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DARBOUX INTEGRABILITY AND
REVERSIBLE QUADRATIC VECTOR FIELDS

JAUME LLIBRE AND JOÃO CARLOS MEDRADO

ABSTRACT. In this paper we improve the Darboux the-
ory of integrability for reversible polynomial vector fields in
Rn, and we classify the phase portraits of all ϕ−reversible
quadratic polynomial vector fields of R2 such that the dimen-
sion of the set of fixed points of ϕ is equal to one.

1. Introduction and statement of the main results. The
algebraic theory of integrability is a classical one. In 1878, Darboux
[11] provided a link between algebraic geometry and the search of first
integrals and showed how to construct the first integral of polynomial
vector fields in R2 or C2 having sufficient invariant algebraic curves.
The theory also received contributions from Poincaré [24], who mainly
was interested in the rational first integrals.

Good extensions of the Darboux theory of integrability to polynomial
systems in Rn or Cn are due to Jouanolou [16] and Weil [29], see
also [17]. In [4, 6 9], the authors developed the Darboux theory of
integrability essentially in R2 or C2 considering not only the invariant
algebraic curves but also the exponential factors, the independent
singular points and the multiplicity of the invariant algebraic curves.
Recently, in [13] and [18] there are extensions of the Darboux theory
of integrability to two-dimensional surfaces.

In this paper we present and prove properties of reversible polynomial
vector fields. In Propositions 3 and 4 we prove that for ϕ−reversible
polynomial vector fields, X, of degree greater than one and such
that dim (Fix (ϕ)) = k, the involution ϕ is linear and conjugated to
diag (+1, . . . ,+1,−1, . . . ,−1), where the number of −1 is equal to k.
In Proposition 5 we prove that if f = 0 is an invariant curve of X, then
f ◦ ϕ is also an invariant curve. The same occurs with the exponential
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factors and the first integrals. This result is useful to obtain first
integral of vector fields using the Darboux theory of integrability, see
Theorem 6, because if an invariant curve f = 0 or exponential factor
is not symmetric, i.e., f ◦ ϕ �= f or F ◦ ϕ �= F , then the system has
another invariant algebraic curve or exponential factor, respectively.

Quadratic vector fields, i.e., quadratic polynomial vector fields, have
been investigated intensively, and nearly 1000 papers have been pub-
lished about these systems, see, for instance, [25, 30, 31]. But it is
an open problem to know what are the integrable quadratic systems,
see, for instance, [19]. Here, we characterize all ϕ−reversible quadratic
vector fields such that the dimension of the set of fixed points of ϕ is
equal to one, and we prove that they are integrable.

Teixeira [28] and Medrado [21], see also [22], studying ϕ−reversible
vector fields X in Rn such that the dim (Fix (ϕ)) = n−1 used a change
of variables and reduce the study of X to analyze vector fields defined
on manifolds with boundary. In the proof of the next theorem we also
use this technique.

Theorem A. Let X be a reversible quadratic vector field with the
dimension of the set of fixed points of the associated involution equal
to one. Then, the phase portrait of X is topologically equivalent to
one of the 77 phase portraits given in Figure 1. Moreover, each phase
portrait of Figure 1 is realizable by some reversible quadratic reversible
vector field with the dimension of the set of fixed points of the associated
involution equal to one.

The paper is organized as follows. In Section 2 we give some basic
definitions that we will need to draw the phase portraits of reversible
polynomial vector fields. In Section 3 we define the reversible vector
fields and present their basic properties. In the same section we prove
Propositions 3 and 4. In Section 4 we state the Darboux theory of
integrability for real polynomial reversible vector fields and we prove
Proposition 5. In Section 5 we prove that the ϕ−reversible polynomial
vector fields in R2, such that the dimension of the set of fixed points
of ϕ is equal to one, are integrable and we present their normal forms.
In Section 6 we draw the phase portraits of reversible quadratic vector
fields defined on half-plane. In Section 7 we draw the phase portraits
of reversible quadratic vector fields and prove Theorem A.
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FIGURE 1. Phase portraits of ϕ−reversible quadratic vector fields in R2 such
that dim (Fix (ϕ)) = 1.
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2. Preliminary definitions. In this section we introduce some
basic definitions and notations for the investigation of topological phase
portraits of ϕ−reversible quadratic vector fields X.

2.1 Singular points. Let X = (P (x, y), Q(x, y)) be a planar real
polynomial vector field of degree n. A point q ∈ R2 is a singular point
of the vector field X if P (q) = Q(q) = 0.

If D = Px(q)Qy(q) − Py(q)Qx(q) and T = Px(q) + Qy(q), then a
singular point q is elementary nondegenerate if D �= 0. Then the
singular point is isolated. Furthermore, q is a saddle if D < 0, a
node if T 2 ≥ 4D > 0 (stable if T < 0, unstable if T > 0), a focus
if T 2 < 4D and T �= 0 (stable if T < 0, unstable if T > 0), and
either a weak focus or a center if T = 0 < D; for more details see
[2, p. 183]. A singular point q is elementary degenerate if D = 0 and
T �= 0, and then q is also isolated in the set of all singular points. The
results on elementary degenerate singular points are summarized in the
elementary degenerate theorem of the Appendix.

A singular point q is nilpotent if D = T = 0 and the Jacobian matrix
at q is not the zero matrix and q is isolated in the set of all singular
points. The results on nilpotent singular points are summarized in the
nilpotent theorem of the Appendix.

If the Jacobian matrix at the singular point q is identically zero and q
is isolated in the set of all singular points, we say that q is linearly zero.
Then the study of its local phase portraits needs a particular treatment
(directional blow-ups), see for more details [23] and [26]. If q = (0, 0)
is linearly zero and the vector field X has some nonzero second degree
term, then the local phase portraits are characterized in [15].

2.2 Poincaré compactification. We denote by P2(R2) the set
of all planar real vector fields of degree 2. For X ∈ P2(R2) the
Poincaré compactified vector field p(X) corresponding to X is a vector
field induced in S2 as follows, see for instance [12] and [2]. Let
S2 = {y = (y1, y2, y3) ∈ R3 : y2

1 + y2
2 + y2

3 = 1}, called the Poincaré
sphere, and TyS2 be the tangent space to S2 at point y. Consider
the central projections f+ : T(0,0,1)S2 → S2

+ = {y ∈ S2 : y3 > 0}
and f− : T(0,0,1)S2 → S2

− = {y ∈ S2 : y3 < 0}. These maps define
two copies of X, one in the northern hemisphere and the other in
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the southern hemisphere. Denote by X ′ the vector fields Df+ ◦ X
and Df− ◦ X in S2 except on its equator S1 = {y ∈ S2 : y3 = 0}.
Obviously S1 is identified to the infinity of R2. In order to extend
X ′ to an analytic vector field in S2, including S1, it is necessary that
X satisfies suitable hypotheses. In the case that X ∈ P2(R2), the
Poincaré compactification p(X) is the only analytic extension of y3X ′

to S2. The set of all compactified vector fields p(X) with X ∈ P2(R2)
is denoted by P2(S2). For the flow of the compactified vector field
p(X), the equator S1 is invariant. On S2\S1 there are two symmetric
copies of X, and knowing the behavior of p(X) around S1, we know
the behavior of X near infinity. The projection of the closed northern
hemisphere of S2 in y3 = 0 under (y1, y2, y3) �→ (y1, y2) is called the
Poincaré disc, and it is denoted by D2.

As S2 is a differentiable manifold, for computing the expression of
p(X), we can consider the six local charts Ui = {y ∈ S2 : yi > 0}, and
Vi = {y ∈ S2 : yi < 0} where i = 1, 2, 3, and the diffeomorphisms
Fi : Ui → R2 and Gi : Vi → R2 defined as the inverses of the
central projections from the tangent planes at the points (1, 0, 0),
(−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1), respectively. If
we denote by z = (z1, z2) the value of Fi(y) or Gi(y) for any i = 1, 2, 3,
then z represents different things according to the local charts under
consideration. Some straightforward calculations give for p(X) the
following expressions:

z2
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[
Q

(
1
z2
,
z1
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in U2,

Δ(z)[P (z1, z2), Q(z1, z2)] in U3,

where Δ(z) = (z2
1 + z2

2 + 1)−1/2. The expression for Vi is the same as
that for Ui except for the multiplicative factor −1. In these coordinates
for i = 1, 2, z2 = 0 always denotes the points of S1. In what follows
we omit the factor Δ(z) by rescaling the vector field p(X). Thus we
obtain a polynomial vector field of degree at most 3 in each local chart.

Since the unique singular point at infinity which cannot be contained
into the charts U2∪V2 are the origins (0, 0) of U1 and V1, when we study



2004 J. LLIBRE AND J.C. MEDRADO

the infinity singular points on the charts U1 ∪ V1, we only consider if
the (0, 0) of these charts are or not singular points.

2.3 Topological equivalence. We say that polynomial vector
fields X and Y in R2 are topologically equivalent if there exists a
homeomorphism in S2 preserving the infinity S1 carrying orbits of the
flow induced by p(X) into orbits of the flow induced by p(Y ), preserving
or reversing simultaneously the sense of all orbits.

A separatrix of p(X) is an orbit which is a singular point, or a limit
cycle, or a trajectory which lies in the boundary of a hyperbolic sector
at a singular point, finite or infinity. If a quadratic system has a
polynomial first integral, then it has no limit cycles.

We denote by Sep (p(X)) the set formed by all separatrices of p(X).
Neumann [23] proved that the set Sep (p(X)) is closed. Each open con-
nected component of S2\Sep (p(X)) is called a canonical region of p(X).
A separatrix configuration is defined as a union of Sep (p(X)) plus one
representative solution chosen from each canonical region. We say that
Sep (p(X)) and Sep (p(Y )) are equivalent if there exists a homeomor-
phism in S2 preserving the infinity S1 carrying orbits of Sep (p(X)) into
orbits of Sep (p(Y )), preserving or reversing simultaneously the sense
of all orbits.

The next theorem due to Neumann [23] states the characterization
of two topologically equivalent Poincaré compactified vector fields. We
shall need it later on for the analysis of the global phase portraits of
the ϕ−reversible quadratic vector fields.

Theorem 1 (Neumann’s theorem). Suppose that p(X) and p(Y )
are two continuous flows in S2 with isolated singular points. Then
p(X) and p(Y ) are topologically equivalent if and only if their separatrix
configurations are equivalent.

Neumann’s theorem implies that in order to obtain the global phase
portrait of a vector field p(X) with isolated singular points, we essen-
tially need to determine the α- and ω-limit sets of all separatrices of
p(X).
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Neumann’s theorem was obtained under the additional assumption
that the flow has no limit separatrices by Markus [20] in 1954.

3. Reversible vector fields. Let ϕ : Rn → Rn be an involution,
i.e., ϕ ◦ ϕ = Id. We say that X is a ϕ−reversible vector field, or only
ϕ−reversible, if X satisfies

Dϕ(p)X(p) = −X ◦ ϕ(p), p ∈ Rn.

We denote by S ⊂ Rn the set of fixed points of ϕ, or S = Fix (ϕ).
If p ∈ S and X(p) = 0, we say that p is a symmetric singular point of
X; otherwise, it is an asymmetric singular point. Any periodic orbit
of X crossing S is called a symmetric periodic orbit; otherwise, it is an
asymmetric periodic orbit.

If p is a singular point of X, then ϕ(p) is also a singular point
of X, and since ϕ interchanges the stable and unstable manifolds, a
symmetric singular point cannot be an attractor or a repellor. If γ is a
periodic orbit of X, then ϕ(γ) is also a periodic orbit.

Lemma 2. Let ϕ : Rn → Rn be an involution, and let X be a
ϕ−reversible vector field in Rn. If γ is an asymmetric periodic orbit,
then ϕ(γ) is an asymmetric periodic orbit too; and if γ is a symmetric
periodic orbit, then it is not a limit cycle.

Proof. The proof follows directly from equation Dϕ(p)X(p) =
−X(ϕ(p)) and from [21, Lemma 3.2].

Proposition 3. Let ϕ : Rn → Rn be a polynomial involution of
degree q, and let X be a ϕ−reversible polynomial vector field of degree p
in Rn. If p �= 1, then ϕ is a linear involution.

Proof. As X is a ϕ−reversible vector field, then Dϕ(p)X(p) =
−X(ϕ(p)). This equation implies that q − 1 + p = pq, or equivalently
q(p− 1) = p− 1. So, q = 1 provided that p �= 1.

Proposition 4. Let ϕ : Rn → Rn be a linear involution such that the
vector subspace Fix (ϕ) has dimension equal to k. Then the involution ϕ
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is conjugated to ψ given by ψ = diag (+1, . . . ,+1,−1, . . . ,−1), where
the number of elements −1 is equal to k.

Proof. We observe that as ϕ is a linear involution, then det(ϕ) = ±1.
By Jordan’s normal form theorem, there is a linear change of variables
h : Rn → Rn such that ψ = h−1ϕh is formed by Jordan’s blocks,
and the elements of the principal diagonal of ψ are formed by not
zero eigenvalues λi, i = 1, . . . , n. Now, we suppose that ψ has a
k × k Jordan’s block of nilpotent type associated to eigenvalue λi0 ,
1 ≤ i0 ≤ n which we denote by C = (cij), i, j = 1, . . . , k. We compute
C2 = (dij), i, j = 1 . . . , k, and we have that d12 = 2λi0 �= 0. But, C
is an involution, provided that ψ is an involution too, this implies that
d12 = 0 and we have a contradiction. So, ψ has no nilpotent Jordan’s
blocks.

Now, if there is 1 ≤ i0 ≤ n such that λi0 = a + ib, with b �= 0, we
have the associated Jordan’ block:

C =
(
a b
−b a

)
.

Thus we have a contradiction because C2 = Id if and only if b = 0.

In short, ψ is a diagonal matrix, and ψ2 = Id implies λi = ±1, and
the proof of the proposition is completed.

4. Darboux theory of integrability for reversible polynomial
vector fields. In this section we state the Darboux theory of inte-
grability for real polynomial reversible vector fields. Of course, this
theory can be extended in a natural way to complex polynomial vector
fields, but here we do not consider these extensions. We consider the
following polynomial vector fields in Rn:

X =
n∑

i=1

Pi(x1, . . . , xn)
∂

∂xi
, (x1, . . . , xn) ∈ Rn,

where Pi for i = 1, . . . , n, are polynomials of degree at most m. The
integer m = max{degP1, . . . ,degPn} is the degree of the vector field
X.

The polynomial vector field X has a first integral in an open subset
U of Rn if there exists a nonconstant analytic function H : U → Rn,
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which is constant on all solutions (x1(t), . . . , xn(t)) of X in U . Clearly
H is a first integral of X in U if and only if XH ≡ 0 in U .

Let f(x1, . . . , xn) ∈ C[x1, . . . , xn]. As usual, C[x1, . . . , xn] denotes
the ring of all complex polynomials in the variables x1, . . . , xn. We say
that f = 0 is an invariant algebraic hypersurface of the vector field X
on Rn, or simply an invariant algebraic hypersurface on Rn, if there
exists a polynomial k ∈ C[x1, . . . , xn] such that

Xf =
n∑

i=1

Pi
∂f

∂xi
= kf, on Cn,

the polynomial k = k(x1, . . . , xn) ∈ C[x1, . . . , xn] is called the cofactor
of f = 0 in Cn. We can prove easily that for a polynomial vector field
X of degree m the cofactor of an invariant algebraic hypersurface is of
degree at most m− 1.

We allow that the invariant algebraic hypersurfaces (and later on the
exponential factors) can be complex, because often the existence of a
real first integral is forced by existence of these complex objects, for
more details see [4, 8].

Let f = 0 be an invariant algebraic hypersurface of X in Rn.
Suppose that f(x1, . . . , xn) /∈ R[x1, . . . , xn], if f = 0 is an invariant
algebraic hypersurface of X in U , then the conjugate f̄(x1, . . . , xn)
of the polynomial f(x1, . . . , xn) (which means to conjugate all the
coefficients of f) defines another invariant algebraic hypersurface f̄ = 0
of X in U .

We remark that, in the above definitions, in Rn with n > 2, then
f = 0 is called an invariant algebraic hypersurface. If n = 2, then
f = 0 is called an invariant algebraic curve. If n = 3, then f = 0 is
called an invariant algebraic surface.

Since on an invariant algebraic hypersurface f = 0 the gradient ∇f
in f = 0 is orthogonal to the polynomial vector (P1, . . . , Pn), it follows
that the vector field X is tangent to the algebraic hypersurface f = 0.
Therefore, the hypersurface f = 0 is formed by trajectories of the vector
field X. This justifies the name of invariant by the flow of the vector
field X in Rn.

An exponential factor F (x1, . . . , xn) of the polynomial vector field
X of degree m in Rn is a function of the form exp(g/h) with g and h
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polynomials of C[x1, . . . , xn] and satisfying XF = KF in Cn for some
K ∈ Cm−1[x1, . . . , xn], where Cm−1[x1, . . . , xn] denotes the set of all
polynomials of C[x1, . . . , xn] of degree at most m − 1. The notion
of exponential factor is due to Christopher [7], and it controls the
multiplicity of the invariant hypersurface h = 0, see [10].

Proposition 5. Let X be a ϕ−reversible polynomial vector field of
Rn. Then the following statements hold.

(a) f = 0 is an invariant algebraic hypersurface of X with cofactor K
if and only if fϕ = f ◦ϕ = 0 is also an invariant algebraic hypersurface
with cofactor Kϕ = −K ◦ ϕ.

(b) F = exp(g/h) is an exponential factor of X with cofactor L, if
and only if Fϕ = F ◦ ϕ is also an exponential factor with cofactor
Lϕ = −L ◦ ϕ.

(c) H : Rn → R is a first integral of X if and only if Hϕ = H ◦ ϕ is
also a first integral of X.

Proof. Initially, we observe that, as f = 0 is an invariant algebraic
hypersurface with cofactor K and X is ϕ-reversible, we have that

Xf = Kf and DϕX = −X ◦ ϕ,
respectively. Then, we obtain

Xfϕ = ∇fϕ ·X = ∇f ◦ ϕ ·Dϕ ·X = ∇f ◦ ϕ(−X ◦ ϕ)
= −(Xf) ◦ ϕ = −(K ◦ ϕ)(f ◦ ϕ) = Kϕfϕ.

Thus, if f = 0 is an invariant algebraic hypersurface with cofactor K,
then fϕ = 0 is also an invariant algebraic hypersurface with cofactor
Kϕ = −K ◦ ϕ.

This implies that, if fϕ = f ◦ ϕ = 0 is an invariant algebraic
hypersurface with cofactor Kϕ = −K ◦ ϕ, then fϕ ◦ ϕ = 0 is also
an invariant algebraic hypersurface with cofactor K̃ = −Kϕ ◦ ϕ. But,
we observe that

fϕ ◦ ϕ = f ◦ ϕ ◦ ϕ = f and K̃ = −Kϕ ◦ ϕ = −(−K ◦ ϕ)ϕ = K.

This proves statement (1).
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Now, as F = exp (g/h) is an exponential factor with cofactor L,
we have by Proposition 7 of [8] that h = 0 is an invariant algebraic
hypersurface of X with cofactor Kh, i.e., Xh = Khh, and g satisfies
the equation Xg = gKh + hL where L is the cofactor of F .

We consider gϕ = g ◦ ϕ and fϕ = f ◦ ϕ, we get

XFϕ = X exp
(
gϕ

hϕ

)
= exp

(
gϕ

hϕ

)
(Xgϕ)hϕ − gϕ(Xhϕ)

(hϕ)2
.

Now,

(Xgϕ)hϕ − gϕ(Xhϕ) = −[gϕ(Kh ◦ ϕ) + hϕ(L ◦ ϕ)]hϕ − gϕ[−Kh ◦ ϕ]hϕ

= −(L ◦ ϕ)(hϕ)2.

Consequently,

X exp
(
gϕ

hϕ

)
= −L ◦ ϕ exp

(
gϕ

hϕ

)
.

Thus, if F is an exponential factor with cofactor L, then Fϕ is also an
exponential factor with cofactor Lϕ = −L ◦ ϕ.

We now apply the argument used in the proof of above statement,
with F replaced by Fϕ and L replaced by Lϕ to conclude the proof of
statement (2).

Finally, H is a first integral if and only if XH ≡ 0, and we have that

XHϕ = ∇H ◦ ϕ ·X ◦ ϕ = XH(ϕ) ≡ 0.

So, XH ≡ 0 if and only if XHϕ ≡ 0. This proves statement (3).

The following result is a summary of the Darboux theory of integra-
bility in Rn, see for instance, [16, 17, 29].

Theorem 6. Suppose that the polynomial vector field X defined in
Rn of degree m admits p irreducible invariant algebraic hypersurfaces
fi = 0 with cofactors Ki for i = 1, . . . , p; q exponential factors
Fj = exp(gj/hj) with cofactors Lj for j = 1, . . . , q; and r independent
singular points xk ∈ Rn of X such that fi(xk) �= 0 for i = 1, . . . , p
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and k = 1, . . . , r. We note that the irreducible factors hj are some fi.
Then the following statements hold.

(a) There exist λi, μj ∈ C not all zero such that
∑p

i=1 λiKi +∑q
j=1 μjLj = 0, if and only if the following real, multi-valued, function

of Darbouxian type
fλ1
1 · · · fλp

p Fμ1
1 · · ·Fμq

q ,

substituting fλi
i by |fi|λi if λi ∈ R, is a first integral of the vector field

X.

(b) If p + q + r ≥
(

n+m−1

m−1

)
+ 1, then there exist λi, μj ∈ C not all

zero such that
∑p

i=1 λiKi +
∑q

j=1 μjLj = 0.

(c) There exist λi, μj ∈ C not all zero such that
∑p

i=1 λiKi +∑q
j=1 μjLj = −σ for some σ ∈ R\{0}, if and only if the real, multi-

valued, function
fλ1
1 · · · fλp

p Fμ1
1 · · ·Fμq

q eσt,

substituting fλi
i by |fi|λi if λi ∈ R, is an invariant of the vector field

X.

(d) The vector field X has a rational first integral if and only if

p+ q + r ≥
(
n+m− 1
m− 1

)
+ n.

Moreover, all trajectories are contained in invariant algebraic hyper-
surfaces.

For reversible vector fields we must take into account in the state-
ments of Theorem 6 the existence of the symmetric invariant algebraic
curves and exponential factors.

5. Normal forms for reversible quadratic vector fields. In
this section we find the normal forms of all ϕ−reversible quadratic
polynomial vector fields defined in R2 such that dim(Fix (ϕ)) = 1. By
Propositions 3 and 4, we can consider that involution ϕ is given by
ϕ(x, y) = (x,−y). Let X be a ϕ−reversible quadratic (polynomial)
vector field in R2. Then X has the following form:

(1) X(x, y) = (y(a0 + a1x),−b0 + b1x+ b2x
2 + b3y

2).
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The next result provides the normal form for the family of ϕ−reversible
quadratic vector fields.

Lemma 7. Any ϕ−reversible quadratic vector field (1) can be written
in one of the following normal forms:

(a) X1(x, y) = (y(a0 + a1x),−b0 + x2 + b3y
2).

(b) X2(x, y) = (y(a0 + a1x),−b0 + x+ b3y
2).

(c) X3(x, y) = (y(a0 + a1x),−b0 + b3y
2).

Proof. If b2 �= 0, doing the change of variables (u, v) = (x+(b1/2b2), y),
and the rescaling of the time by T = b2t, system (1) becomes
(v((a0 − ((a1b1)/(2b2)))(1/b2)+ a1u),−(b0 − ((b21)/(4b2)))(1/b2)+u2 +
(b3/b2)v2). So, we obtain X1 after changing (u, v) by (x, y) and re-
name their coefficients. If b2 = 0 and b1 �= 0, then rescaling the time
by T = b1t, we get X2. If b2 = b1 = 0, we have X3.

Lemma 8. Any ϕ−reversible quadratic vector field X1(x, y) can be
written in one of the following normal forms:

(1) If a0a1 �= 0, then X±
1 (x, y) = (y(1 ± x),−b0 + x2 + b3y

2).

(2) If a0 �= 0, a1 = 0 and b0 �= 0, then X2,±(x, y) = (y,±1+x2+b3y2).

(3) If a0 �= 0, a1 = 0 and b3 �= 0, then X3,±(x, y) = (y,−b0+x2±y2).

(4) If a0 �= 0, a1 = 0 and b0 = b3 = 0, then X4(x, y) = (y, x2).

(5) If a0 = 0, a1 �= 0 and b0 �= 0, then X±
5,±(x, y) = (±xy,±1 + x2 +

b3y
2).

(6) If a0 = 0, a1 �= 0 and b0 = 0, then X±
6 (x, y) = (±xy, x2 + b3y

2).

(7) If a0 = a1 = 0 and b0b3 �= 0, then X7,±,±(x, y) = (0,±1+x2±y2).

(8) If a0 = a1 = 0 and b0 �= 0, b3 = 0, then X8,±(x, y) = (0,±1+x2).

(9) If a0 = a1 = 0 and b0 = 0, b3 �= 0, then X9,±(x, y) = (0, x2 ± y2).

(10) If a0 = a1 = b0 = b3 = 0, then X10(x, y) = (0, x2).
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Proof. After the change of variables (x, y, t) = (αx1, βy1, γT ), the
vector field X1(x, y) has the form

X̃1(x1, y1) =
(
y1(a0γ

2α+ a1γ
2α2x1),− b0

α2
+ x2

1 + b3γ
2α2y2

1

)
,

where β = α2γ. If a0a1 �= 0, then we obtain the normal form
X±

1 (x, y) = (y1(1 ± x1),−b0 + x2
1 + b3y

2
1), where α = ±a0/a1 and

γ2 = ±a1/a
2
0. In a similar way, we obtain the other normal forms.

Lemma 9. Any ϕ−reversible quadratic vector field X2(x, y) can be
written in one of the following normal forms:

(1) If a0a1 �= 0, then X±
11(x, y) = (y(±1 + x),−b0 + x+ b3y

2).

(2) If a0 �= 0, a1 = 0 and b0 �= 0, then X±
12(x, y) = (±y, 1+x+ b3y

2).

(3) If a0 �= 0, a1 = 0 and b0 = 0, b3 �= 0, then X13,±(x, y) =
(±y, x+ y2).

(4) If a0 �= 0, a1 = 0 and b0 = b3 = 0, then X±
14(x, y) = (±y, x).

(5) If a0 = 0, a1 �= 0 and b0 �= 0, then X15,±(x, y) = (xy,±1 + x +
b3y

2).

(6) If a0 = 0, a1 �= 0 and b0 = 0, then X16(x, y) = (xy, x+ b3y
2).

(7) If a0 = a1 = 0 and b0b3 �= 0, then X17,±(x, y) = (0, 1 + x± y2).

(8) If a0 = a1 = 0 and b0 �= 0, b3 = 0, then X18(x, y) = (0, 1 + x).

(9) If a0 = a1 = 0 and b0 = 0, b3 �= 0, then X19(x, y) = (0, x+ y2).

(10) If a0 = a1 = b0 = b3 = 0, then X20(x, y) = (0, x).

Proof. For X2(x, y) we do the same change of variables as in the proof
of Lemma 8, and we obtain

X̃2(x1, y1) = (y1(a0γ
2 + a1αγ

2x1),−b0/α+ x1 + b3αγ
2y2

1),

where β = αγ. If a0a1 �= 0, then we have the normal formX±
11(x1, y1) =

(y1(±1 + x1),−b0 + x1 + b3y
2
1), doing α = ±a0/a1 and γ2 = ±1/a0.

Repeating these arguments we obtain the other normal forms.

Lemma 10. Any ϕ−reversible quadratic vector field X3(x, y) can be
written in one of the following normal forms:
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(1) If a0a1 �= 0 and b0 �= 0, then X21,±(x, y) = (y(1 + x),±1 + b3y
2).

(2) If a0a1 �= 0 and b0 = 0, then X22(x, y) = (y(1 + x), b3y2).

(3) If a0 �= 0, a1 = 0 and b0b3 �= 0, then X23,±(x, y) = (y, 1 ± y2).

(4) If a0 �= 0, a1 = 0 and b0 �= 0, b3 = 0, then X24(x, y) = (y, 1).

(5) If a0 �= 0, a1 = 0 and b0 = 0, b3 �= 0, then X25(x, y) = (y, y2).

(6) If a0 �= 0, a1 = 0 and b0 = b3 = 0, then X26(x, y) = (y, 0).

(7) If a0 = 0, a1 �= 0 and b0 �= 0, then X27,±(x, y) = (xy,±1 + b3y
2).

(8) If a0 = 0, a1 �= 0 and b0 = 0, then X28(x, y) = (xy, b3y2).

(9) If a0 = a1 = 0 and b0b3 �= 0, then X29,±(x, y) = (0, 1 ± y2).

(10) If a0 = a1 = 0 and b0 �= 0, b3 = 0, then X30(x, y) = (0, 1).

(11) If a0 = a1 = 0 and b0 = 0, b3 �= 0, then X31(x, y) = (0, y2).

Proof. For X3(x, y) we do the same change of variables as above and
we obtain

X̃3(x1, y1) =
(
y1

(
a0
βγ

α
+ a1βγx1

)
,−b0 γ

α
+ b3βγy

2
1

)
.

If a0a1 �= 0, then we have the normal form X21,±(x, y) = (y(1+x),±1+
b3y

2), using α = a0/a1 and βγ = 1/a1. Following the same arguments
we obtain the other normal forms.

We have the following results:

Proposition 11. Let ϕ : R2 → R2 be the involution ϕ(x, y) =
(x,−y). If X is a ϕ−reversible quadratic vector field in R2, then X is
integrable and has the following first integrals.

(a) For X1 we have:

(i) If a1 �= 0 and b3 /∈ {0, a1/2, a1}, then

H1(x, y) = (a1x+ a0)−2b3

((
x− a0

a1 − 2b3

)2

− (a1 − b3)y2 +K

)a1

,

where K = −((a1 − b3)(−b0(a1 − 2b3)2 + a2
0))/(b3(a1 − 2b3)2).
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(ii) If a1 �= 0 and b3 = a1/2, then

H2(x, y) = −2x+
4b23(b3y

2 − b0) + a2
0

b3(a0 + 2b3x)
+ 2

a0 ln(a0 + 2b3x)
b3

.

(iii) If a1 �= 0 and b3 = a1, then

H3(x, y) =
b0b

2
3 − a2

0 + 4a0(a0 + b3x) + 2(a0 + b3x)2

(a0 + b3x)2

× ln(a0 + b3x) − b33y
2

(a0 + b3x)2
.

(iv) If a1 �= 0 and b3 = 0, then

H4(x, y) = y2 − (2 ln(a0 + a1x)(a2
0 − a2

1b0) + (a1x− a0)2 − a2
0)

a3
1

.

(v) If a1 = 0 and a0b3 �= 0, then

H5(x, y) = exp
(
− 2b3

a0
x

)(
(2b3x+ a0)2 + 4b33y

2 − 4b0b23 + a2
0

)
.

(vi) If a1 = b3 = 0 and a0 �= 0, then

H6(x, y) = −2x3 + 6b0x+ 3a0y
2.

(b) For X2 we have:

(i) If a1 �= 0 and b3 /∈ {0, a1/2}, then

H7(x, y) = (a0 + a1x)−2b3

(
x− a1 − 2b3

2
y2 +

b0(a1 − 2b3) + a0

2b3

)a1

.

(ii) If a1 �= 0 and b3 = a1/2, then

H8(x, y) = 2 ln(a0 + a1x) +
−a2

1y
2 + 2a1b0 + 2a0

a0 + a1x
.
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(iii) If a1 �= 0 and b3 = 0, then

H9(x, y) =
1
a2
1

(−2a1x+ a2
1y

2 + 2 ln(a0 + a1x)(b0a1 + a0)).

(iv) If a1 = 0 and a0b3 �= 0, then

H10(x, y) =
(
x

b3
+ y2 +

a0 − 2b0b3
2b23

)
exp

(
− 2b3

a0
x

)
.

(v) If a1 = b3 = 0 and a0 �= 0, then

H11(x, y) = − 1
a0

(x2 − 2b0x− a0y
2).

(c) For X3 we have:

(i) If a1 �= 0 and b3 /∈ {0, a1/2}, then

H12(x, y) = (a1x+ a0)−2b3
(−b0 + b3y

2
)a1

.

(ii) If a1 �= 0 and b3 = a1/2, then

H13(x, y) =
−b0 + b3y

2

b3(a0 + 2b3x)
.

(iii) If a1 �= 0 and b3 = 0, then

H14(x, y) =
1
a1

(a1y
2 + 2b0 ln (a0 + a1x)).

(iv) If a1 = 0 and a0b3 �= 0, then

H15(x, y) =
1
b3

(b3y2 − b0) exp
2b3
a0

.

(v) If a1 = b3 = 0 and a0 �= 0, then

H16(x, y) = b0x+ a0y
2.
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(d) If, for Xi with i = 1, 2, 3, a0 = a1 = 0, then H19 = x.

Proof. The proposition follows easily from tedious computations from
the equation XH = 0 and using Theorem 6.

Lemma 12. Let X(x, y) = (y(a0 + a1x),−b0 + b1x+ b2x
2 + b3y

2) be
a ϕ−reversible quadratic vector field with ϕ(x, y) = (x,−y). If a1 �= 0,
then the straight line L := {(x, y) ∈ R2 : f(x, y) = a0 + a1x = 0} is
an invariant algebraic curve of X. If we denote by x0 = −a0/a1 and
Δ = −b0 + b1x0 + b2x

2
0, then f = 0 has the following characterization

(1) Case b3 �= 0.

(a) If Δb3 < 0, then the straight line L contains two singular points
of X, denoted by A+ = (x0,

√−Δ/b3 ) and A− = (x0,−
√−Δ/b3 ).

So, L is formed by three open trajectories of X without contact points
∞A+, A+A− and A−∞. Moreover, the direction of the trajectories of
X is the same in ∞A+ and in A−∞, and opposite in A+A−.

(b) If Δ = 0, then the straight line L contains only one singular point
of X, denoted by A0 = (x0, 0) = L ∩ {y = 0}. So, L is formed by two
open trajectories without contact points ∞A0 and A0∞. Moreover, the
directions of the trajectories of X on the segments are the same.

(c) If Δb3 > 0, then the straight line L has no singular points of X
and it contains a unique trajectory.

(2) Case b3 = 0. All points of the straight line L are singular points
of X.

Proof. We start verifying that Xf = a1yf , to conclude that L is
an invariant algebraic curve. As a1 �= 0, we have that X(x0, y) =
(0,Δ+b3y

2), thus (x0, y(t)) is a solution of X with initial conditions in
f = 0 where y(t) is a solution of ẏ = Δ+ b3y

2. When y0 = −Δ/b3 > 0,
we have two asymmetric singular points of X, A+ ∈ L and A− ∈ L.
If y0 = 0, then X has one symmetric singular point A0 ∈ {f = 0}. If
y0 < 0, then X has no singular points in f = 0. Finally, we observe
that the directions of trajectories depends on the sign of ẏ, and then
the lemma follows.
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6. Quadratic vectors fields in the half-plane. In this section we
study a particular family of quadratic vector fields defined on the half-
plane which will be very useful later on for studying the ϕ−reversible
quadratic vector fields. Here, we deal with the family of quadratic
vector fields

(2) Y (u, v) = (a0 + a1u,−b0 + b1u+ b2u
2 + b3v),

defined in v ≥ 0.

To analyze the class of ϕ−reversible vector fields in y ≥ 0, the
following change of coordinates is useful (see, for instance, [21]). So,
doing the change of variables u = x, v = y2/2, to the vector field (1) in
y ≥ 0, we get Y (u, v) = (a0 + a1u,−b0 + b1u + b2u

2 + 2b3v) in v ≥ 0.
Therefore, by the symmetry properties, Section 3, for the reversible
vector fields knowing the phase portrait of Y , we can obtain the phase
portrait of X. We comment that at a regular point of S the trajectory
of X is always orthogonal to S. If (u0, 0) is a singular point of X, then
the trajectory v = (u− u0)α + h.o.t. with α > 0 of Y in v ≥ 0 tangent
to v = 0, becomes y = 2−1+α/2(x− u0)α/2 + h.o.t. for X in y ≥ 0.

Let θ : R2 → R be the projection θ(u, v) = v. In this case
S = θ−1(0). We say that Y has an internal (external) fold singularity
at p ∈ S if Y θ(p) = 0 and Y 2θ(p) > 0 (< 0). We say that Y has a cusp
singularity, p ∈ S, if Y θ(p) = Y 2θ(p) = 0 and Y 3θ(p) �= 0.

We note that a fold or cusp of Y is a singular point of X, and if Y
has a singular point in {v > 0}, then X has two singular points, see
Section 3. Figure 2 illustrates these comments.

Internal fold External Fold Cusp Singular Point

FIGURE 2. Relations between the singularities of X and Y .



2018 J. LLIBRE AND J.C. MEDRADO

Using the same arguments as in the proof of Proposition 7 and
Lemmas 8, 9 and 10, we obtain the normal forms for the vector field Y
associated to X, presented in the following results.

Proposition 13. Any quadratic vector field (2) can be written in
one of the following normal forms:

(a) Y1(u, v) = (a0 + a1u,−b0 + u2 + 2b3v).

(b) Y2(u, v) = (a0 + a1u,−b0 + u+ 2b3v).

(c) Y3(u, v) = (a0 + a1u,−b0 + 2b3v).

Lemma 14. Any ϕ−reversible quadratic vector field Y1(u, v) can be
written in one of the following normal forms:

(1) If a0a1 �= 0, then Y ±
1 (u, v) = (1 ± u,−b0 + u2 + 2b3v).

(2) If a0 �= 0, a1 = 0 and b0 �= 0, then Y2,±(u, v) = (1,±1+u2+2b3v).

(3) If a0 �= 0, a1 = 0 and b3 �= 0, then Y3,±(u, v) = (1,−b0 +u2±2v).

(4) If a0 �= 0, a1 = 0 and b0 = b3 = 0, then Y4(u, v) = (1, u2).

(5) If a0 = 0, a1 �= 0 and b0 �= 0, then Y ±
5,±(u, v) = (±u,±1 +

u2 + 2b3v).

(6) If a0 = 0, a1 �= 0 and b0 = 0, then Y ±
6 (u, v) = (±u, u2 + 2b3v).

(7) If a0 = a1 = 0 and b0b3 �= 0, then Y7,±,±(u, v) = (0,±1+u2±2v).

(8) If a0 = a1 = 0 and b0 �= 0, b3 = 0, then Y8,±(u, v) = (0,±1 + u2).

(9) If a0 = a1 = 0 and b0 = 0, b3 �= 0, then Y9,±(u, v) = (0, u2 ± 2v).

(10) If a0 = a1 = b0 = b3 = 0, then Y10(u, v) = (0, u2).

Lemma 15. Any ϕ−reversible quadratic vector field Y2(u, v) can be
written in one of the following normal forms:

(1) If a0a1 �= 0, then Y ±
11(u, v) = (±1 + u,−b0 + u+ 2b3v).

(2) If a0 �= 0, a1 = 0 and b0 �= 0, then Y ±
12(u, v) = (±1, 1 + u+ 2b3v).

(3) If a0 �= 0, a1 = 0 and b0 = 0, b3 �= 0, then Y ±
13(u, v) = (±1, u+2v).

(4) If a0 �= 0, a1 = 0 and b0 = b3 = 0, then Y ±
14(u, v) = (±1, u).

(5) If a0 = 0, a1 �= 0 and b0 �= 0, then Y15,±(u, v) = (u,±1+u+2b3v).
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(6) If a0 = 0, a1 �= 0 and b0 = 0, then Y16(u, v) = (u, u+ 2b3v).

(7) If a0 = a1 = 0 and b0b3 �= 0, then Y17,±(u, v) = (0, 1 + u± 2v).

(8) If a0 = a1 = 0 and b0 �= 0, b3 = 0, then Y18(u, v) = (0, 1 + u).

(9) If a0 = a1 = 0 and b0 = 0, b3 �= 0, then Y19(u, v) = (0, u+ 2v).

(10) If a0 = a1 = b0 = b3 = 0, then Y20(u, v) = (0, u).

Lemma 16. Any ϕ−reversible quadratic vector field Y3(u, v) can be
written in one of the following normal forms:

(1) If a0a1 �= 0 and b0 �= 0, then Y21,±(u, v) = (1 + u,±1 + 2b3v).

(2) If a0a1 �= 0 and b0 = 0, then Y22(u, v) = (1 + u, 2b3v).

(3) If a0 �= 0, a1 = 0 and b0b3 �= 0, then Y23,±(u, v) = (1, 1 ± 2v).

(4) If a0 �= 0, a1 = 0 and b0 �= 0, b3 = 0, then Y24(u, v) = (1, 1).

(5) If a0 �= 0, a1 = 0 and b0 = 0, b3 �= 0, then Y25(u, v) = (1, 2v).

(6) If a0 �= 0, a1 = 0 and b0 = b3 = 0, then Y26(u, v) = (1, 0).

(7) If a0 = 0, a1 �= 0 and b0 �= 0,then Y27,±(u, v) = (u,±1 + 2b3v).

(8) If a0 = 0, a1 �= 0 and b0 = 0, then Y28(u, v) = (u, 2b3y).

(9) If a0 = a1 = 0 and b0b3 �= 0, then Y29,±(u, v) = (0, 1 ± 2v).

(10) If a0 = a1 = 0 and b0 �= 0, b3 = 0, then Y30(u, v) = (0, 1).

(11) If a0 = a1 = 0 and b0 = 0, b3 �= 0, then Y31(u, v) = (0, 2v).

6.1 Analysis of the family Y1. In the sequel, if a1 �= 0 and
b0 ≥ 0, we denote by δ = −b0 + x2

0 (remember that x0 = −a0/a1),
δ1 =

√
b0 + a0/a1 and δ2 = −√

b0 + a0/a1. We observe that δ = δ1δ2
and δ1 = δ2 = 0 if and only if a0 = b0 = 0. As in Lemma 12, we denote
by A0 = (x0, 0) = L ∩ {v = 0}. If b0 > 0, we denote by S+ and S− the
points (−√

b0, 0) and (
√
b0, 0), respectively. If b0 = 0, then we denote

by S0 the point (0, 0).

Lemma 17. Assume for the vector field Y1 that a1 �= 0 and b0 > 0.
If δ < 0 then A0 ∈ S−S+. If δ > 0 then A0 ∈ ∞S− or A0 ∈ S+∞,
provided that δ2 > 0 or δ1 < 0, respectively. Finally, A0 = S+ or
A0 = S−, if δ1 = 0 or δ2 = 0, respectively.
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Proof. As a1 �= 0, it follows that the position of pointA0 = L∩{v = 0}
depends on sgn δ. So, if δ < 0 then x0 ∈ (−√

b0,
√
b0). Now, if δ > 0,

then |x0| >
√
b0 and sgnx0 = −sgn δ1. Finally, if δ1 = 0 then x0 > 0

or if δ2 = 0, then x0 < 0.

Lemma 18. Assume for the vector field Y1 that a1 �= 0 and b0 = 0.
If δ1 is positive or negative, then A0 ∈ S0∞ or A0 ∈ ∞S0, respectively.
If δ1 = 0, then A0 = S0.

Proof. As a1 �= 0, then δ1 = a0/a1. Thus, if δ1 �= 0 the position of A0

in relation to S0 depends directly of sgn δ1. So, if δ1 = 0, then a0 = 0
and A0 = S0.

Lemmas 19 and 20 characterize the isolated singular points of Y1.

Lemma 19 (Hyperbolic singular points of Y1). Assume for the vector
field Y1 that a1b3 �= 0 and δ/b3 ≤ 0. Then Y1 has a unique hyperbolic
singular point in L, A = (−a0/a1,−δ/(2b3)). If sgn b3 = −sgn a1, then
A is a saddle. If sgn b3 = sgn a1 and negative, respectively positive,
then A is an attractor, respectively repellor. Moreover, if a1 = 2b3, the
singular point is a degenerate node. Note that A = A0 when δ = 0.

Proof. If p ∈ R2 satisfies Y1(p) = 0, then p = A with δ/b3 ≤ 0.
Thus, Y1 has isolated singular points if a1b3 �= 0. If Y1(A) = 0 and
δ/b3 < 0, then A is singular point of Y1 in v > 0. If δ = 0 we
have that A0 ∈ L ∪ {v = 0} or A0 is a singular point in v = 0. If
a0 �= 0, then (DY1)A has eigenvalues a1 and 2b3 and with eigenvectors
(−a1(a1 − 2b3), 2a0) and (0, 1), respectively. If a0 = 0, then (DY1)A

has the same eigenvalues a1 and 2b3, but with eigenvectors (1, 0) and
(0, 1), respectively. Therefore, the proof is done.

Lemma 20 (Fold and cusp of Y1). Assume for the vector field Y1

that b0 ≥ 0.

(1) If b0 > 0 and δ �= 0, then the trajectories of Y1 are tangent to
{v = 0} only at two points, S− and S+. Moreover, the trajectories
of Y1 which intersect ∞S− ∪ S+∞, respectively S−S+, are increasing,
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respectively decreasing. If b0 = 0, then all trajectories that intersect
{v = 0} are increasing, except the trajectory that is tangent at the
point (0, 0).

(2) If b0 > 0, then Y1 has two-fold singularities. If sgn δ = −1
and sgn a1 = 1, respectively −1, the singularities S− and S+ are
internal, respectively external, folds. If either sgn δ = 1 or a1 = 0, the
singularities S− and S+ are internal and external, respectively external
and internal, folds, provided that sgn a0 = −1, respectively (1).

(3) If δ = 0 and a0a1 �= 0, then Y1 has one internal, respectively
external, fold, S1 = (a0/a1, 0), provided sgn a1 is positive, respectively
negative.

(4) If b0 = 0 and a0 �= 0, then Y1 has one cusp singularity at S0.

Proof. The tangencies between the orbits of Y1 and S are given by
the solutions of the equation:

(3) Y1θ(u, 0) = −b0 + u2 = 0.

If b0 > 0, this equation has two solutions, and this implies Y1 has two
singularities, S− and S+. If a1 �= 0, then we have that Y1

2θ(S+) =
a1

√
b0 δ1 and Y1

2θ(S−) = −a1

√
b0 δ2. If a1 = 0, then Y1

2θ(S+) =
2a0

√
b0 and Y1

2θ(S−) = −2a0

√
b0. But, sgn δ = sgn δ1sgn δ2, and

this implies that if sgn δ = −1, respectively 1, sgn Y1
2θ(S+) =

−sgnY1
2θ(S−) = sgn a1, respectively sgn Y1

2θ(S+) = sgnY 2
1 θ(S−) =

sgn a1. If a1 = 0, then sgnY1
2θ(S+) = −sgnY 2

1 θ(S−) = sgn a0, and the
proof of statement (1) follows from the definition of internal and exter-
nal singularities. If b0 = 0 and a0 �= 0, Y1 has a unique symmetric singu-
larity S0. In this case Y1θ(S0) = Y1

2θ(S0) = 0 and Y 3
1 θ(S0) = 2a2

0 �= 0,
so S0 is a cusp symmetric singularity. Finally, to end the proof of this
lemma, it is sufficient to observe that: if δ = 0 and a0a1b3 �= 0, equa-
tion (3) has two solutions, S− = A0 (see Lemma 19) and S+. For the
point S+ we have F 2θ(S+) = 4a2

0/a1 �= 0.

Lemma 21 characterizes the vector fields Y1 which have curves of
singularities.

Lemma 21 (Non-hyperbolic singular points of Y1). (1) If a1 �= 0
and b3 = δ = 0, then Y1 has the invariant straight line β : u = −a0/a1,
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v ≥ 0, filled by singularities of Y1 and, for each singularity p ∈ β,
the DY1(p) has eigenvalues λ1 = 0, λ2 = a1 and with eigenvectors
ω1 = (0, 1), ω2 = (−a2

1, 2a0), respectively.

(2) If a0 = a1 = b0 = b3 = 0, then Y1 has the invariant straight line
β : u = 0, v ≥ 0, filled by singularities of Y1 and, for each singularity
p ∈ β, the DY1(p) has the eigenvalue λ = 0 with multiplicity two, and
with eigenvector ω = (0, 1).

(3) If a0 = a1 = b3 = 0 and b0 > 0, then Y1 has two invariants
straight lines β1 : u = −√

b0, v ≥ 0, β2 : u =
√
b0, v ≥ 0, filled by

singularities of Y1 and, for each singularity p ∈ β1∪β2, the DY1(p) has
the eigenvalue λ = 0 with multiplicity two and eigenvector ω = (1, 0).

(4) If a0 = a1 = 0 and sgn b3 = −1 or a0 = a1 = 0 and
sgn b3 = sgn b0 = 1, then the singularities of Y1 are in the curve
β : v = (b0 − u2)/(2b3), v ≥ 0. In this case, for each singularity
p = (u0, v0) ∈ β, the DY1(p) has eigenvalues λ1 = 0, λ2 = 2b3 and
with eigenvectors ω1 = (−b3, u0), ω2 = (0, 1), respectively.

(5) If a0 = a1 = b0 = 0 and sgn b3 = 1, then Y1 has a unique
singularity, p = (0, 0) and the DY1(p) has eigenvalues λ1 = 0 and
λ2 = 2b3 and with eigenvectors ω1 = (−b3, 0) and ω2 = (0, 1).

Proof. The proof of the lemma, follows from the computing of
solutions of Y1(u, v) = (a0 + a1u,−b0 + u2 + 2b3v) = 0 and the
eigenvalues of DY1(p) with p ∈ {Y1(u, v) = 0}.

The next lemma describes the vectors fields Y1 with no singularities.

Lemma 22 (Y1 without singularities). Assume for vector field Y1

that b0 < 0. If either a1b3 �= 0 and δ/b3 > 0 or a1δ �= 0 and b3 = 0, or
a0 = a1 = b3 = 0 or a1 = 0 and a0 �= 0, then Y1 has no singularities.

Proof. As b0 < 0, then by Lemma 20, Y1 has no folds or cusps and
Y1(p) = 0 implies that a0, a1, b0 and b3 satisfy one of the following
conditions:

(i) if a1 �= 0, then sgn δ = −sgn b3 �= 0 or δ = b3 = 0.

(ii) If a1 = 0, then a0 = 0 and b3 �= 0.
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The proof of the lemma follows when the conditions (i) and (ii) do not
hold.

The next lemma characterizes the connections between singularities.

Lemma 23 (Non-connection orbits between the singular points of
Y1). If either a1 = 0, a0 �= 0 and b0 > 0 or δ < 0 b3 < 0 and a1 �= 0,
then there is no connection between the singular points of Y1.

Proof. In the first case, without loss of generality, we assume that
a0 > 0. By Lemma 20 (1), Y1 has two singular points, an external
fold, S− and an internal fold, S+. Let γ be a solution of Y1 such that
γ(0) = S+. As Y1θ(u, 0) = −b0 + u2 is negative for −√

b0 < u <
√
b0,

this implies that γ decreases in this interval and increases out of this.
Thus, let Q �= S+ ∈ ∞S− be the other point that γ intersects {v = 0}.
By continuity, all solutions of Y1 passing by a point of S−S+ cross
{v = 0} in QS−. The solutions of Y1, crossing ∞Q ∪ S+∞, have only
this point in common with {v = 0}.

In the second case, without loss of generality, we assume that a1 > 0.
By Lemma 20 (1), Y1 has two internal folds S− and S+. As δ < 0 and
b3 < 0, we have that L cross S−S+ in the point (−a0/a1, 0) and by
Lemma 17, L has no singular point of Y1 and L is invariant by Y1. This
complete the proof of the lemma.

Lemma 24. Assume that a1 �= b3, 2b3 and a1b3 < 0. Then A is a
hyperbolic saddle of Y1, and the parabola v = h(u) with

(4) v = h(u) =
1

2(a1 − b3)

(
u− a0

a1 − 2b3

)2

+
b0(a1 − 2b3)2 − a2

0

2b3(a1 − 2b3)2
;

contains A and two separatrices of A. If b0 − (a0/(a1 − 2b3))2 = 0,
then v = h(u) has a quadratic contact with {v = 0} at the point S+,
respectively S−, if sgn a0/(a1 − 2b3) is positive, respectively negative.

Proof. The function v = h(u) is a first integral of Y1. So v−h(u) = 0
is invariant. The discriminant of the equation h(u) = 0 is given
by D = b3(a1 − b3)(−b0(a1 − 2b3)2 + a2

0), and D = 0 implies that
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b0 = (a0/(a1 − 2b3))2 because b3 �= 0 and a1 − b3 �= 0 and we
have that h′′(u) = 1/(a1 − b3). So, h(u) = h′(u) = 0 implies that
u = a0/(a1 − 2b3) =

√
b0 or u = a0/(a1 − 2b3) = −√

b0 according to
whether sgn a0/(a1 − 2b3) is 1 or −1, respectively.

Lemma 25 (Phase portraits of Y ±
1 ). The vector field Y +

1 , respectively
Y1−, is topologically equivalent to Figure 3, respectively Figure 4.

Proof. If b3 /∈ {0, 1/2, 1}, then by Proposition 11, the function
H1, after the change of variables (u, v) = (x, y2/2), becomes the first
integral H̃1(u, v) of Y +

1 . Now we isolate the variable v in the equation
H̃1(u, v) − k = 0 to obtain v = hk(u).

hk(u) =
1

2(1 − b3)

((
u− 1

1 − 2b3

)2

− k(1 + u)2b3 +
K

(1 − 2b3)2

)
,

where K = (1 − b3)(−b0(1 − 2b3)2 + 1)/b3. So we have that

lim
u→−1

hk(u) = −−b0 + 1
2b3

− k

2(1 − b3)
lim

u→−1
(1 + 1u)2b3 .

If b3 = 1/2, then as above using H2, from Proposition 11, we get

hk(u) = (2(b0 − 1) + k + (2 + k)u− 4 ln(1 + u)(1 + u) + 2u2).

So we have that limu→−1 hk(u) = b0−1. If b3 = 0, then as above using
H4 from Proposition 11, we have

hk(u) = (k − 2u+ 2(−b0 + 1) ln(1 + u) + u2).

It follows that limu→−1 hk(u) = −sgn−b0 + 1∞. If b3 = 1, then using
H3 from Proposition 11, we get

hk(u) = −(1 + u)k + 2(1 + u)2 ln (1 + u) + 4(1 + u) + b0 − 1.

So we have that limu→−1 hk(u) = (b0 − 1)/2.

Assume that b0 < 0. By Lemma 20, the vector field Y +
1 has no folds

and cusps. So all trajectories of Y +
1 are transversal to v = 0. By
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Lemma 19, if b3 < 0, then Y +
1 has a unique hyperbolic saddle at A

and the separatrices are given by the straight line L and the parabola
(4). If b3 ≥ 0, then Y +

1 has no singular points and it is topologically
equivalent to the vertical vector field (0, 1).

Assume that b0 = 0. By Lemma 20, the vector field Y +
1 has a cusp

at S0. By Lemma 19, if b3 < 0, then Y +
1 has a unique hyperbolic

saddle at A and the separatrices are given by the straight line L and
the parabola (4). If b3 ≥ 0, then Y +

1 has no singular points.

Assume that 0 < b0 < 1. By Lemma 20, the vector field Y +
1 has two

folds, one external and the other internal at S− and S+, respectively.
By Lemma 19, if b3 < 0, then Y +

1 has a unique hyperbolic saddle at A.
If b3 ≥ 0, then Y +

1 has no singular points, only the two folds. Moreover,
for any b3, we have the separatrices L and the trajectory v = hk(u) with
hk(

√
b0) = 0 which has a quadratic contact at S+.

Assume that b0 = 1. By Lemma 20, the vector field Y +
1 has one

internal fold at S+. By Lemma 19, if b3 < 0, then Y +
1 has a unique

hyperbolic saddle at S−. If b3 = 0, then Y +
1 (u, v) = (1 + u)(1,−1 + u).

So L is filled with singular points and Y +
1 is topologically equivalent to

the vector field (1,−1 + u). If 0 < b3 ≤ 1/2, then Y +
1 has a repellor at

S− and the trajectories starting at A are tangent to the straight line L.
If b3 > 1/2, then Y +

1 has a repellor at S− and the trajectories starting
at S− are tangent to v = hk(u) with hk(

√
b0 ) = 0. Moreover, for any

b3 > 0 we have that L and the trajectory v = hk(u) with hk(
√
b0 ) = 0

are separatrices of Y +
1 .

Assume that b0 > 1. By Lemma 20, the vector field Y +
1 has two

internal folds at S− and S+. By Lemma 19, if b3 ≤ 0, then Y +
1 has no

singular points, only two folds. If 0 < b3 ≤ 1/2, then Y +
1 has a repellor

at A and the trajectories starting at A are tangent to the straight line
L. If b3 > 1/2, then Y +

1 has a repellor at S− and the trajectories
starting at S− are tangent to v = hk(u) with hk(

√
b0 ) = 0. Moreover,

for any b3 > 0 we have that L and the trajectory v = hk(u) with
hk(±√

b0 ) = 0 are separatrices of Y +
1 .

The vector field Y −
1 can be studied using the same arguments as for

Y +
1 . In Figures 3 and 4 we draw the phase portraits in v ≥ 0 of Y +

1

and Y −
1 , respectively.
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FIGURE 3. Phase portraits of Y +
1 . The dotted lines in v ≥ 0 denote lines

filled with singular points.

Lemma 26 (Phase portraits of Y2,±, Y3,± and Y4). The vector fields
Y2,+, respectively Y2,−, and Y3,± such that b0 > 0, respectively b0 < 0,
are topologically equivalent to Figure 5 (a), respectively (c). The vector
fields Y4 is topologically equivalent to Figure 5 (b).
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FIGURE 4. Phase portraits of Y −
1 . The dotted lines in v ≥ 0 denote lines

filled with singular points.

Proof. Applying Proposition 11 to vector fields Y2,± with b3 �= 0 and
to Y3,±, we have that the function H5, after the change of variables
(u, v) = (x, y2/2), becomes a first integral H̃5(u, v) of Y2,± with
b3 �= 0 and to Y3,±. Now we isolate the variable v in the equation
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FIGURE 5. Phase portraits of Y2,±, Y3,± and Y4.

H̃5(u, v) − k = 0 to obtain v = hk(u), where

hk(u) =
1

8b33
(−(2b3u+ 1)2 + 4b0b23 − 1 + k exp 2b3u).

For the vector fields Y2,± with b3 = 0 and Y4, we use the function H6

and in a similar way we get that hk(u) = k + 2u3 − 6b0u.

By Lemma 22, Y2,±, Y3,± and Y4 have no singular points. By
Lemma 20, Y2,− and Y3,± with b0 < 0 has two folds, an external at
S− and an internal at S+, see Figure 5 (c). The vector fields Y2,+

and Y3,± with b0 > 0 has no folds or cusps, and they are topologically
equivalent to the vertical field, see Figure 5 (a). The vector fields Y4

and Y3,± with b0 = 0, have one cusp at (0, 0), see Figure 5 (b). We
obtain the separatrices v = hk(u) following the same arguments of the
proof of Lemma 25.

Lemma 27 (Phase portraits of Y ±
5,± and Y ±

6 ). The vector fields Y ±
5,+,

respectively Y ±
5,−, are topologically equivalent to Figure 3, respectively

Figure 4, for columns b0 < 0 and b0 > 1, respectively. The vector
fields Y +

6 , respectively Y −
6 , are topologically equivalent to Figure 6 (a),

respectively Figure 6 (b).

Proof. In this proof we use the same arguments as in the proof of
Lemma 25.

Assume that b0 = −1. By Lemma 20, Y +
5,± has no folds and cusps.

Hence all trajectories of Y +
5,± are transversal to v = 0. By Lemma 19,

if b3 < 0, then Y +
5,± has a unique hyperbolic saddle at A and the

separatrices are given by the straight line L and the parabola (4).
If b3 ≥ 0, then Y +

5,± has no singular points and it is topologically
equivalent to vertical vector field (0, 1).
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FIGURE 6. Phase portraits of Y ±
6 . The dotted lines in v ≥ 0 denote lines

filled with singular points.

Assume that b0 = 0. By Lemma 19, if b3 < 0, then Y +
6 has a unique

hyperbolic saddle at A and the separatrices are given by the straight
line L and the parabola (4). If b3 > 0, then Y +

6 has no singular points.
If b3 = 0, then Y +

6 (u, v) = u(1, u) has the line u = 0 filled with singular
points.

Assume that b0 = 1. By Lemma 20, the vector field Y +
1 has two

internal folds at S− and S+. By Lemma 19, if b3 ≤ 0, then Y +
1 has no

singular points, only two folds. If 0 < b3 ≤ 1/2, then Y +
1 has a repellor

at A and the trajectories starting at A are tangent to straight line L.
If b3 > 1/2, then Y +

1 has a repellor at S− and the trajectories starting
at S− are tangent to v = hk(u) with hk(

√
b0) = 0. Moreover, for any

b3 > 0 we have that L and the trajectory v = hk(u) with hk(±√
b0) = 0

are separatrices of Y +
1 .

The vector field Y −
5,± can be studied using the same arguments as

for Y +
5,±. In Figures 3 and 4, for b0 < 0 and b0 > 1, we draw the

phase portraits in v ≥ 0 of Y ±
5,+ and Y ±

5,−, respectively. In Figure
6 (a), respectively 6 (b), we draw the vector fields that are topologically
equivalent to Y +

6 , respectively Y −
6 .

Lemma 28 (Phase portraits of Y7,±,±, Y8,±, Y9,± and Y10). The
vector fields Y7,+,+, Y7,+,−, Y7,−,+, Y7,−,−, Y8,+, Y8,−, Y9,+, Y9,− and
Y10 are topologically equivalent to Figure 7 (a), (b), (c), (d), (e), (f),
(g), (h) and (i), respectively.
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FIGURE 7. Phase portraits of Y7,±,±, Y8,±, Y9,± and Y10. The dotted lines

in v ≥ 0 denote lines filled with singular points.

Proof. Except in their singular points, the vector fields Y7,±,±,
Y8,±, Y9,± and Y10 are topologically equivalent to the vertical field.
The vector fields Y7,+,±, Y7,−,± and Y9,± have the parabolas v =
∓(1 + u2)/2 ≥ 0, v = ∓(−1 + u2)/2 ≥ 0 and v = ∓u2/2 ≥ 0,
respectively, filled with with singular points. The vector fields Y8,+

have no singular points. The vector field Y8,− has the two lines u2 = 1
in v ≥ 0 filled with singular points. Finally, Y10 has the line u = 0,
filled with singular points.

6.2 Analysis of the family Y2. In this subsection we analyze the
vector field Y2(u, v) = (a0 +a1u,−b0 +u+2b3v) and we draw the phase
portraits of Y2 in {v ≥ 0}.

Lemma 29. Assume for the vector field Y2 that a1 �= 0. Then
L = {u = −a0/a1} is an invariant straight line of Y2.

Proof. As a1 �= 0, we have that Y2(−a0/a1, v) = (0,−b0−a0/a1+2b3v)
and the proof follows.
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Lemma 30 (Hyperbolic singular points of Y2). Assume for the vector
field Y2 that a1b3 �= 0 and (b0 + a0/a1)/b3 ≥ 0. Then Y2 has a unique
hyperbolic singular point in L, A = (−a0/a1, (b0 + a0/a1)/(2b3)). If
sgn b3 = −sgn a1, then A is a hyperbolic saddle. If sgn b3 = sgn a1

and negative, respectively positive, then A is an attractor, respectively
repellor. Moreover, if a1 = 2b3, the singular point is a degenerate node.

Proof. If p ∈ R2 satisfies Y2(p) = 0, then p = A with (b0+a0/a1)/b3 ≥
0. Thus, Y2 has isolated singular points if a1b3 �= 0. The linear part
(DY2)A has eigenvalues a1 and 2b3 with eigenvectors (a1 − 2b3, 1) and
(0, 1), respectively. Therefore, the proof is done.

Lemma 31 (Fold of Y2). Assume for Y2 that a1b0 + a0 �= 0. If
a1b0 + a0 > 0, respectively < 0, then Y2 has an internal, respectively
external, fold at S1 = (b0, 0).

Proof. The tangencies between the orbits of Y2 and S are given
by the solutions of the equation Y2θ(u, 0) = −b0 + u = 0. So we
have that Y 2

2 θ(b0, 0) = a1b0 + a0, and S1 is an internal, respectively
external, fold if sgn b0 + a0/a1 > 0, respectively < 0. We observe that
if b0 + a0/a1 = 0, then S1 is a singular point of Y2.

Lemma 32 (Non-hyperbolic singular points of Y2). Assume for Y2

that a1b0 + a0 = 0. If either a0 = a1 = 0, or a1 �= 0 and b3 = 0, then
Y2 has a straight line filled with singular points.

Proof. If a1 �= 0 and b3 = 0, then Y2(−a0/a1, v) = 0 for all v ≥ 0.
Hence, the straight line (−a0/a1, v) is filled with singular points of Y2.
If a0 = a1 = 0 and b3 �= 0, respectively b3 = 0, then Y2(b0−2b3v, v) = 0,
respectively Y2(b0, v) = 0, for all v ≥ 0, and this ends the proof.

Lemma 33 (Phase portraits of Y ±
11 , Y15,± and Y16). The vector field

Y +
11 , respectively Y −

11 , is topologically equivalent to Figure 8, respectively
Figure 9. The vector fields Y15,+, respectively Y15,−, and Y16 are
topologically equivalent to column b0 < −1, respectively b0 > −1, of
Figure 8.
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FIGURE 8. Phase portraits of Y +
11, Y15,± and Y16. The dotted lines in v ≥ 0

denote lines filled with singular points.

Proof. We prove this lemma in a similar way to the proof of
Lemma 25.

If b3 /∈ {0, 1/2}, then by Proposition 11, the function H7, after
the change of variables (u, v) = (x, y2/2), becomes the first integral
H̃7(u, v) of Y +

11 . Now we isolate the variable v in the equation H̃7(u, v)−
k = 0 to obtain

v = hk(u) =
1

2(1 − b3)

(
1 + 2b3u+ b0 − 2b0b3 + 1

2b3
− 22b3k

)
.

So limu→−1 hk(u) = (b0 +1)/(2b3)−(k)/(2(1−b3)) limu→−1(1+1u)2b3 .
If b3 = 1/2, then using the same arguments for H8, we get v = hk(u) =
((1+u)(k−2 ln (1 + u))−2(b0 +a0))/2. So limu→−1 hk(u) = b0 +1. If
b3 = 0, we have v = hk(u) = (k+2u−2(1+b0) ln (1 + u))/2. Therefore,
limu→−1 hk(u) = −sgn b0 + 1∞.
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FIGURE 9. Phase portraits of Y −
11 . The dotted lines in v ≥ 0 denote lines

filled with singular points.

Assume that b0 < −1. By Lemma 31, Y +
11 has one external fold at

(b0, 0). By Lemma 30, if b3 < 0, then Y +
11 has a unique hyperbolic

saddle at A. The separatrices are L and the trajectory v = hk(u) with
hk(−1) = (b0 + 1)/(2b3). If b3 ≥ 0, then Y +

11 has no singular points.

Assume that b0 = −1. By Lemma 31, Y +
11 has no folds. By

Lemma 30, if b3 < 0, then Y +
11 has a unique hyperbolic saddle at A.

The separatrices are L and the trajectory v = hk(u) with hk(−1) = 0.
If b3 ≥ 0, then Y +

1 has no singular points.

Assume that b0 > −1. By Lemma 31, Y +
11 has one internal fold at

(b0, 0). By Lemma 30, if b3 > 0, then Y +
11 has a unique repellor at A.

If b3 ≤ 0, then Y +
11 has no singular points, only the internal fold at S1.

The separatrices are the straight line L and the trajectory v = hk(u)
with hk(b0) = 0 which has a quadratic contact at S1.
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FIGURE 10. Phase portraits of Y ±
12 , Y ±

13 and Y ±
14 .

The vector field Y −
11 can be studied using the same arguments as for

Y +
11 . In Figures 8 and 9, we draw the phase portraits in v ≥ 0 of Y +

11 and
Y −

11 , respectively. The vector fields Y15,+, respectively Y15,−, and Y16

are topologically equivalent to column b0 < −1, respectively b0 > −1,
of Figure 8.

Lemma 34 (Phase portraits of Y ±
12 , Y ±

13 and Y ±
14 .) The vector

fields Y +
12 , Y

+
13 and Y +

14 , respectively Y −
12 , Y

−
13 and Y −

14 , are topologically
equivalent to Figure 10 (a), respectively Figure 10 (b).

Proof. Using similar arguments as in the proof of Lemma 26, we
obtain from H10 and H11, for Y +

12 with b3 �= 0, respectively b3 = 0, that
hk(u) = (2b3u− 2b3 + 1− 2b23k exp (2b3u))/(4b23), respectively hk(u) =
(u2−2u+k)/2. For Y +

13 , v = hk(u) = (2b3u+1−2b23k exp (2b3u))/(4b23).
For Y +

14 , v = hk(u) = u(u+ k)/2.

The vector fields Y +
12 , Y +

13 and Y +
14 have no singular points and, by

Lemma 31, Y +
12 has a unique internal fold at (−1, 0), and Y +

13 and
Y +

14 at (0, 0). The separatrix for Y +
12 , respectively Y +

13 and Y +
14 , is the

trajectory v = hk(u) with hk(−1) = 0, respectively hk(0) = 0, which
has a quadratic contact at S1.

For the vector fields Y −
12 , Y −

13 and Y −
14 , applying the same arguments

of this proof we draw their phase portraits in v ≥ 0, in Figure 10 (b).

Lemma 35 (Phase portraits of Y17,±, Y18, Y19 and Y20). The vector
fields Y17,+ and Y19 are topologically equivalent to Figure 11 (a). The
vector field Y17,− is topologically equivalent to Figure 11 (b). The vector
fields Y18 and Y20 are topologically equivalent to Figure 11 (c).
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FIGURE 11. Phase portraits of Y17,±, Y18, Y19 and Y20. The dotted lines in
v ≥ 0 denote lines filled with singular points.

Proof. Except in their singular points the vector fields Y17,±, Y18, Y19

and Y20 are topologically equivalent to the vertical field. These vector
fields have one straight line filled with singular points.

6.3 Analysis of the family Y3. In this subsection we analyze the
vector field Y3(u, v) = (a0 + a1u,−b0 + 2b3v) and we draw the phase
portraits of Y3 in {v ≥ 0}.

Lemma 36. Assume for the vector field Y3 that a1 �= 0. Then
L = {u = −a0/a1} is a invariant straight line of Y3.

Proof. As a1 �= 0, we have that Y3(−a0/a1, v) = (0,−b0 + 2b3v), and
the proof is done.

Lemma 37 (Hyperbolic singular points of Y3). Assume for the vector
field Y3 that a1b3 �= 0 and b0/b3 ≥ 0. Then Y3 has a unique hyperbolic
singular point in L at A = (−a0/a1, b0/(2b3)). If sgn b3 = −sgn a1,
then A is a hyperbolic saddle. If sgn b3 = sgn a1 and negative, respec-
tively positive, then A is an attractor, respectively repellor. Moreover,
if a1 = 2b3, the singular point is a degenerate node.

Proof. If p ∈ R2 satisfies Y3(p) = 0, then p = A with b0/b3 ≥ 0. Thus,
Y3 has isolated singular points if a1b3 �= 0. The matrix (DY3)A has
eigenvalues a1 and 2b3, with eigenvectors (1, 0) and (0, 1), respectively.
So, this completes the proof.

Lemma 38 (Orbits of Y3 are transversal to {v = 0}). Assume for
the vector field Y3 that b0 �= 0. Then the orbits of Y3 are transversal to
{v = 0}.
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Proof. The tangencies between the orbits of Y3 and S = {v = 0} are
given by the solutions of the equation Y3θ(u, 0) = −b0 �= 0. Thus, the
orbits of Y3 are transversal to S.

Lemma 39 (Non-hyperbolic singular points of Y3). If either a0 =
a1 = 0 and b3 �= 0, or a1 �= 0 and b0 = b3 = 0, then Y3 has a straight
line filled with singular points.

Proof. If a1 �= 0 and b0 = b3 = 0, then Y3(−a0/a1, v) = 0 for all
v ≥ 0. Hence, u = −a0/a1 is the line of singular points of Y3. If
a0 = a1 = 0, then Y3(u, b0/(2b3)) = 0 for all v ≥ 0. So the proof is
done.

Lemma 40 (Phase portraits of Y21,±, Y22, Y27,± and Y28). The
vector fields Y21,+ and Y27,+, Y21,− and Y27,−, and Y22 and Y28, are
topologically equivalent to column (a), (b) and (c), respectively, of
Figure 12.

Proof. We prove this lemma using the same arguments as in the proof
of Lemma 25. Using H12, H13 and H14, we have that

hk(u) =
1

2b3
(b0 + k(u+ 1)2b3)

and

lim
u→−1

hk(u) =
b0
2b3

− k

2b3
lim

u→−1
(1 + 1u)2b3 ,

hk(u) = b0 + kb3(1 + u) and lim
u→−1

hk(u) = b0,

and

hk(u) = k − 2b0 ln (1 + u) and lim
u→−1

hk(u) = −sgn b0∞.

We observe that Y27,+, respectively Y27,−, is topologically equivalent
to Y21,+, respectively Y21,−, because the difference between them is a
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FIGURE 12. Phase portraits of Y21,±, Y22, Y27 and Y28. The dotted lines in
v ≥ 0 denote lines filled with singular points.

translated of their invariant straight line. The same occurs with Y22

and Y28.

By Lemma 38, the orbits of vector fields Y21,± and Y22 are transversal
to v = 0. By Lemma 37, if b3 < 0, then Y21,+ has a unique hyperbolic
saddle at A and the separatrices for Y21,+ are L and the trajectory
v = hk(u) with hk(−1) = b0/(2b3). If b3 ≥ 0, then Y21,+ has no singular
points. By Lemma 37, if b3 < 0, then Y22 has a unique hyperbolic saddle
at A and the separatrices for Y22 are L and the trajectory v = hk(u)
with hk(−1) = 0. If b3 ≥ 0, then Y22 has no singular points. By
Lemma 37, if b3 > 0, then Y21,− has a unique repellor at A. If b3 ≤ 0,
then Y +

11 has no singular points and the proof is done.

The proof of Lemmas 41 and 42 will be omitted here because they
are similar to the proofs of Lemmas 34 and 35.
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FIGURE 13. Phase portraits of Y23,−, Y23,+, Y24, Y25 and Y26.

Lemma 41 (Phase portraits of Y23,±, Y24, Y25 and Y26). The vector
fields Y23,−, Y23,+, Y24, Y25 and Y26 are topologically equivalent to
Figure 13 (a), (b), (c), (d) and (e), respectively.

Lemma 42 (Phase portraits of Y29,±, Y30 and Y31). The vector fields
Y29,−, Y29,+, Y30 and Y31 are topologically equivalent to Figure 14 (a),
(b), (c) and (d), respectively.

7. Phase portraits of ϕ−reversible quadratic vector fields.
In this section, in order to prove Theorem A, we use the normal forms
of Proposition 7 for ϕ-reversible quadratic vector fields. We remember
that, for drawing the phase portraits of ϕ-reversible quadratic vector
fields X in R2, we use the phase portrait of the associated vector
field Y defined in v ≥ 0 and the symmetry properties of X. So,
using the phase portraits given in Lemmas 17 42 and the symmetry
properties of reversible vector fields, we shall prove Lemmas 44 52.
In these lemmas, using Neumann’s theorem, see Theorem 1, we show

FIGURE 14. Phase portraits of Y29,−, Y29,+, Y30 and Y31. The dotted lines

in v ≥ 0 denote lines filled with singular points.
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all the phase portraits of ϕ-reversible quadratic vector fields in the
Poincaré disc, drawing their separatrices and sometimes one orbit for
every canonical region.

Lemma 43. If a1 − b3 ≤ 0, then the vector field X1 has a unique
infinite singular point at I1 = (0, 0) in U2. If a1 − b3 > 0, then X1

has three infinite singular points in U2, the I1, I2 = (
√
a1 − b3, 0) and

I3 = (−√
a1 − b3, 0). The (0, 0) of U1 is never a singular point for X1.

Proof. In the local charts U1 and U2, the compactified vector field
associated to X1 is given by Z1(z1, z2) = (1 − (a1 − b3)z2

1 − b0z
2
2 −

a0z
2
1z2,−a1z1z2 − a0z1z

2
2) and Z2(z1, z2) = (a0z2 + (a1 − b3)z1 − z3

1 +
b0z1z

2
2 ,−b3z2 + b0z

3
2 − z2

1z2), respectively. The point (0, 0) is not a
singular point for the vector field Z1 because Z1(0, 0) = (1, 0). So, we
only consider the infinite singular points in U2. If a1 − b3 ≤ 0, then Z2

has a unique infinite singular point, the I1 in U2. If a1 − b3 > 0, then
Z2 has three infinite singular points the I1, I2 and I3.

Lemma 44 (Phase portraits of X±
1 , X+

5,± and X+
6 ). The phase por-

traits of the vector field X+
1 , respectively X−

1 , is topologically equivalent
to Figure 15, respectively Figure 16. The phase portraits of the vector
field X+

5 , respectively X−
5 , is topologically equivalent to column b0 < 0,

respectively b0 > 0, of Figure 15, respectively Figure 16. The phase
portraits of the vector field X±

6 is topologically equivalent to Figure 17.

Proof. For drawing the phase portraits in the Poincaré disc, we use
Lemmas 25 and 27 and the following characterization of the infinite
singular points.

For the vector field X+
1 , we have that

(5) Z2 = (z2 + (1 − b3)z1 − z3
1 + b0z1z

2
2 ,−b3z2 + b0z

3
2 − z1z

2
2).

The I1 is a singular point of Z2, and (DZ2)I1 has eigenvalues 1−b3 and
−b3 with eigenvectors ((1, 0) and (−1, 1). If 1 − b3 > 0, then I2 and
I3 are singular points of Z2. Their linear parts (DZ2)I2 and (DZ2)I3

have the same eigenvalues, −2(1 − b3) and −1 with eigenvectors (1, 0)
and (1, 1 − 2b3).

If b3 < 0, then I1 is a repellor and I2, I3 are attractors.
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FIGURE 15. Phase portraits of X+
1 and X+

5 . The dotted lines denote lines

filled with singular points.

If b3 = 0 then I2, I3 are attractors and for I1, we have that:

(1) If b0 �= 1, then (5), after a linear change of variables, has the form
Z2(z1, z2) = ((−b0+1)z3

1 +2z2
1z2−z1z2

2 , z2−z3
2 +2z1z2

2 +(−b0+1)z1z2
2),

and in order to apply the elementary degenerate theorem, we have the
function g(z1) = (−b0 + 1)z3

1 + · · · . Hence, as m = 3, if b0 > 1,
respectively b0 < 1, then I1 is a topological unstable node, respectively
saddle.

(2) If b0 = 1, then Z2(z1, z2) = (z1 + z2 − z3
1 + z1z

2
2 ,−z2

1z2 + z3
2).

The singular points of Z2 are the straight line z1 = −z2, and for each
point of this straight line, the Jacobian matrix associated to Z2 has
eigenvalues 1 and 0 with eigenvectors (1, 0) and (−1, 1).

If 0 < b3 < 1, then I1 is a hyperbolic saddle and I2 and I3 are
attractors.

If b3 = 1, then (5) has the form Z2(z1, z2) = (a0z2−z3
1 +b0z1z2

2 ,−z2−
z2
1z2+b0z

3
2). The Jacobian matrix associated to Z2 at I1 has eigenvalues
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FIGURE 16. Phase portraits of X−
1 and X−

5 . The dotted lines denote lines

filled with singular points.

0 and −1 with eigenvectors (1, 0) and (−1, 1). After a linear change of
coordinates and applying the elementary degenerate theorem, we have
that the function g(x) = z3

2 . So I1 is a topological stable node.

If b3 > 1, then I1 is a hyperbolic node.

Using similar arguments we study the infinite singular points of X−
1 .

If b3 < −1, then I1 is a repellor and I2 and I3 are hyperbolic saddles.
If b3 = −1, then I1 is a topological saddle. If −1 < b3 < 0, then I1 is
a hyperbolic saddle. If b3 = 0 and b0 < 1, respectively b0 > 1, then I1
is a topological saddle, respectively stable node. If b3 = 0 and b0 = 1,
then I1 belongs to the straight line of singular points x = a0. If b3 > 0,
then I1 is an attractor.

The vector field X+
5 , respectively X−

5 , is topologically equivalent to
X+

1 , respectively X−
1 , for b0 < 0, respectively b0 > 1.
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FIGURE 17. Phase portraits of X±
6 . The dotted lines denote lines filled with

singular points.

From Lemma 27, X+
6 is topologically equivalent to X−

6 . The descrip-
tion of infinite singular points is the same as forX1, except when b3 = 1.
For b3 = 1, we have that Z2(z1, z2) = (−z3

1 +b0z1z2
2 ,−z2−z2

1z2 +b0z3
2),

and (DZ2)I1 has eigenvalues 0 and −1 with eigenvectors (1, 0) and
(0, 1). So, by the elementary degenerate theorem, it follows that I1 is
a topological stable node.

Lemma 45 (Phase portraits of X2,±, X3,± and X4). If b3 < 0 or
b3 ≥ 0, then the phase portrait of the vector field X2,+, respectively
X2,−, is topologically equivalent to Figure 18 (a) or (d), respectively (c)
or (f). If either b0 < 0 or b0 = 0 or b0 > 0, then the phase portrait

FIGURE 18. Phase portraits of X2,±, X3,± and X4.



DARBOUX INTEGRABILITY AND VECTOR FIELDS 2043

of the vector field X3,+, respectively X3,−, is topologically equivalent to
Figure 18 (d) or (e) or (f), respectively (a) or (b) or (c). The vector
field X4 is topologically equivalent to Figure 18 (e).

Proof. We use Lemma 26 and the same arguments as in the proof of
Lemma 44. The point I1 is a singular point of Z2, and (DZ2)I1 has
eigenvalue −b3 with multiplicity 2, having eigenvector (1, 0). If b3 < 0
the linear parts (DZ2)I2 and (DZ2)I3 have the same eigenvalues, 2b3
and 0, with eigenvectors (1, 0) and (1, 2b3).

If b3 < 0, then I1 is a repellor, and to study I2 and I3, we apply the
elementary degenerate theorem. Thus,

g(z1) =
√−b3
2b23

z2
1 + · · · for I2,

and

g(z1) = −
√−b3
2b23

z2
1 + · · · for I3.

Hence, I2 and I3 are saddle-nodes.

If b3 = 0, applying the nilpotent theorem we obtain that f(z1) =
−z5

1(1 + · · · ), Φ(z1) = −4z2
1(1 + · · · ) and b2 + 4a(β + 1) = 4. Thus, I1

is a topological stable node.

If b3 > 0, then I1 is an attractor.

Lemma 46 (Phase portraits of X7,±,±, X8,±, X9,± and X10). The
phase portraits of the vector fields X7,−,−, X9,−, X7,+,−, X8,−, X10,
X8,+, X7,−,+, X9,+ and X7,+,+ are topologically equivalent to Figure 19
(a), (b), (c), (d), (e), (f), (g), (h) and (i), respectively.

Proof. We use Lemma 28 and the same arguments as in the proof
of Lemma 44. First, we consider the vector field X7,±,+ and, by
Lemma 43, we have that

(6) Z2 = (−b3z1 − z3
1 + b0z1z

2
2 ,−b3z2 + b0z

3
2 − z2

1z2),

The point I1 is a singular point of Z2, and (DZ2)I1 has eigenvalue
−b3 with multiplicity 2 with eigenvectors (1, 0) and (0, 1). If b3 < 0,
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FIGURE 19. Phase portraits of X7,±,±, X8,±, X9,± and X10. The dotted
lines denote lines filled with singular points.

then (DZ2)I2 and (DZ2)I3 have the same eigenvalues, 2b3 and 0 with
eigenvectors (1, 0) and (0, 1), respectively.

The vector field X7,±,+ has a unique infinite singular point, the I1,
and it is an attractor.

The vector field X7,±,− has three infinite singular points, a repel-
lor, in I1 and, applying the elementary degenerate theorem, we have
topological stable node at that I2 and I3 because g(z1) = z5

1/8(1+ · · · ).
Associated to X8,+ we obtain from (6), Z2 = (z2

1 + z2
2)(−z1,−z2).

So, Z2 is topologically equivalent to (z1, z2) and has a unique infinite
singular point, the topological stable node at I1.

Associated to X8,− we obtain from (6), Z2 = (−z2
1 + z2

2)(z1, z2). So
Z2 is topologically equivalent to (z1, z2) and has the infinite singular
point I1. Moreover, the straight lines z2 = ±z1 are filled by singular
points of Z2.

For the vector field X9,+, we get Z2(z1, z2) = (1 + z2
1)(−z1,−z2). So

I1 is a topological stable node.
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For the vector field X9,−, we obtain Z2(z1, z2) = (1− z2
1)(z1, z2) that

has the infinite singular point I1. The vector field Z2 has two straight
lines z1 = ±1 filled with singular points.

For X10 we get Z2(z1, z2) = z2
1(−z1,−z2); it is topologically equiva-

lent to the vector field (−z1,−z2) and has the straight line z1 = 0 filled
with singular points.

Lemma 47 (Phase portraits of X±
11, X15,± and X16). The phase

portraits of the vector fields X±
11 are topologically equivalent to X11,+,

and these are topologically equivalent to Figure 20. The vector fields
X15,+, respectively X15,−, and X16 are topologically equivalent to X+

11

for b0 < −1, respectively b0 > −1.

FIGURE 20. Phase portraits of X±
11, X15,± and X16. The dotted lines denote

lines filled with singular points.
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Proof. From Lemma 33, we get that the phase portraits of Y +
11 is

topologically equivalent to Y11,−, and the vector fields Y15,+, respec-
tively Y15,−, and Y16 are topologically equivalent to Y +

11 for b0 < −1,
respectively b0 > −1.

The associated compactified vector field to X+
11 in the local chart U1

is
Z1(z1, z2) = (z2 − (1 − b3)z2

1 − b0z
2
2 − z2

1z2,−z1z2 − z1z
2
2).

If b3 �= 1, then Z1 has a unique infinite singular point in U1 at (0, 0).
Using the nilpotent theorem, since F (z1) = (1 − b3)z2

1 + · · · , f(z1) =
−(1−b3)z3

1(1+ · · · ), Φ(z1) = −(3−2b3)z1(1+ · · · ) and b2 +4a(β+1) =
(1 − 2b3)2 ≥ 0, we have that if b3 < 1, respectively b3 > 1, then it is
a singularity whose neighborhood is the union of a hyperbolic and an
elliptic sector (index +1), see Figure 31 (e), respectively topological
saddle. If b3 = 1, then Z1(z1, z2) = z2(1 − b0z2 − z2

1 ,−z1 − z1z2).
Hence, the equator is filled with infinite singular points.

The associated compactified vector field to X+
11 in the local chart U2

is

Z2(z1, z2) = ((1 − b3)z1 + z2 − z2
1z2 + b0z1z

2
2 ,−b3z2 + b0z

3
2 − z1z

2
2).

If b3 �= 1, then Z2 has a unique infinite singular point in U2 at
(0, 0). The linear part (DZ2)(0,0) has eigenvalues 1 − b3 and −b3, with
eigenvectors (1, 0) and (−1, 1). Thus, if either b3 < 0 or 0 < b3 < 1 or
b3 > 1, then X+

11 has a unique infinite singular point at (0, 0) ∈ U2, and
it is either a repellor, or hyperbolic saddle or attractor, respectively. If
b3 = 1, then Z2(z1, z2) = z2(1 − z2

1 + b0z1z2,−1 + b0z
2
2 − z1z2). So the

equator is filled with infinite singular points. If b3 = 0 and 1 + b0 > 0,
respectively 1+b0 < 0, then, using the elementary degenerate theorem,
where f(z1) = 0, g(z1) = (±1+ b0)z3

1(1+ · · · ), we have that (0, 0) ∈ U2

is a topological node, respectively saddle.

The infinite singular points in U1 and U2 of X15,± and X16 are the
same of X+

11.

Lemma 48 (Phase portraits of X±
12, X

±
13 and X±

14). The phase
portraits of the vector field X+

12, respectively X−
12, are topologically

equivalent to Figure 21 (a), respectively Figure 21 (b). The vector fields
X+

13 and X+
14, respectively X−

13 and X−
14, are topologically equivalent

X+
12, respectively X−

12.
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FIGURE 21. Phase portraits of X±
12, X±

13, and X±
14. The dotted lines denote

lines filled with singular points.

Proof. By Lemma 34, it is sufficient that we analyze X±
12. The

associated compactified vector field to X±
12 in the local chart U1 is

Z1(z1, z2) = (z2 + b3z
2
1 − b0z

2
2 ∓ z2

1z2,∓z1z2
2). So, if b3 �= 0, then

Z1 has a unique infinite singular point in U1 at (0, 0). Using the
nilpotent theorem where F (z1) = −b3z2

1 + · · · , f(z1) = ∓b23z5
1(1 + · · · ),

Φ(z1) = 2b3z1(1 + · · · ) and b2 + 4a(β + 1) = (1 − 2b3)2 ≥ 0, we
get that the (0, 0) ∈ U1 is an infinite singular point of X+

12, whose
neighborhood is the union of a hyperbolic and an elliptic sector (index
+1), see Figure 31 (e). The vector field X−

12 has an infinite singular
point at (0, 0) ∈ U1 and it is a topological saddle. If b3 = 0, then
Z1(z1, z2) = z2(1 − b0z2 ∓ z2

1 ,∓z1z2). So, the equator is filled with
infinite singular points.

The associated compactified vector field to X12± in the local chart
U2 is

Z1(z1, z2) = (−b3z1 ± z2 − z2
1z2 + b0z1z

2
2 ,−b3z2 + b0z

3
2 − z1z

2
2).

If b3 �= 0, then Z2 has a unique infinite singular point in U2 at (0, 0) and
(DZ2)(0,0) has eigenvalue −b3 with multiplicity 2, having eigenvector
(1, 0). So, if b3 < 0, respectively b3 > 0, then X±

12 has a unique infinite
singular point at (0, 0) ∈ U2 and it is a repellor, respectively attractor.
If b3 = 0, then Z2(z1, z2) = z2(±1 − z2

1 + b0z1z2, b0z
2
2 − z1z2). So, the

equator is filled with infinite singular points.
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FIGURE 22. Phase portraits of X17,±, X18, X19 and X20. The dotted lines
denote lines filled with singular points.

Lemma 49 (Phase portraits of X17,±, X18, X19 andX20). The phase
portraits of the vector fields X17,+ and X19, X18 and X20, and X17,−
are topologically equivalent to Figure 22 (a), (b) and (c), respectively.

Proof. The associated compactified vector field to X17,± in the local
chart U1 is Z1(z1, z2) = (z2 ± z2

1 + z2
2)(1, 0). Then Z1 is topologically

equivalent to the vector field (1, 0) and has the curve z2 ± z2
1 + z2

2 = 0
filled with singular points.

The associated compactified vector field to X17,± in the local chart
U2 is Z2(z1, z2) = (±1 − z2

2 − z1z2)(−z1,−z2). It follows that Z2 is
topologically equivalent to the vector field (−z1,−z2), and it has the
curve ±1 − z2

2 − z1z2 = 0 filled with singular points.

The associated compactified vector field to X18 in the local chart U1

is Z1(z1, z2) = (z2 + z2
2)(1, 0). So Z1 is topologically equivalent to the

vector field (1, 0) and has the curve z2(1 + z2) = 0 filled with singular
points. The associated compactified vector field to X18 in local chart
U2 is Z2(z1, z2) = (−z2

2 − z1z2)(−z1,−z2). Hence, Z2 is topologically
equivalent to vector field (−z1,−z2) and has the curve −z2

2 − z1z2 = 0
filled with singular points.

The associated compactified vector field to X19 in the local chart
U1 is Z1(z1, z2) = (z2 + z2

1)(1, 0). The vector field Z1 is topologically
equivalent to the vector field (1, 0) and has the curve z2 + z2

1 = 0 filled
with singular points. The associated compactified vector field to X19

in the local chart U2 is Z2(z1, z2) = (1 − z1z2)(−z1,−z2). It follows
that Z2 is topologically equivalent to vector field (−z1,−z2), and it has
the curve z1z2 = 1 filled with singular points.
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FIGURE 23. Infinite singular points in U1 for the vector field X21,+. The

dotted lines denote lines filled with singular points.

The associated compactified vector field to X20 in the local chart
U1 is Z1(z1, z2) = z2(1, 0). Thus, Z1 is topologically equivalent to the
vector field (1, 0), and it has the curve z2 = 0 filled with singular points.
The associated compactified vector field to X20 in the local chart U2

is Z2(z1, z2) = z1z2(−z1,−z2). The vector field Z2 is topologically
equivalent to the vector field (−z1,−z2), and it has the curves z1z2 = 0
filled with singular points.

Lemma 50 (Phase portraits of X21,±, X22, X27,± and X28). The
phase portraits of the vector fields X21,+, X22, or X21,−, are topolog-
ically equivalent to Figure 26 (a), (b), or (c), respectively. The vector
fields X27,+, respectively X27,−, is topologically equivalent to X21,+,
respectively X21,−, and X28 to X22.

Proof. The associated compactified vector field to X21,± in the local
chart U1 is

Z1(z1, z2) = (∓z2
2 + (b3 − 1)z2

1 − z2
1z2,−z1z2

2 − z1z2).

If b3 = 1, respectively b3 �= 1, then Z1 has the equator filled with
infinite singular points, respectively a unique infinite singular point at
(0, 0). In order to analyze the infinite singular point at (0, 0) of Z1

for b3 �= 1, we use directional blow-up and polar blow-up for obtaining
Figures 23 and 24 for X21,+ and X21,−, respectively. We observe that
for X27,+, respectively X27,−, the infinite singular points in U1 have
the same characterization of X21,+, respectively X21,−. Using the same
arguments for X22 and X28, we obtain Figure 25.
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FIGURE 24. Infinite singular points in U1 for the vector field X21,−. The

dotted lines denote lines filled with singular points.

The associated compactified vector field to X21,± in the local chart
U2 is

Z2(z1, z2) = ((1 − b3)z1 + z2 ± z1z
2
2 ,−b3z2 ± z3

2).

If b3 = 1, respectively b3 �= 1, then Z2 has the equator filled with infinite
singular points, respectively a unique infinite singular point at (0, 0).
The matrix D(Z2)(0,0) has eigenvalues 1−b3 and −b3, with eigenvectors
(1, 0) and (−a0, 1). If b3 < 0, then (0, 0) ∈ U2 is a repellor. If b3 = 0,
then by the elementary degenerate theorem, we have that the infinite
singular point (0, 0) ∈ U2 of X21,− and X27,−, respectively X21,+ and
X27,+, is a topological saddle, respectively node. For X22 and X28, S1

is filled with infinite singular points and Z2 is topologically equivalent
to a vertical vector field. If 0 < b3 < 1, then the infinite singular point
(0, 0) ∈ U2 is a hyperbolic saddle. If b3 = 1, then S1 is filled with
infinite singular points and Z2 is topologically equivalent to a vertical
vector field. If b3 > 1, then the infinite singular point (0, 0) ∈ U2 is an
attractor. So, we use Lemma 40 and we draw the phase portraits of
these vector fields.

FIGURE 25. Infinite singular points in U1 for the vector field X22. The dotted
lines denote lines filled with singular points.
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FIGURE 26. Phase portraits of X21,±, X22, X27,± and X28. The dotted lines
denote lines filled with singular points.

Lemma 51 (Phase portraits of X23,−, X23,+ X24, X25 and X26).
The phase portraits of the vector fields X23,−, X23,+, X24, X25 and
X26 are topologically equivalent to Figure 29 (a), (b), (c), (d) and (e),
respectively.

Proof. The associated compactified vector field to X23,± in the local
chart U1 is Z1(z1, z2) = (−z2

2 ± z2
1 − z2

1z2,−z1z2
2). For the vector fields

X24, X25 and X26, we have that Z1(z1, z2) = z2(−z2 − z2
1z2,−z1),

Z1(z1, z2) = z1(z1 − z1z2,−z2
2) and Z1(z1, z2) = z1z2(−z1,−z2), re-

spectively. For these vector fields we use directional blow-up and po-
lar blow-up, and we obtain Figure 27 (a), (b), (c), (d) and (e), where
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FIGURE 27. Infinite singular points in U1 for the vector field X23. The dotted
lines denote lines filled with singular points.

we draw the local phase portrait at the infinite singular point of Z1

associated to X23,−, X23,+, X24, X25 and X26, respectively.

The associated compactified vector field toX23,± in the local chart U2

is Z2(z1, z2) = (−b3z1 + z2 + z1z
2
2 ,−b3z2 + z3

2). The matrix D(Z2)(0,0)

has eigenvalue −b3 of the multiplicity 2, having eigenvectors (1, 0) and
(−1, 1). If b3 < 0, then (0, 0) ∈ U2 is a repellor. If b3 = 0, then
Z2(z1, z2) = z2(1 + z1z2, z

2
2). So, S1 is filled with infinite singular

points and Z2 is topologically equivalent to a horizontal vector field.
If b3 > 0, then the infinite singular point (0, 0) ∈ U2 is an attractor.
So, we use Lemma 41 and we draw the phase portraits of these vector
fields.

Lemma 52 (Phase portraits of X29,−, X29,+, X30 and X31). The
phase portraits of the vector fields X29,−, X29,+, X30 and X31 are
topologically equivalent to Figure 29 (a), (b), (c) and (d).

Proof. The associated compactified vector field to X29,± in the local
chart U1 is Z1(z1, z2) = (−z2

2 ± z2
1)(1, 0). For the vector fields X30

FIGURE 28. Phase portraits of X23,−, X23,+, X24, X25 and X26. The dotted

lines denote lines filled with singular points.
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FIGURE 29. Phase portraits of X29,−, X29,+, X30 and X31. The dotted lines

denote lines filled with singular points.

and X31, we have that Z1(z1, z2) = z2
2(1, 0) and Z1(z1, z2) = z2

1(1, 0),
respectively. These vector fields are topologically equivalent to a
horizontal field.

The associated compactified vector field to X29,± in the local chart
U2 is Z2(z1, z2) = (∓z1 + z1z

2
2 ,∓z2 + z3

2). So the vector field X29,−,
respectively X29,+, has an infinite singular point at (0, 0) ∈ U2 and
it is a repellor, respectively an attractor. For the vector field X30,
respectively X31, we have that Z2(z1, z2) = z2

2(z1, z2), respectively
Z2(z1, z2) = (−z1,−z2)). So we use Lemma 42 and we draw the phase
portraits of these vector fields.

Appendix

The next theorem corresponds to Theorem 65 of [2].

Theorem 53 (Elementary Degenerate Theorem). Let (0, 0) be
an isolated singularity of the system (ẋ, ẏ) = (X(x, y), y + Y (x, y)),
where X and Y are analytic in a neighborhood of the origin and
have expansions that begin with second degree terms in x and y. Let
y = f(x) be the solution of the equation y + Y (x, y) = 0 in the
neighborhood of (0, 0), and assume that the series expansions of the
function g(x) = X(x, f(x)) has the form g(x) = amx

m + · · · , where
m ≥ 2, am �= 0. Then

(1) If m is odd and am > 0, then (0, 0) is a topological node.

(2) If m is odd and am < 0, then (0, 0) is a topological saddle, two
of whose separatrices tend to (0, 0) in the directions 0 and π, the other
two in the directions π/2 and 3π/2.
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FIGURE 30. The elementary degenerate saddle-nodes (the orientation of the
orbits can be reversed).

(3) If m is even, then (0, 0) is a saddle-node, i.e., a singularity whose
neighborhood is the union of one parabolic and two hyperbolic sectors,
two of whose separatrices tend to (0, 0) in the directions π/2 and 3π/2,
and the other in the direction 0 or π according to am < 0 (Figure 30 (a))
or am > 0 (Figure 30 (b)).

The corresponding topological indices of these singular points are
+1,−1, 0, so they may serve to distinguish the three types.

For the proof of the following theorem, see [1], or Theorems 66 and
67 of [2].

Theorem 54 (Nilpotent Theorem). Let (0, 0) be an isolated singu-
larity of the system (ẋ, ẏ) = (y+X(x, y), Y (x, y)), where X and Y are
analytic in a neighborhood of the origin and have expansions that begin
with second degree terms in x and y. Let y = F (x) be the solution of the
equation y+X(x, y) = 0 in the neighborhood of (0, 0), and assume that
the series expansions for the functions f(x) = Y (x, f(x)) = axα(1+· · · )
and Φ(x) = ((∂X)/(∂x) + (∂Y )/(∂y))(x, F (x)) = bxβ(1 + · · · ), where
a �= 0, α ≥ 2 and β ≥ 1. Then

(1) If α is even, and

(a) α > 2β+ 1, then the origin is a saddle-node (index 0), see Figure
31 (a).
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FIGURE 31. The local behavior near a nilpotent singularity (the orientation
of the orbits can be reversed).

(b) Either α < 2β + 1 or Φ(x) ≡ 0, then the origin is a singularity
whose neighborhood is the union of two hyperbolic sectors (index 0), see
Figure 31 (b).

(2) If α is odd and a > 0, then the origin is a saddle (index −1), see
Figure 31 (c).

(3) If α is odd, a < 0, and

(a) either α > 2β + 1 and β even; or α = 2β + 1, β even and
b2 + 4a(β + 1) ≥ 0, then the origin is a node (index +1), see Figure
31 (d). The node is stable if b < 0, or unstable if b > 0.

(b) Either α > 2β + 1 and β odd, or α = 2β + 1, β odd and
b2 + 4a(β + 1) ≥ 0, then the origin is the union of a hyperbolic and
an elliptic sector (index +1), see Figure 31 (e).

(c) Either α = 2β + 1 and b2 + 4a(β + 1) < 0, or α < 2β + 1 (or
Φ(x) ≡ 0), then the origin is either a focus, or a center, respectively
(index +1).
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