that many fixed point
and best approximation theorems previously established for Banach
spaces have analogues in hyperconvex metric spaces, see, for example,
[2, 4 6]. In [4] the authors gave a hyperconvex version of the Fan best
approximation theorem for set-valued mappings on compact sets. It is
the purpose of this paper to show that a best approximation theorem
can be obtained in hyperconvex spaces for set-valued mappings without
compactness assumptions, under the additional requirement that the
mappings are nonexpansive. This result is applied to obtain some fixed
point theorems.

2. Preliminaries. Using B(x, r) to denote the closed ball with cen-
ter x ∈ M and radius r, a metric space (M, d) is hyperconvex if, given
any family {xα} of points in M and any family {rα} of real numbers
satisfying d(xα, xβ) ≤ rα + rβ, it is the case that ∩B(xα, rα) �= ∅.
Hyperconvex metric spaces were introduced and their basic properties
elaborated in [1].

The externally hyperconvex subsets (relative to M), denoted by
E(M), are those subsets S such that, given any family {xα} of points in
M and any family {rα} of real numbers satisfying d(xα, xβ) ≤ rα + rβ

and d(xα, S) ≤ rα, it follows that S ∩ (∩B(xα, rα)) �= ∅. Throughout,
d(x, S) = infy∈S d(x, y) for any subset S.

The admissible subsets of M , denoted by A(M), are sets of the form
∩B(xα, rα), i.e., the family of ball intersections in M . Admissible
subsets are externally hyperconvex [1]. A subset S is proximinal
provided for each x ∈ M there is an s ∈ S such that d(x, s) = d(x, S).
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Externally hyperconvex subsets are proximinal [1].

For a subset S of M , Nε(S) denotes the closed ε-neighborhood of S,
i.e., Nε(S) = {x ∈ M : d(x, S) ≤ ε}. If S is externally hyperconvex
(admissible), then Nε(S) is externally hyperconvex (admissible) [3,6].

If U, V are closed bounded subsets of M , let D be the Hausdorff
metric defined as D(U, V ) = inf{ε > 0 : U ⊆ Nε(V ) and V ⊆ Nε(U)}.
For any subset S of M , a set-valued mapping F : S → E(M) is
nonexpansive if D(F (x), F (y)) ≤ d(x, y) for any x, y ∈ S.

Lemma. Let M be a hyperconvex metric space, X an admissible
subset, and U and V externally hyperconvex subsets of M . Then,
D(Nα(X) ∩ U, Nβ(X) ∩ V ) ≤ D(U, V ), where

α = inf{ε > 0 : Nε(X) ∩ U �= ∅}

and
β = inf{ε > 0 : Nε(X) ∩ V �= ∅}.

Proof. We define the sets U0 = Nα(X) ∩ U and V0 = Nβ(X) ∩ V
and observe that they are nonempty since U and V are externally
hyperconvex sets. Assume α ≥ β. We prove the lemma by showing
that d(u, V0) ≤ D(U, V ), for each u ∈ U0 and that d(v, U0)) ≤ D(U, V ),
for each v ∈ V0.

By the definition of U0,

(1) d(u, Nβ(X)) = inf
y∈U

d(y, Nβ(X)) for any u ∈ U0.

Since ND(U,V )(U) ∩ V0 �= ∅, we have ND(U,V )(U) ∩ Nβ(X) �= ∅. In
view of (1), for any u ∈ U0, d(u, Nβ(X)) ≤ D(U, V ), and therefore,
B(u, D(U, V )) ∩ Nβ(X)) �= ∅.

Since Nβ(X) is admissible, Nβ(X) = ∩Bi, where each Bi is a ball in
M . Clearly, Bi ∩ V �= ∅, and B(u, D(U, V ))∩Bi �= ∅, for each u ∈ U0

and each i. Because V is externally hyperconvex, it follows that

B(u, D(U, V )) ∩ Nβ(X) ∩ V �= ∅, for u ∈ U0.

Thus for u ∈ U0, d(u, V0) ≤ D(U, V ).
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Assume v ∈ V0. Then B(v, D(U, V )) ∩ U �= ∅, Nα(X) ∩ U �= ∅

by definition, and B(v, D(U, V )) ∩ Nα(X) �= ∅ since v ∈ Nα(X).
Because Nα(X) is admissible and U is externally hyperconvex, the same
argument as above implies B(v, D(U, V ))∩Nα(X)∩U �= ∅. Hence, for
any v ∈ V0, d(v, U) ≤ D(U, V ). It follows that D(U0, V0) ≤ D(U, V ).

3. A best approximation theorem. The following Theorem 1
gives a set-valued version of the Ky Fan best approximation theorem
for nonexpansive mappings defined on an admissible set with values in
E(M). The same result was obtained in [4] under the assumption that
the domain is a compact admissible set and the mapping is continuous
with values in A(M). A point valued version of Theorem 1 appears in
[6].

Theorem 1. Let M be a bounded hyperconvex metric space, X an
admissible subset and F : X → E(M) \ {∅} a nonexpansive mapping.
Then either there is an x0 ∈ X such that x0 ∈ F (x0) or there is an x0

in the boundary of X such that 0 < d(x0, F (x0)) ≤ infx∈X d(x, F (xo)).

Proof. For each x ∈ X define the mapping F0 : X → E(M)
by F0(x) = Nα(X) ∩ F (x), where α = infz∈F (x) d(z, X). The set
F0(x) is a nonempty externally hyperconvex subset of M since it is the
intersection of an admissible set and an externally hyperconvex set [3].
By the lemma F0 is a nonexpansive mapping. The selection theorem
in [3] implies the existence of a nonexpansive point-valued mapping
f0 : X → M such that

f0(x) ∈ F0(x) for x ∈ X.

Define the mapping P : M → A(X) by P (y) = {x ∈ X : d(y, x) =
infz∈X d(y, z)}. Then, by a result in [6], there is a nonexpansive set-
valued selection P0 : M → A(X), where P0(x) ⊆ P (x) for x ∈ M .

Consider the mapping P0(f0(·)) : X → A(X), which by definition is
a nonexpansive set-valued mapping of X into itself. Since admissible
subsets are externally hyperconvex, the fixed point existence theorem
of [3] implies there is an x0 ∈ X such that x0 ∈ P0(f0(x0)). Thus,
d(x0, F (x0)) = infx∈X d(x, F (x0)).
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The remainder of the proof follows an idea of Park [5]. If d(x0, F (x0))
= 0, then x0 is a fixed point of F . Otherwise, we have 0 <
d(x0, F (x0)) ≤ d(x, F (x0)) for each x ∈ X. To show that x0 is in
the boundary of X, assume that x0 is in the interior of X. Then there
is an r > 0 such that B(x0, r) ⊆ X and r < d(x0, F (x0)) ≤ d(x, F (x0))
for each x ∈ B(x0, r). By hyperconvexity there is a y0 ∈ B(x0, r) ∩
B(z, d(x0, F (x0)) − r), where z ∈ F (x0) and d(x0, z) = d(x0, F (x0)).
Hence, d(y0, F (x0)) ≤ d(x0, F (x0)) − r < d(x0, F (x0)), which is a con-
tradiction. Therefore, x0 is in the boundary of X.

4. Fixed point theorems. In this section we apply Theorem 1 to
obtain some fixed point theorems for set-valued nonexpansive mappings
with domain an admissible subset and values in E(M). Theorem 2 and
its corollary were obtained in [4] under the assumption that the domain
of the mappings is a compact admissible subset and the mappings are
continuous with values in A(M). A point valued version of Theorem 3
appears in [6]

.

Theorem 2. Let M be a bounded hyperconvex metric space, X an
admissible subset and F : X → E(M) \ {∅} a nonexpansive set-valued
mapping such that, for each x ∈ X with x /∈ F (x), there exists z ∈ X
such that d(z, F (x)) < d(x, F (x)). Then there is an x0 ∈ X such that
x0 ∈ F (x0).

Proof. By Theorem 1, there is an x0 ∈ X such that d(x0, F (x0)) =
infx∈X d(x, F (x0)). We claim that x0 is a fixed point of F . If not,
then x0 /∈ F (x0) and, by assumption, there is a z ∈ X such that
d(z, F (x0)) < d(x0, F (x0)). But this contradicts the fact that x0 is a
best approximation to F (x0) in X. Therefore, there is an x0 ∈ X such
that x0 ∈ F (x0).

Corollary. Let M be a bounded hyperconvex metric space, X an
admissible subset and F : X → E(M) \ {∅} a nonexpansive set-valued
mapping such that for each x ∈ X, F (x) ∩ X �= ∅. Then there is an
x0 ∈ X such that x0 ∈ F (x0).
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Proof. Because F (x) ∩ X �= ∅ for each x ∈ X, it follows that for
each x ∈ X with x /∈ F (x), we can choose a z ∈ F (x) ∩ X such that
d(z, F (x)) = 0 < d(x, F (x). Thus, the conditions of Theorem 2 are
satisfied and the conclusion follows.

Theorem 3. Let M be a bounded hyperconvex metric space, X an
admissible subset and F : X → E(M) \ {∅} a nonexpansive set-valued
mapping. If F (x) ⊆ X for each x in the boundary of X, then there is
an x0 ∈ X such that x0 ∈ F (x0).

Proof. Assume that F does not have a fixed point. By Theorem 1,
there is an x0 in the boundary of X such that 0 < d(x0, F (x0)) ≤
infx∈X d(x, F (x0)). However, since x0 is in the boundary of X, F (x0) ⊆
X, and therefore infx∈X d(x, F (x0)) = 0. This is a contradiction,
implying the theorem.
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