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DARBOUX INTEGRABILITY AND
REVERSIBLE QUADRATIC VECTOR FIELDS

JAUME LLIBRE AND JOAO CARLOS MEDRADO

ABSTRACT. In this paper we improve the Darboux the-
ory of integrability for reversible polynomial vector fields in
R™, and we classify the phase portraits of all p—reversible
quadratic polynomial vector fields of R? such that the dimen-
sion of the set of fixed points of ¢ is equal to one.

1. Introduction and statement of the main results. The
algebraic theory of integrability is a classical one. In 1878, Darboux
[11] provided a link between algebraic geometry and the search of first
integrals and showed how to construct the first integral of polynomial
vector fields in R? or C? having sufficient invariant algebraic curves.
The theory also received contributions from Poincaré [24], who mainly
was interested in the rational first integrals.

Good extensions of the Darboux theory of integrability to polynomial
systems in R™ or C" are due to Jouanolou [16] and Weil [29], see
also [17]. In [4, 6-9], the authors developed the Darboux theory of
integrability essentially in R? or C? considering not only the invariant
algebraic curves but also the exponential factors, the independent
singular points and the multiplicity of the invariant algebraic curves.
Recently, in [13] and [18] there are extensions of the Darboux theory
of integrability to two-dimensional surfaces.

In this paper we present and prove properties of reversible polynomial
vector fields. In Propositions 3 and 4 we prove that for ¢—reversible
polynomial vector fields, X, of degree greater than one and such
that dim (Fix (¢)) = k, the involution ¢ is linear and conjugated to
diag (+1,...,41,-1,...,—1), where the number of —1 is equal to k.
In Proposition 5 we prove that if f = 0 is an invariant curve of X, then
f o is also an invariant curve. The same occurs with the exponential
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factors and the first integrals. This result is useful to obtain first
integral of vector fields using the Darboux theory of integrability, see
Theorem 6, because if an invariant curve f = 0 or exponential factor
is not symmetric, i.e., fow # f or F o # F, then the system has
another invariant algebraic curve or exponential factor, respectively.

Quadratic vector fields, i.e., quadratic polynomial vector fields, have
been investigated intensively, and nearly 1000 papers have been pub-
lished about these systems, see, for instance, [25, 30, 31]. But it is
an open problem to know what are the integrable quadratic systems,
see, for instance, [19]. Here, we characterize all p—reversible quadratic
vector fields such that the dimension of the set of fixed points of ¢ is
equal to one, and we prove that they are integrable.

Teixeira [28] and Medrado [21], see also [22], studying p—reversible
vector fields X in R™ such that the dim (Fix (¢)) = n—1 used a change
of variables and reduce the study of X to analyze vector fields defined
on manifolds with boundary. In the proof of the next theorem we also
use this technique.

Theorem A. Let X be a reversible quadratic vector field with the
dimension of the set of fized points of the associated involution equal
to one. Then, the phase portrait of X is topologically equivalent to
one of the 77 phase portraits given in Figure 1. Moreover, each phase
portrait of Figure 1 is realizable by some reversible quadratic reversible
vector field with the dimension of the set of fized points of the associated
involution equal to one.

The paper is organized as follows. In Section 2 we give some basic
definitions that we will need to draw the phase portraits of reversible
polynomial vector fields. In Section 3 we define the reversible vector
fields and present their basic properties. In the same section we prove
Propositions 3 and 4. In Section 4 we state the Darboux theory of
integrability for real polynomial reversible vector fields and we prove
Proposition 5. In Section 5 we prove that the p—reversible polynomial
vector fields in R2, such that the dimension of the set of fixed points
of ¢ is equal to one, are integrable and we present their normal forms.
In Section 6 we draw the phase portraits of reversible quadratic vector
fields defined on half-plane. In Section 7 we draw the phase portraits
of reversible quadratic vector fields and prove Theorem A.
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2. Preliminary definitions. In this section we introduce some
basic definitions and notations for the investigation of topological phase
portraits of p—reversible quadratic vector fields X.

2.1 Singular points. Let X = (P(z,y), Q(z,y)) be a planar real
polynomial vector field of degree n. A point ¢ € R? is a singular point
of the vector field X if P(q) = Q(q) = 0.

If D = P(q)Qy(q) — Py(q)Qx(q) and T = Py(q) + Qy(q), then a
singular point ¢ is elementary nondegenerate if D # 0. Then the
singular point is isolated. Furthermore, ¢ is a saddle if D < 0, a
node if T> > 4D > 0 (stable if T < 0, unstable if T > 0), a focus
if 7?2 < 4D and T # 0 (stable if T < 0, unstable if T > 0), and
either a weak focus or a center if T = 0 < D; for more details see
[2, p. 183]. A singular point ¢ is elementary degenerate if D = 0 and
T # 0, and then ¢ is also isolated in the set of all singular points. The
results on elementary degenerate singular points are summarized in the
elementary degenerate theorem of the Appendix.

A singular point q is nilpotent if D =T = 0 and the Jacobian matrix
at ¢ is not the zero matrix and g is isolated in the set of all singular
points. The results on nilpotent singular points are summarized in the
nilpotent theorem of the Appendix.

If the Jacobian matrix at the singular point ¢ is identically zero and ¢
is isolated in the set of all singular points, we say that q is linearly zero.
Then the study of its local phase portraits needs a particular treatment
(directional blow-ups), see for more details [23] and [26]. If ¢ = (0,0)
is linearly zero and the vector field X has some nonzero second degree
term, then the local phase portraits are characterized in [15].

2.2 Poincaré compactification. We denote by Py(R?) the set
of all planar real vector fields of degree 2. For X € P,(R?) the
Poincaré compactified vector field p(X) corresponding to X is a vector
field induced in S? as follows, see for instance [12] and [2]. Let
S? = {y = (y1,y2,y3) € R : 43 + y2 + 43 = 1}, called the Poincaré
sphere, and T,S? be the tangent space to S? at point y. Consider
the central projections fy : T(07071)S2 — 82 ={y e 8%:y; >0}
and f_ : T90,1)S* — 82 = {y € S? : y5 < 0}. These maps define
two copies of X, one in the northern hemisphere and the other in
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the southern hemisphere. Denote by X’ the vector fields Df, o X
and Df_ o X in S? except on its equator S' = {y € S? : y3 = 0}.
Obviously S' is identified to the infinity of R?. In order to extend
X' to an analytic vector field in S2, including S', it is necessary that
X satisfies suitable hypotheses. In the case that X € Py(R?), the
Poincaré compactification p(X) is the only analytic extension of y3 X’
to S2. The set of all compactified vector fields p(X) with X € Py(R?)
is denoted by P2(S?). For the flow of the compactified vector field
p(X), the equator St is invariant. On S?\S! there are two symmetric
copies of X, and knowing the behavior of p(X) around S!, we know
the behavior of X near infinity. The projection of the closed northern
hemisphere of S? in y3 = 0 under (y1,%2,%3) — (y1,%2) is called the
Poincaré disc, and it is denoted by D?2.

As S? is a differentiable manifold, for computing the expression of
p(X), we can consider the six local charts U; = {y € S? : y; > 0}, and
V; = {y € S? : y; < 0} where i = 1,2,3, and the diffeomorphisms
F, : Uy — R? and G; : V; — R? defined as the inverses of the
central projections from the tangent planes at the points (1,0,0),
(-1,0,0), (0,1,0), (0,—1,0), (0,0,1) and (0,0,—1), respectively. If
we denote by z = (z1, z2) the value of F;(y) or G;(y) for any i = 1,2, 3,
then z represents different things according to the local charts under
consideration. Some straightforward calculations give for p(X) the
following expressions:

ng(z) {Q (i, ﬂ) - P (l, ﬁ) , —2oP <i, ﬁ)} in U,
29 Zo 29 29 z2 22

ZgA(Z) |:P <Z_17 l) - ZlQ (Z_17 i) ) _ZQQ <Z_15 i>:| in U27
Z2 Z9 zZ9 Z9 Z9 Z9
A(Z)[P(Zlsz), Q(zlaz2)] in U35

where A(z) = (27 + 23 +1)~1/2. The expression for V; is the same as
that for U; except for the multiplicative factor —1. In these coordinates
for i = 1,2, z, = 0 always denotes the points of S'. In what follows
we omit the factor A(z) by rescaling the vector field p(X). Thus we
obtain a polynomial vector field of degree at most 3 in each local chart.

Since the unique singular point at infinity which cannot be contained
into the charts Us UV5 are the origins (0, 0) of Uy and V1, when we study
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the infinity singular points on the charts U; U Vi, we only consider if
the (0,0) of these charts are or not singular points.

2.3 Topological equivalence. We say that polynomial vector
fields X and Y in R? are topologically equivalent if there exists a
homeomorphism in S? preserving the infinity S' carrying orbits of the
flow induced by p(X) into orbits of the flow induced by p(Y"), preserving
or reversing simultaneously the sense of all orbits.

A separatriz of p(X) is an orbit which is a singular point, or a limit
cycle, or a trajectory which lies in the boundary of a hyperbolic sector
at a singular point, finite or infinity. If a quadratic system has a
polynomial first integral, then it has no limit cycles.

We denote by Sep (p(X)) the set formed by all separatrices of p(X).
Neumann [23] proved that the set Sep (p(X)) is closed. Each open con-
nected component of S%\Sep (p(X)) is called a canonical region of p(X).
A separatriz configuration is defined as a union of Sep (p(X)) plus one
representative solution chosen from each canonical region. We say that
Sep (p(X)) and Sep (p(Y)) are equivalent if there exists a homeomor-
phism in S? preserving the infinity S carrying orbits of Sep (p(X)) into
orbits of Sep (p(Y)), preserving or reversing simultaneously the sense
of all orbits.

The next theorem due to Neumann [23] states the characterization
of two topologically equivalent Poincaré compactified vector fields. We
shall need it later on for the analysis of the global phase portraits of
the p—reversible quadratic vector fields.

Theorem 1 (Neumann’s theorem). Suppose that p(X) and p(Y)
are two continuous flows in S? with isolated singular points. Then
p(X) and p(Y') are topologically equivalent if and only if their separatriz
configurations are equivalent.

Neumann’s theorem implies that in order to obtain the global phase
portrait of a vector field p(X) with isolated singular points, we essen-
tially need to determine the a- and w-limit sets of all separatrices of

p(X).
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Neumann’s theorem was obtained under the additional assumption
that the flow has no limit separatrices by Markus [20] in 1954.

3. Reversible vector fields. Let ¢ : R™ — R" be an involution,
ie.,, oo =1d. We say that X is a p—reversible vector field, or only
p—reversible, if X satisfies

De(p)X(p) = —X op(p), peR™

We denote by S C R™ the set of fixed points of ¢, or S = Fix (¢).
If p € S and X(p) = 0, we say that p is a symmetric singular point of
X; otherwise, it is an asymmetric singular point. Any periodic orbit
of X crossing S is called a symmetric periodic orbit; otherwise, it is an
asymmetric periodic orbit.

If p is a singular point of X, then ¢(p) is also a singular point
of X, and since ¢ interchanges the stable and unstable manifolds, a
symmetric singular point cannot be an attractor or a repellor. If v is a
periodic orbit of X, then ¢(7) is also a periodic orbit.

Lemma 2. Let ¢ : R® — R" be an involution, and let X be a
p—reversible vector field in R™. If v is an asymmetric periodic orbit,
then @(v) is an asymmetric periodic orbit too; and if v is a symmetric
periodic orbit, then it is not a limit cycle.

Proof. The proof follows directly from equation Dyp(p)X(p) =
—X(p(p)) and from [21, Lemma 3.2]. u]

Proposition 3. Let ¢ : R* — R" be a polynomial involution of
degree q, and let X be a p—reversible polynomial vector field of degree p
in R™. Ifp #1, then ¢ is a linear involution.

Proof. As X is a p—reversible vector field, then Dy(p)X(p) =
—X(¢(p)). This equation implies that ¢ — 1 + p = pq, or equivalently
qglp—1)=p—1. So, g =1 provided that p # 1. o

Proposition 4. Let ¢ : R™ — R" be a linear involution such that the
vector subspace Fix(p) has dimension equal to k. Then the involution ¢
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is conjugated to i given by ¢ = diag (+1,...,+1,—1,...,—1), where
the number of elements —1 is equal to k.

Proof. We observe that as ¢ is a linear involution, then det(yp) = £1.
By Jordan’s normal form theorem, there is a linear change of variables
h : R* — R"™ such that ¥ = h~'ph is formed by Jordan’s blocks,
and the elements of the principal diagonal of ¢ are formed by not

zero eigenvalues A\;, i = 1,...,n. Now, we suppose that ¢ has a
k x k Jordan’s block of nilpotent type associated to eigenvalue A;,,
1 <y < n which we denote by C = (¢;;), ¢, =1,... , k. We compute

C? = (di;), i,j = 1...,k, and we have that di2 = 2);, # 0. But, C
is an involution, provided that % is an involution too, this implies that
d12 = 0 and we have a contradiction. So, 1) has no nilpotent Jordan’s
blocks.

Now, if there is 1 < 49 < n such that \;;, = a + ib, with b # 0, we
have the associated Jordan’ block:

o_<_ab 2).

Thus we have a contradiction because C? = Id if and only if b = 0.

In short, v is a diagonal matrix, and ? = Id implies \; = 1, and
the proof of the proposition is completed. ni

4. Darboux theory of integrability for reversible polynomial
vector fields. In this section we state the Darboux theory of inte-
grability for real polynomial reversible vector fields. Of course, this
theory can be extended in a natural way to complex polynomial vector
fields, but here we do not consider these extensions. We consider the
following polynomial vector fields in R™:

n
0
X:ZPj(Il,...,xn)%7 (Il,...,xn)eRn,
i=1 '

where P; for ¢ = 1,... ,n, are polynomials of degree at most m. The
integer m = max{deg Py, ... ,deg P,} is the degree of the vector field
X.

The polynomial vector field X has a first integral in an open subset
U of R™ if there exists a nonconstant analytic function H : U — R",
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which is constant on all solutions (z1(%),... ,z,(t)) of X in U. Clearly
H is a first integral of X in U if and only if XH =0 in U.

Let f(x1,...,2,) € Clz1,...,2,]. As usual, C[zy,...,z,] denotes
the ring of all complex polynomials in the variables x4, ... ,z,. We say
that f = 0 is an invariant algebraic hypersurface of the vector field X
on R™, or simply an invariant algebraic hypersurface on R™, if there
exists a polynomial k € C[z1,... ,x,] such that

- 0
Xf:ZPia—i_:kjf, on C",
i=1

the polynomial k = k(z1,... ,2,) € Clz1,... ,3,] is called the cofactor
of f =0in C™. We can prove easily that for a polynomial vector field
X of degree m the cofactor of an invariant algebraic hypersurface is of
degree at most m — 1.

We allow that the invariant algebraic hypersurfaces (and later on the
exponential factors) can be complex, because often the existence of a
real first integral is forced by existence of these complex objects, for
more details see [4, 8].

Let f = 0 be an invariant algebraic hypersurface of X in R".
Suppose that f(z1,...,z,) ¢ Rlz1,...,z,], if f = 0 is an invariant
algebraic hypersurface of X in U, then the conjugate f(z1,...,x,)
of the polynomial f(x1,...,z,) (which means to conjugate all the
coefficients of f) defines another invariant algebraic hypersurface f = 0
of X in U.

We remark that, in the above definitions, in R™ with n > 2, then
f = 0 is called an invariant algebraic hypersurface. If n = 2, then
f = 0is called an invariant algebraic curve. If n = 3, then f = 0 is
called an invariant algebraic surface.

Since on an invariant algebraic hypersurface f = 0 the gradient V f
in f = 0 is orthogonal to the polynomial vector (P,... , P,), it follows
that the vector field X is tangent to the algebraic hypersurface f = 0.
Therefore, the hypersurface f = 0 is formed by trajectories of the vector
field X. This justifies the name of ‘nvariant by the flow of the vector
field X in R"™.

An exponential factor F(xq,...,x,) of the polynomial vector field
X of degree m in R is a function of the form exp(g/h) with g and h
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polynomials of C[zy, ... ,z,] and satisfying X F = KF in C"™ for some
K € Cp_1[z1,... , 2], where Cp,_q[x1, ..., x,] denotes the set of all
polynomials of Clz1,...,z,] of degree at most m — 1. The notion

of exponential factor is due to Christopher [7], and it controls the
multiplicity of the invariant hypersurface h = 0, see [10].

Proposition 5. Let X be a p—reversible polynomial vector field of
R"™. Then the following statements hold.

(a) f = 0 is an invariant algebraic hypersurface of X with cofactor K
if and only if f, = fop =0 is also an invariant algebraic hypersurface
with cofactor K, = —K o .

(b) F = exp(g/h) is an exponential factor of X with cofactor L, if
and only if F, = F o is also an ewponential factor with cofactor
L,=—Looy.

(c) H:R"™ — R is a first integral of X if and only if H, = H o ¢ is
also a first integral of X .

Proof. Initially, we observe that, as f = 0 is an invariant algebraic
hypersurface with cofactor K and X is (p-reversible, we have that

Xf=Kf and DpX =-X o,
respectively. Then, we obtain
Xfe=Vfo - X=Vfop - Dp-X=Vfop(-Xop)
= _(Xf) oY= _(KOSD)(fo(p) = Ktpf(p'

Thus, if f = 0 is an invariant algebraic hypersurface with cofactor K,
then f, = 0 is also an invariant algebraic hypersurface with cofactor
K,=—-Kogp.

This implies that, if f, = f o = 0 is an invariant algebraic
hypersurface with cofactor K, = —K o ¢, then f, o ¢ = 0 is also
an invariant algebraic hypersurface with cofactor K = —K, 0. But,
we observe that

foop=fopop=f and K=-K,op=—(—Kog)p=K.

This proves statement (1).
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Now, as F' = exp(g/h) is an exponential factor with cofactor L,
we have by Proposition 7 of [8] that h = 0 is an invariant algebraic
hypersurface of X with cofactor Kp, i.e., Xh = Kph, and g satisfies
the equation Xg = gK} + hL where L is the cofactor of F.

We consider g, = go ¢ and f, = f oy, we get

9o 9o\ (Xgp)hy — gp(Xhy)
XF,=Xexp (—) = exp (—) .
’ he he (hy)?

Now

)

(Xgp)hy = 9o (Xhy) = —[go(Kn 0 @) + hy(Lo@)lhy — gol—Kp o ¢lhy,
=—(Lo @)(hgo)2-

Consequently,

9o 9o
X exp (—> =—Loy exp (—> .
he he

Thus, if F' is an exponential factor with cofactor L, then F,, is also an
exponential factor with cofactor L, = —L o ¢.

We now apply the argument used in the proof of above statement,
with F' replaced by Fy, and L replaced by L, to conclude the proof of
statement (2).

Finally, H is a first integral if and only if X H = 0, and we have that
XH,=VHoyp-Xop=XH(p)=0.

So, XH =0 if and only if XH, = 0. This proves statement (3). O

The following result is a summary of the Darboux theory of integra-
bility in R™, see for instance, [16, 17, 29].

Theorem 6. Suppose that the polynomial vector field X defined in
R”™ of degree m admits p irreducible invariant algebraic hypersurfaces
fi = 0 with cofactors K; for i = 1,...,p; q exponential factors
F; = exp(g;/h;) with cofactors L; for j=1,...,q; and r independent
singular points x; € R™ of X such that fi(x;) # 0 fori=1,...,p
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and k=1,...,r. We note that the irreducible factors h; are some f;.
Then the following statements hold.

(a) There exist \j,pu; € C not all zero such that Y " | NK; +
25:1 wiL; =0, if and only if the following real, multi-valued, function
of Darbouzian type

1>‘1 fg‘PF{“F;q’

substituting fi)‘i by | fi Ai if \i € R, is a first integral of the vector field

X.

b)) Ifp+q+r> ("::f;l) + 1, then there exist A, p1; € C not all
zero such that Y 0_ | N K; + Z?Zl wiL; = 0.

(c) There exist N\i,p; € C not all zero such that Y " NK; +
25:1 w;Lj = —o for some o € R\{0}, if and only if the real, multi-
valued, function

1)‘1 .. .fg‘pF{” .. ~F(§J’q60t,
substituting f by |fz\’\l
X.

(d) The vector field X has a rational first integral if and only if

n+m-—1
> .
p—l—q—l—r_( m—1 >—|—n

if i € R, is an invariant of the vector field

Moreover, all trajectories are contained in invariant algebraic hyper-
surfaces.

For reversible vector fields we must take into account in the state-
ments of Theorem 6 the existence of the symmetric invariant algebraic
curves and exponential factors.

5. Normal forms for reversible quadratic vector fields. In
this section we find the normal forms of all p—reversible quadratic
polynomial vector fields defined in R? such that dim(Fix (¢)) = 1. By
Propositions 3 and 4, we can consider that involution ¢ is given by
o(z,y) = (x,—y). Let X be a p—reversible quadratic (polynomial)
vector field in R2. Then X has the following form:

(1) X(2,y) = (y(ao + a13), —bg + b17 + bax® + bzy?).
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The next result provides the normal form for the family of ¢p—reversible
quadratic vector fields.

Lemma 7. Any p—reversible quadratic vector field (1) can be written
in one of the following normal forms:

(a) X1(z,y) = (y(ao + arx), by + 2% + b3y?).
(b) Xo(z,y) = (y(ap + a1z), —bo + = + b3y?).
(c) Xs(z,y) = (y(ao + arz), —bo + bsy?).

Proof. If by # 0, doing the change of variables (u,v) = (z+(b1/2b2), y),
and the rescaling of the time by T = byt, system (1) becomes
(00 — ((@151),/(262)))(1/b2) + ayu), —(bo — (B3)/ (462))) (1/bs) + 2 +
(b3/ba)v?). So, we obtain X after changing (u,v) by (x,y) and re-
name their coefficients. If by = 0 and b; # 0, then rescaling the time
by T = bit, we get Xo. If b = by = 0, we have X3. ]

Lemma 8. Any p—reversible quadratic vector field X1(x,y) can be
written in one of the following normal forms:

(1) If apar # 0, then X (z,y) = (y(1 + x), —by + 22 + b3y?).

2) If ag # 0, a1 = 0 and by # 0, then Xo 4 (z,y) = (y, £1+22+b3y?).

3) If ag # 0, a1 = 0 and by # 0, then X3 +(x,y) = (y, —bo + 22 £y?).

4) If ag # 0, a; =0 and by = bz = 0, then X4(x,y) = (y,2?).

5) If ag =0, a1 # 0 and by # 0, then ngi(m,y) = (fay, £1 + 22 +

bsy?).
(6) If ap = 0, ay # 0 and by = 0, then X (x,y) = (£xy, 22 + b3y?).
(7) If ap = a1 = 0 and bobs # 0, then X7 4 +(z,y) = (0, £1+x2+y?).
(8) Ifap =a1 =0 and by # 0, by =0, then Xg +(z,y) = (0, £1+z?).
(9)

(

(
(
(
(

9) Ifag =a; =0 and by =0, b3 # 0, then Xo 1 (z,y) = (0,2% £ y?).
10) If ap = a1 = by = by = 0, then Xio(z,y) = (0,2?).
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Proof. After the change of variables (z,y,t) = (a1, By1,vT), the
vector field X;(z,y) has the form

- b
Xi(z1,11) = (y1(a072a + a1y’ a’zy), —a—‘; +ai+ b372a2yf),

where 8 = a?y. If apa; # 0, then we obtain the normal form
XE(x,y) = (1 £ x1), —bo + 22 + b3y?), where o = =ap/a; and
7% = 4a1/a3. In a similar way, we obtain the other normal forms.
]

Lemma 9. Any ¢—reversible quadratic vector field Xo(x,y) can be
written in one of the following normal forms:

(1) If apas # 0, then X (x,y) = (y(£1 + z), —bo + = + bzy?).

(2) Ifap # 0, a1 = 0 and by # 0, then X5 (x,y) = (£y, 1+ + b3y?).

B) If ap # 0, a1 = 0 and by = 0, by # 0, then Xi3+(z,y) =
(Fy, 2 +y°).

(4) If ap # 0, a1 = 0 and by = by = 0, then X (z,y) = (+y, ).

(5) If ap =0, a1 # 0 and by # 0, then X15 +(z,y) = (zy, £1 + = +
b3y?).
(6) If ap =0, a1 #0 and by = 0, then Xi6(x,y) = (zy, x + bzy?).
(7) If ag = a1 = 0 and bobs # 0, then X174 (x,y) = (0,1 + z + y?).
(8) If ap = a1 =0 and by # 0, b3 =0, then X15(z,y) = (0,1 + x).
(9) If ag = a1 = 0 and by = 0, b3 # 0, then X19(x,y) = (0, + y?).
(10) If ag = a1 = by = b3 = 0, then Xog(x,y) = (0, ).

Proof. For Xs(x,y) we do the same change of variables as in the proof
of Lemma &8, and we obtain
Xo(z1,51) = (y1(a07” + aray’m1), —bo/a+ x1 + bsay*ui),

where 8 = avy. If aga; # 0, then we have the normal form Xli1 (x1,91) =
(y1(£1 + 1), —bo + @1 + b3y?), doing a = +ag/a; and v? = +1/aq.
Repeating these arguments we obtain the other normal forms. o

Lemma 10. Any p—reversible quadratic vector field Xs(z,y) can be
written in one of the following normal forms:
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(1) If apa; # 0 and by # 0, then Xo1 4+ (2, y) = (y(1 + ), £1 + b3y?).
(2) If apay # 0 and by = 0, then Xoo(x,y) = (y(1 + 2), bzy?).

(3) If ag # 0, a1 = 0 and bobs # 0, then Xoz 1 (z,y) = (y,1 £ y?).
(4) If ag # 0, a1 =0 and by # 0, bs = 0, then Xoy(z,y) = (y,1).

(5) If ap # 0, a; = 0 and by = 0, by # 0, then Xo5(z,y) = (y,vy?).
(6) If ap £ 0, a1 =0 and by = b3 = 0, then Xos(z,y) = (y,0).

(7) If ap =0, a1 # 0 and by # 0, then Xo7 +(z,y) = (zy, £1 + b3y?).
(8) If ap =0, a1 #0 and by = 0, then Xog(x,y) = (zy, b3y?).

(9) If ag = a1 = 0 and bobs # 0, then Xag 4 (x,y) = (0,1 £ y?).

(10) If ap = a1 =0 and by # 0, bg = 0, then Xso(z,y) = (0,1).

(11) If ag = a1 = 0 and by = 0, bg # 0, then X31(z,y) = (0,9?).

Proof. For X5(x,y) we do the same change of variables as above and
we obtain

Xs(z1,11) = (yl (ao % + a1/6'7$1> , —bg g + bgﬁﬁ’y%)-

If apa; # 0, then we have the normal form Xo; 4 (2,y) = (y(142), £1+
bs3y?), using a = ag/a; and By = 1/a;. Following the same arguments
we obtain the other normal forms. ]

We have the following results:

Proposition 11. Let ¢ : R? — R2 be the involution o(x,y) =
(x,—y). If X is a p—reversible quadratic vector field in R?, then X is
integrable and has the following first integrals.

(a) For X, we have:
(i) If a1 # 0 and by ¢ {0,a1/2,a1}, then

ay

)2—(a1 —b3)92+K) ,

ao

Hy(z,y) = (a1 + ag) > ((x ay—2bs

where K = —((a1 — bg)(—bo(al — 2b3)2 + a%))/(b3(a1 — 2[)3)2).
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(ii) If a1 # 0 and bs = a1 /2, then

463 (b3y® — bo) + ad L9 %0 In(ag + 2b3)

H. =2
2($7 y) T+ b3(a0 + 2b3iE) bg

(iii) If a1 # 0 and bs = a1, then

 bob3 — af + 4ag(ag + bsx) + 2(ag + bzx)?

H -
3(.’[],]/) (a0+633:)2
In(ag + byz) — biy?
(a0+b3x)2
(iv) If ay # 0 and bg = 0, then
21n(ag + a12) (a2 — a?by) + (a1 — ap)? — a?
H4(x,y):y2—( (a0 + a17)(ag 130) (@12 — ao)” — ag)

ay

(v) If ay = 0 and agbs # 0, then

2b
Hs(z,y) = exp (- G—S x) ((2b3z + ag)? + 4b3y® — 4bob3 + ag) -
0
(vi) If ay = b3 =0 and ag # 0, then
Heg(x,y) = —223 + 6boz + 3agy®.
(b) For X5 we have:
(i) If a1 # 0 and by ¢ {0,a1/2}, then

_ ai; — 2bs y2 n bo(a1 — 2b3) + ag @ .
2 2b3

Ho(z,y) = (ap + ayz) =2 (x

(ii) If a1 # 0 and by = a1 /2, then

—a2y? + 2a1by + 2ag

H. =21
s(z,y) n(ag + a1x) + 4o f a1z
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(iii) If a1 # 0 and bs = 0, then

1
Hy(z,y) = = (—2a12 + a?y® + 21In(ag + a1x)(boar + ao)).
1

(iv) If ay = 0 and agbs # 0, then

T ag — 2bgb 2b
Hiyo(z,y) = (E +y2 + OT?))OS> exp (— a—jx).

(v) If ay = b3 =0 and ag # 0, then

1
Hi(z,y) = T (% — 2boz — agy®).

(¢c) For X3 we have:
(i) If a1 # 0 and by ¢ {0,a1/2}, then

Hia(z,y) = (a12 + ag) 2" (—bo + b3y2)al .
(ii) If a1 # 0 and bs = a1 /2, then

—bo + b3y2
H =
13(‘Iay) b3(a0—|—2b3;v)

(iii) If a1 # 0 and b3 = 0, then
1 2
Hyg(w,y) = P (a1y” + 2bo In (ap + a1 ).
1

(iv) If ay = 0 and agbs # 0, then

b4

1
His(z,y) = bs (bsy* — bo) exp w0

(v) If ay = b3 =0 and ag # 0, then

Hig(z,y) = box + aoy”.
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(d) If, for X; withi=1,2,3, ap = a; =0, then Hig = x.

Proof. The proposition follows easily from tedious computations from
the equation X H = 0 and using Theorem 6. o

Lemma 12. Let X (z,y) = (y(ag + a1z), —bg + b1 + baz? + bzy?) be
a p—reversible quadratic vector field with p(z,y) = (x,—y). If a1 #0,
then the straight line L := {(z,y) € R*: f(z,y) = ap + a1z = 0} is
an invariant algebraic curve of X. If we denote by xog = —ag/a; and
A = —by + bixg + boxd, then f =0 has the following characterization

(1) Case by # 0.
(a) If Abs < 0, then the straight line L contains two singular points

of X, denoted by Ay = (xg,/—A/bs) and A_ = (xg,—+/—A/b3).
So, L is formed by three open trajectories of X without contact points
00Ay, Ay A_ and A_oco. Moreover, the direction of the trajectories of
X is the same in coA4 and in A_oco, and opposite in AL A_.

(b) If A = 0, then the straight line L contains only one singular point
of X, denoted by Ag = (x0,0) = LN {y = 0}. So, L is formed by two
open trajectories without contact points coAg and Agoo. Moreover, the
directions of the trajectories of X on the segments are the same.

(c) If Abs > 0, then the straight line L has no singular points of X
and it contains a unique trajectory.

(2) Case bs = 0. All points of the straight line L are singular points
of X.

Proof. We start verifying that X f = a1yf, to conclude that L is
an invariant algebraic curve. As a; # 0, we have that X(zg,y) =
(0, A+bsy?), thus (zg,y(t)) is a solution of X with initial conditions in
f = 0 where y(#) is a solution of = A +bzy?. When yo = —A/b3 > 0,
we have two asymmetric singular points of X, A, € L and A_ € L.
If yo = 0, then X has one symmetric singular point Ay € {f = 0}. If
Yo < 0, then X has no singular points in f = 0. Finally, we observe
that the directions of trajectories depends on the sign of 7, and then
the lemma follows. o
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6. Quadratic vectors fields in the half-plane. In this section we
study a particular family of quadratic vector fields defined on the half-
plane which will be very useful later on for studying the ¢—reversible
quadratic vector fields. Here, we deal with the family of quadratic
vector fields

(2) Y (u,v) = (ag + ayu, —by + byu + bou® + b3v),

defined in v > 0.

To analyze the class of ¢—reversible vector fields in y > 0, the
following change of coordinates is useful (see, for instance, [21]). So,
doing the change of variables u = =, v = y*/2, to the vector field (1) in
y >0, we get Y (u,v) = (ag + aru, —bg + byu + bou? + 2b3v) in v > 0.
Therefore, by the symmetry properties, Section 3, for the reversible
vector fields knowing the phase portrait of Y, we can obtain the phase
portrait of X. We comment that at a regular point of S the trajectory
of X is always orthogonal to S. If (ug,0) is a singular point of X, then
the trajectory v = (u — ug)® + h.o.t. with & > 0 of Y in v > 0 tangent
to v = 0, becomes y = 27 1+2/2(2 — uy)*/? 4+ h.o.t. for X iny > 0.

Let § : R?> — R be the projection §(u,v) = v. In this case
S = 671(0). We say that Y has an internal (external) fold singularity
at p € Sif YO(p) = 0 and Y20(p) > 0 (< 0). We say that Y has a cusp
singularity, p € S, if YO(p) = Y?0(p) = 0 and Y30(p) # 0.

We note that a fold or cusp of Y is a singular point of X, and if Y
has a singular point in {v > 0}, then X has two singular points, see
Section 3. Figure 2 illustrates these comments.

Internal fold ~ External Fold Cusp Singular Point
% 6 4
VRS

FIGURE 2. Relations between the singularities of X and Y.
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Using the same arguments as in the proof of Proposition 7 and
Lemmas 8, 9 and 10, we obtain the normal forms for the vector field Y
associated to X, presented in the following results.

Proposition 13. Any quadratic vector field (2) can be written in
one of the following normal forms:

(a) Yi(u,v) = (ag + aju, —by + u? + 2b3v).
(b) Ya(u,v) = (ap + aru, —bg + u + 2b3v).
(c) Ysz(u,v) = (ag + ar1u, —by + 2b3v).

Lemma 14. Any p—reversible quadratic vector field Y1 (u,v) can be
written in one of the following normal forms:

(1) If apay # 0, then Y= (u,v) = (1 + u, —by + u® + 2b3v).

2) Ifag # 0, a; = 0 and by # 0, then Yo 4 (u,v) = (1, £1+u>42b3v).

3) Ifag # 0, a1 = 0 and by # 0, then Y3 4 (u,v) = (1, —by +u? £2v).

4) If ag # 0, a1 = 0 and by = by = 0, then Yy(u,v) = (1,u?).

5) If ap = 0, a1 # 0 and by # 0, then Y}:—Li(u,v) = (tu,+1 4+

u? + 2b3v).

6) If ap =0, ay # 0 and by = 0, then Y& (u,v) = (Fu, u? 4 2b3v).

7) If ap = a1 = 0 and bobs # 0, then Y7 1+ 1 (u,v) = (0, £1+u?+2v).
) If ap = a1 = 0 and by # 0, by = 0, then Yz 4 (u,v) = (0, +1 +u?).
) -

(
(
(
(

9) If ap = a1 =0 and by =0, bg # 0, then Yy 1 (u,v)
10) If ap = a1 = by = bg = 0, then Yip(u,v) = (0,u?)

(0,u? £ 2v).

Lemma 15. Any @p—reversible quadratic vector field Ya(u,v) can be
written in one of the following normal forms:

(1) If apay # 0, then Y (u,v) = (1 4 u, —by + u + 2b3v).

(2) If ag # 0, a1 = 0 and by # 0, then Y5 (u,v) = (£1, 1+ u + 2b3v).
(3) Ifap # 0, a1 = 0 and by = 0, b3 # 0, then Y% (u,v) = (£1,u+20).
(4) If ag # 0, ay = 0 and by = bz = 0, then Y5 (u,v) = (£1,u).

(5) Ifap =0, a1 # 0 and by # 0, then Y15 + (u,v) = (u, £1+u+2bsv).
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(6) If ap =0, a1 # 0 and by = 0, then Yig(u,v) = (u,u + 2b3v).
(7) If ap = a1 = 0 and bobs # 0, then Y17 1+ (u,v) = (0,1 + u £ 2v).
(8) If ap = a1 =0 and by # 0, bg = 0, then Yig(u,v) = (0,1 + ).
(9) If ap =a1 =0 and bg = 0, bg # 0, then Yig(u,v) = (0,u + 2v).
(

Lemma 16. Any p—reversible quadratic vector field Y3(u,v) can be

written in one of the following normal forms:
(1) If apar # 0 and by # 0, then Ya1 4 (u,v) = (1 4+ u, £1 + 2b3v).
(2) If apay # 0 and by = 0, then Yaa(u,v) = (1 + u, 2b3v).
(3) If ap # 0, a1 = 0 and bobs # 0, then Yaz 1 (u,v) = (1,1 £ 2v).
(4) If ag #0, a1 =0 and by # 0, b3 =0, then Yas(u,v) = (1,1).
(5) If ap £ 0, a1 =0 and by = 0, bg # 0, then Yaos(u,v) = (1, 2v).
(6) If ap # 0, a1 =0 and by = bz = 0, then Yag(u,v) = (1,0).
(7) If ap =0, a1 # 0 and by # 0,then Yaz 4 (u,v) = (u, £1 + 2b3v).
(8) If ap =0, a1 # 0 and by = 0, then Yag(u,v) = (u, 2b3y).
(9) If ap = a1 = 0 and bobs # 0, then Yag 1 (u,v) = (0,1 £ 2v).
(10) If ap = a1 = 0 and by # 0, bs = 0, then Yso(u,v) = (0,1).
(11) If ap = a1 =0 and bg = 0, bz # 0, then Y31 (u,v) = (0,2v).

6.1 Analysis of the family Y;. In the sequel, if a; # 0 and
bo > 0, we denote by § = —by + z3 (remember that g = —ag/ay),
81 = by + ap/ay and 62 = —/by + ag/a;. We observe that § = §10,
and §; = d = 0 if and only if ag = bg = 0. As in Lemma 12, we denote
by Ag = (29,0) = LN {v =0}. If by > 0, we denote by S; and S_ the
points (—+v/bg,0) and (v/bg,0), respectively. If by = 0, then we denote
by So the point (0,0).

Lemma 17. Assume for the vector field Y1 that a1 # 0 and by > 0.
If 6 < 0 then Ag € S_S4. If § > 0 then Ag € c0S_ or Ay € S+00,
provided that 63 > 0 or §; < 0, respectively. Finally, Ag = S; or
Ag=5_, if 1 = 0 or 6o = 0, respectively.
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Proof. Asa; # 0, it follows that the position of point Ag = LN{v = 0}
depends on sgnd. So, if § < 0 then zg € (—v/bo, vbo). Now, if § > 0,
then |zo| > v/by and sgnzg = —sgn é;. Finally, if §; = 0 then x5 > 0
or if 45 = 0, then xy < 0. O

Lemma 18. Assume for the vector field Y1 that a; # 0 and by = 0.
If &1 is positive or negative, then Ag € Sgoo or Ay € 00Sy, respectively.
[f 51 = 0, then Ao = SQ.

Proof. As a1 # 0, then ;1 = ag/a;. Thus, if 6; # 0 the position of Ag
in relation to Sy depends directly of sgnd;. So, if §; = 0, then ag =0
and Ao = S(). [}

Lemmas 19 and 20 characterize the isolated singular points of Y.

Lemma 19 (Hyperbolic singular points of Y71). Assume for the vector
field Y1 that a1bs # 0 and §/b3 < 0. Then Y1 has a unique hyperbolic
singular point in L, A = (—ag/a1, —3/(2b3)). If sgnbs = —sgnay, then
A is a saddle. If sgnbs = sgnay and negative, respectively positive,
then A is an attractor, respectively repellor. Moreover, if a1 = 2bs, the
singular point is a degenerate node. Note that A = Ay when § = 0.

Proof. 1If p € R? satisfies Yi(p) = 0, then p = A with §/b3 < 0.
Thus, Y7 has isolated singular points if a1b3 # 0. If Y1(4) = 0 and
0/bs < 0, then A is singular point of Y1 in v > 0. If 6 = 0 we
have that Ag € LU {v = 0} or Ay is a singular point in v = 0. If
ag # 0, then (DY7) 4 has eigenvalues a1 and 2b3 and with eigenvectors
(—a1(a1 — 2b3),2a0) and (0, 1), respectively. If ag = 0, then (DY1)4
has the same eigenvalues a; and 2bs, but with eigenvectors (1,0) and
(0,1), respectively. Therefore, the proof is done. o

Lemma 20 (Fold and cusp of Y7). Assume for the vector field Y;
that by > 0.

(1) If by > 0 and § # 0, then the trajectories of Y1 are tangent to
{v = 0} only at two points, S_ and Sy. Moreover, the trajectories
of Y1 which intersect coS_ U Syoo, respectively S_S,., are increasing,
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respectively decreasing. If by = 0, then all trajectories that intersect
{v = 0} are increasing, except the trajectory that is tangent at the
point (0,0).

(2) If bg > 0, then Y1 has two-fold singularities. If sgnd = —1
and sgna; = 1, respectively —1, the singularities S_ and Si are
internal, respectively external, folds. If either sgnd =1 or ay = 0, the
singularities S— and Sy are internal and external, respectively external
and internal, folds, provided that sgnag = —1, respectively (1).

(3) If § = 0 and apar # 0, then Y1 has one internal, respectively
external, fold, S1 = (ap/a1,0), provided sgnay is positive, respectively
negative.

(4) If by =0 and ag # 0, then Y1 has one cusp singularity at Sp.

Proof. The tangencies between the orbits of Y; and S are given by
the solutions of the equation:

(3) Y10(u,0) = —by +u? = 0.

If by > 0, this equation has two solutions, and this implies Y7 has two
singularities, S_ and S,. If a; # 0, then we have that Y;%0(S,) =
a1v/by 61 and Y129(S,) = —a;/body. If a3 = 0, then Y129(S+) =
2a0v/by and Y129(S’,) = —2apv/by. But, sgnd = sgndisgnds, and
this implies that if sgnd = —1, respectively 1, sgnY;20(Sy) =
—sgnY120(S_) = sgnay, respectively sgnY120(S,) = sgn Y20(S_) =
sgnay. If a; = 0, then sgnY1260(S;) = —sgn Y20(S_) = sgn ag, and the
proof of statement (1) follows from the definition of internal and exter-
nal singularities. If by = 0 and ag # 0, Y7 has a unique symmetric singu-
larity Sp. In this case Y16(So) = Y1%0(So) = 0 and Y0(So) = 2a3 # 0,
so Sp is a cusp symmetric singularity. Finally, to end the proof of this
lemma, it is sufficient to observe that: if 6 = 0 and agaibs # 0, equa-
tion (3) has two solutions, S_ = Ay (see Lemma 19) and S;. For the
point S, we have F20(S,) = 4a2/a; # 0. O

Lemma 21 characterizes the vector fields Y; which have curves of
singularities.

Lemma 21 (Non-hyperbolic singular points of Y7). (1) If ay # 0
and by = 6 = 0, then Y7 has the invariant straight line 5 : u = —ag/ay,
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v > 0, filled by singularities of Y1 and, for each singularity p € (3,
the DY1(p) has eigenvalues Ay = 0, A2 = a1 and with eigenvectors
wi = (0,1), we = (—a?,2ag), respectively.

(2) If ap = a1 = by = b3 = 0, then Y7 has the invariant straight line
B:u=0,v >0, filled by singularities of Y1 and, for each singularity
p € B, the DY1(p) has the eigenvalue A = 0 with multiplicity two, and
with eigenvector w = (0,1).

(3) If ap = a1 = b3 = 0 and by > 0, then Y1 has two invariants
straight lines B1 : v = —+v/by, v > 0, By : u = /by, v > 0, filled by
singularities of Y1 and, for each singularity p € 61U Sa, the DY1(p) has
the eigenvalue A = 0 with multiplicity two and eigenvector w = (1,0).

(4) If ap = a1 = 0 and sgnbs = =1 or ap = a1 = 0 and
sgnbs = sgnby = 1, then the singularities of Y1 are in the curve
B v = (bg—u?)/(2b3), v > 0. In this case, for each singularity
p = (up,vp) € B, the DY1(p) has eigenvalues Ay = 0, Ay = 2b3 and
with eigenvectors wy = (—bz,ug), we = (0, 1), respectively.

(5) If ap = a1 = bgp = 0 and sgnby = 1, then Y7 has a unique
singularity, p = (0,0) and the DY1(p) has eigenvalues \y = 0 and
Ao = 2bs and with eigenvectors wy = (—bs,0) and wy = (0,1).

Proof. The proof of the lemma, follows from the computing of
solutions of Y;(u,v) = (ag + aju,—bg + u? + 2b3v) = 0 and the
eigenvalues of DY (p) with p € {Y1(u,v) = 0}. O

The next lemma describes the vectors fields Y7 with no singularities.

Lemma 22 (Y; without singularities). Assume for vector field Y;
that by < 0. If either a1bs # 0 and §/bs > 0 or a10 # 0 and bs =0, or
ag=ay; =b3 =0 ora; =0 and ag # 0, then Y1 has no singularities.

Proof. As by < 0, then by Lemma 20, Y7 has no folds or cusps and
Yi1(p) = 0 implies that ag,a1,by and b3 satisfy one of the following
conditions:

(i) if a3 # 0, then sgnd = —sgnbs # 0 or § = by = 0.
(ii) If a1 = 0, then ag = 0 and b3 # 0.
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The proof of the lemma follows when the conditions (i) and (ii) do not
hold. o

The next lemma characterizes the connections between singularities.

Lemma 23 (Non-connection orbits between the singular points of
Y1). If either ay = 0, ap # 0 and by > 0 or § < 0 b3 < 0 and a; # 0,
then there is no connection between the singular points of Y7.

Proof. In the first case, without loss of generality, we assume that
ap > 0. By Lemma 20 (1), Y7 has two singular points, an external
fold, S_ and an internal fold, S;. Let v be a solution of Y; such that
¥(0) = S4. As Y10(u,0) = —bg + u? is negative for —/by < u < /by,
this implies that v decreases in this interval and increases out of this.
Thus, let Q # S, € 0coS_ be the other point that v intersects {v = 0}.
By continuity, all solutions of Y; passing by a point of S_S, cross
{v =0} in QS_. The solutions of Y;, crossing coQ U S, 0o, have only
this point in common with {v = 0}.

In the second case, without loss of generality, we assume that a; > 0.
By Lemma 20 (1), Y7 has two internal folds S_ and S;. As § < 0 and
bs < 0, we have that L cross S_Sy in the point (—a¢/a1,0) and by
Lemma 17, L has no singular point of Y7 and L is invariant by Y;. This
complete the proof of the lemma. a

Lemma 24. Assume that a; # bs,2bs and a1bs < 0. Then A is a
hyperbolic saddle of Y1, and the parabola v = h(u) with

1

(4) v=h(u)= (=59 <u

. ap 2 + bo(a1 — 2b3)2 — a% .
ayp — 2b3 2()3(&1 — 2[)3)2 ’

contains A and two separatrices of A. If by — (ag/(a1 — 2b3))? = 0,
then v = h(u) has a quadratic contact with {v = 0} at the point Sy,
respectively S_, if sgnag/(ay — 2bs) is positive, respectively negative.

Proof. The function v = h(u) is a first integral of ;. So v —h(u) =0
is invariant. The discriminant of the equation h(u) = 0 is given
by D = bz(a; — b3)(—bo(a; — 2b3)? + a?), and D = 0 implies that
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bo = (ap/(ar — 2b3))? because by # 0 and a; — by # 0 and we
have that h”(u) = 1/(a; — b3). So, h(u) = h'(u) = 0 implies that
u = ap/(a; —2b3) = vby or u = ag/(a; — 2b3) = —/by according to
whether sgnag/(a; — 2bs) is 1 or —1, respectively. O

Lemma 25 (Phase portraits of Yli). The vector field Y1+, respectively
Y1—, s topologically equivalent to Figure 3, respectively Figure 4.

Proof. If b3 ¢ {0,1/2,1}, then by Proposition 11, the function
Hy, after the change of variables (u,v) = (z,y?/2), becomes the first
integral Ii:l(u, v) of Y1+. Now we isolate the variable v in the equation
H,(u,v) — k = 0 to obtain v = hy(u).

1 1Y K
() = 50 =3 ((“_ 1—2b3) — k(4w (1—2b3)2>’

where K = (1 — b3)(—bo(1 — 2b3)? + 1)/b3. So we have that

. _bO + 1 k . 2b
| h =— — | 1+1 3,
wy k() 2b3 2(1 — bs3) ui’n—ll( 1u)

If bs = 1/2, then as above using Hos, from Proposition 11, we get
hi(u) = (2(bo — 1) + k 4+ (2 + k)u — 41In(1 + ) (1 + u) + 2u?).

So we have that lim, .1 hg(u) = by — 1. If bg = 0, then as above using
H, from Proposition 11, we have

hi(u) = (k — 2u + 2(=by + 1) In(1 + u) + u?).

It follows that lim, .1 hgx(u) = —sgn —bg + loo. If b3 = 1, then using
Hj from Proposition 11, we get

h(u) = —(1 4+ w)k +2(1 +u)?In (1 +u) +4(1 4+ u) + by — 1.

So we have that lim,_, 1 hx(u) = (b — 1)/2.

Assume that by < 0. By Lemma 20, the vector field Yfr has no folds
and cusps. So all trajectories of Y1+ are transversal to v = 0. By
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Lemma 19, if b3 < 0, then Y;" has a unique hyperbolic saddle at A
and the separatrices are given by the straight line L and the parabola
(4). If b3 > 0, then Y1+ has no singular points and it is topologically
equivalent to the vertical vector field (0, 1).

Assume that by = 0. By Lemma 20, the vector field Y;" has a cusp
at Sp. By Lemma 19, if b3 < 0, then Y;" has a unique hyperbolic
saddle at A and the separatrices are given by the straight line L and
the parabola (4). If b3 > 0, then Y;" has no singular points.

Assume that 0 < by < 1. By Lemma 20, the vector field Y1+ has two
folds, one external and the other internal at S_ and Sy, respectively.
By Lemma 19, if b3 < 0, then Y; has a unique hyperbolic saddle at A.
If b3 > 0, then Y1+ has no singular points, only the two folds. Moreover,
for any b, we have the separatrices L and the trajectory v = hy(u) with
hi(v/bo) = 0 which has a quadratic contact at S, .

Assume that by = 1. By Lemma 20, the vector field Y;© has one
internal fold at S,. By Lemma 19, if b3 < 0, then Y™ has a unique
hyperbolic saddle at S_. If b3 = 0, then Y;" (u,v) = (1+u)(1, =1 +u).
So L is filled with singular points and Y;" is topologically equivalent to
the vector field (1, —1+u). If 0 < b3 < 1/2, then Y;" has a repellor at
S_ and the trajectories starting at A are tangent to the straight line L.
If bs > 1/2, then Yfr has a repellor at S_ and the trajectories starting
at S_ are tangent to v = hy(u) with hy(v/bo ) = 0. Moreover, for any
bz > 0 we have that L and the trajectory v = hy(u) with hy(v/bg) =0
are separatrices of Y;".

Assume that by > 1. By Lemma 20, the vector field Y;" has two
internal folds at S_ and S;. By Lemma 19, if b3 < 0, then Yfr has no
singular points, only two folds. If 0 < b3 < 1/2, then Yfr has a repellor
at A and the trajectories starting at A are tangent to the straight line
L. If b3 > 1/2, then Y1+ has a repellor at S_ and the trajectories
starting at S_ are tangent to v = hy(u) with hg(y/bo ) = 0. Moreover,
for any b3 > 0 we have that L and the trajectory v = hg(u) with
hi(£y/bg ) = 0 are separatrices of Y.

The vector field Y, can be studied using the same arguments as for
YT, In Figures 3 and 4 we draw the phase portraits in v > 0 of Y;"
and Y|, respectively. ]
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FIGURE 3. Phase portraits of Yl+. The dotted lines in v > 0 denote lines
filled with singular points.

Lemma 26 (Phase portraits of Y2 1,Y3 1 and Yy). The vector fields
Yo 1, respectively Yo _, and Y5 4 such that by > 0, respectively by < 0,
are topologically equivalent to Figure 5 (a), respectively (c). The vector
fields Yy is topologically equivalent to Figure 5 (b).
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FIGURE 4. Phase portraits of Y;”. The dotted lines in v > 0 denote lines
filled with singular points.

Proof. Applying Proposition 11 to vector fields Y5 4 with b3 # 0 and
to Y3 4, we have that the function Hy, after the change of variables
(u,v) = (x,4?/2), becomes a first integral Hs(u,v) of Yai with
bs # 0 and to Y3 1. Now we isolate the variable v in the equation
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(a) (b) (©)

FIGURE 5. Phase portraits of Y2 +, Y3 4+ and Yj.

Hs(u,v) — k = 0 to obtain v = hy(u), where
1
hi(w) = gz (= (2bsu + 1) + 4bob3 — 1 + kexp 2bsu).
3

For the vector fields Y5 + with b3 = 0 and Y}, we use the function Hg
and in a similar way we get that hy(u) = k + 2u® — 6bu.

By Lemma 22, Y5 4,Y3 4+ and Yy have no singular points. By
Lemma 20, Y2 — and Y3+ with by < 0 has two folds, an external at
S_ and an internal at S, see Figure 5 (c). The vector fields Y5 4
and Y3 4 with by > 0 has no folds or cusps, and they are topologically
equivalent to the vertical field, see Figure 5 (a). The vector fields Y
and Y3 4+ with by = 0, have one cusp at (0,0), see Figure 5 (b). We
obtain the separatrices v = hy(u) following the same arguments of the
proof of Lemma, 25. o

Lemma 27 (Phase portraits of Y;Ei and YgE). The vector fields Ysﬂ;,
respectively Yf_, are topologically equivalent to Figure 3, respectively
Figure 4, for columns by < 0 and by > 1, respectively. The vector
fields Y6+, respectively Yy, are topologically equivalent to Figure 6 (a),
respectively Figure 6 (b).

Proof. In this proof we use the same arguments as in the proof of
Lemma 25.

Assume that by = —1. By Lemma 20, Y;ri has no folds and cusps.
Hence all trajectories of Y5+i are transversal to v = 0. By Lemma 19,
if b3 < 0, then Y{i has a unique hyperbolic saddle at A and the
separatrices are given by the straight line L and the parabola (4).
If b3 > 0, then Ys‘f'i has no singular points and it is topologically
equivalent to vertical vector field (0, 1).
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FIGURE 6. Phase portraits of Ygt. The dotted lines in v > 0 denote lines
filled with singular points.

Assume that by = 0. By Lemma 19, if b3 < 0, then Y™ has a unique
hyperbolic saddle at A and the separatrices are given by the straight
line L and the parabola (4). If b3 > 0, then Ye"L has no singular points.
If b3 = 0, then Y (u,v) = u(1,u) has the line u = 0 filled with singular
points.

Assume that by = 1. By Lemma 20, the vector field Y, has two
internal folds at S_ and S,. By Lemma 19, if b3 < 0, then Y;" has no
singular points, only two folds. If 0 < b3 < 1/2, then Yfr has a repellor
at A and the trajectories starting at A are tangent to straight line L.
If b3 > 1/2, then Y;" has a repellor at S_ and the trajectories starting
at S_ are tangent to v = hy(u) with hx(v/bg) = 0. Moreover, for any
bs > 0 we have that L and the trajectory v = hg(u) with hg(£v/bg) = 0
are separatrices of YT

The vector field Y5, can be studied using the same arguments as
for Y;‘i In Figures 3 and 4, for by < 0 and by > 1, we draw the
phase portraits in v > 0 of Y;E+ and Y;’i, respectively. In Figure
6 (a), respectively 6 (b), we draw the vector fields that are topologically
equivalent to Y6+, respectively Yy . a

Lemma 28 (Phase portraits of Y7+ 1, Ys 1, Yo+ and Yig). The
vector fields Yo 4, Y7 4, Yo _ 4, Yo Yai, Ys_, Yo, Yo _ and
Y10 are topologically equivalent to Figure 7 (a), (b), (c), (d), (e), (f),
(g), (h) and (i), respectively.
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FIGURE 7. Phase portraits of Y7 + +, Yg +, Yo, + and Y19. The dotted lines
in v > 0 denote lines filled with singular points.

Proof. Except in their singular points, the vector fields Y7 i 4,
Y5+, Yo+ and Yjo are topologically equivalent to the vertical field.
The vector fields Y7 . +, Y7 _ + and Yy + have the parabolas v =
Fl+u?)/2 >0, v = F(-1+u?/2 >0 and v = Fu?/2 > 0,
respectively, filled with with singular points. The vector fields Y3
have no singular points. The vector field Yz _ has the two lines u? = 1
in v > 0 filled with singular points. Finally, Y19 has the line u = 0,
filled with singular points. u]

6.2 Analysis of the family Y5. In this subsection we analyze the
vector field Ya(u,v) = (ap+aiu, —bg+u+2b3v) and we draw the phase
portraits of Y5 in {v > 0}.

Lemma 29. Assume for the vector field Yo that a1 # 0. Then
L ={u= —ap/a1} is an invariant straight line of Ys.

Proof. As ay # 0, we have that Y3(—ag /a1, v) = (0, —bg—ao/a1+2bsv)
and the proof follows. a
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Lemma 30 (Hyperbolic singular points of Y2). Assume for the vector
field Y that a1b3 # 0 and (bg 4+ ag/a1)/bs > 0. Then Yy has a unique
hyperbolic singular point in L, A = (—ag/a1, (bo + ao/a1)/(2b3)). If
sgnbs = —sgnay, then A is a hyperbolic saddle. If sgnbs = sgnay
and negative, respectively positive, then A is an attractor, respectively
repellor. Moreover, if ax = 2bs, the singular point is a degenerate node.

Proof. If p € R? satisfies Y2 (p) = 0, then p = A with (bg+ao/a1)/bs >
0. Thus, Y5 has isolated singular points if a1b3 # 0. The linear part
(DY>2) 4 has eigenvalues a; and 2b3 with eigenvectors (a1 — 2b3,1) and
(0,1), respectively. Therefore, the proof is done. o

Lemma 31 (Fold of Ys2). Assume for Ya that a1bg + a9 # 0. If
a1byg + ag > 0, respectively < 0, then Yo has an internal, respectively
external, fold at S1 = (bo,0).

Proof. The tangencies between the orbits of Y5 and S are given
by the solutions of the equation Y20(u,0) = —by +u = 0. So we
have that Y£60(bg,0) = aibo + ag, and S; is an internal, respectively
external, fold if sgnbg + ag/a; > 0, respectively < 0. We observe that
if bo + ag/a; = 0, then Sy is a singular point of Y5. O

Lemma 32 (Non-hyperbolic singular points of Y3). Assume for Ys
that a1byg + ag = 0. If either ag = a1 = 0, or a; # 0 and b3 = 0, then
Y5 has a straight line filled with singular points.

Proof. If a; # 0 and by = 0, then Ya(—ag/a1,v) = 0 for all v > 0.
Hence, the straight line (—ag/a1,v) is filled with singular points of Y.
If ap = a1 = 0 and b3 # 0, respectively bg = 0, then Ya(bg—2bgv,v) = 0,
respectively Ya(bg,v) = 0, for all v > 0, and this ends the proof. i

Lemma 33 (Phase portraits of Ylil, Y15+ and Yig). The vector field
Yﬂ', respectively Y17, is topologically equivalent to Figure 8, respectively
Figure 9. The vector fields Y15, respectively Yis_, and Yig are
topologically equivalent to column by < —1, respectively by > —1, of
Figure 8.
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FIGURE 8. Phase portraits of Yl"l', Y15,+ and Y16. The dotted lines in v > 0
denote lines filled with singular points.

Proof. We prove this lemma in a similar way to the proof of
Lemma 25.

If b3 ¢ {0,1/2}, then by Proposition 11, the function Hy, after
the change of variables (u,v) = (x,y?/2), becomes the first integral
Hy(u,v) of Y;'. Now we isolate the variable v in the equation Hr (u,v)—
k = 0 to obtain

1 1+ 2[)3’(1, + bo - 2b0b3 +1 2
— 27k ).
(1 —bs) 2bs

So limy, 1 hy,(u) = (bo+1)/(2b3) — (k) /(2(1 —b3)) lim,,_, _1 (14 1u)2bs.
If b3 = 1/2, then using the same arguments for Hg, we get v = hi(u) =
(14u)(k—2In(1+u))—2(bg+ap))/2. So limy—,_1 hg(u) = bo+1. If
bs = 0, we have v = hy(u) = (k+2u—2(14bp) In (1 + w))/2. Therefore,
limy,—, 1 hy(u) = —sgn by + 1oo.

v =hg(u) = )
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FIGURE 9. Phase portraits of Y;;. The dotted lines in v > 0 denote lines
filled with singular points.

Assume that by < —1. By Lemma 31, Y} has one external fold at
(bo,0). By Lemma 30, if b3 < 0, then Yf{ has a unique hyperbolic
saddle at A. The separatrices are L and the trajectory v = hy(u) with
hi(—1) = (bo + 1)/(2b3). If b3 > 0, then Y;} has no singular points.

Assume that by = —1. By Lemma 31, Y;| has no folds. By
Lemma 30, if b3 < 0, then Y;T has a unique hyperbolic saddle at A.
The separatrices are L and the trajectory v = hy(u) with hy(—1) = 0.
If b3 > 0, then Y;" has no singular points.

Assume that by > —1. By Lemma 31, Y;} has one internal fold at
(bo,0). By Lemma 30, if b3 > 0, then Y;| has a unique repellor at A.
If b3 < 0, then Y1 has no singular points, only the internal fold at S;.
The separatrices are the straight line L and the trajectory v = hy(u)
with hy(bo) = 0 which has a quadratic contact at Sj.



2034 J. LLIBRE AND J.C. MEDRADO

FIGURE 10. Phase portraits of Yljg, Yljt3 and Yi.

The vector field Y]] can be studied using the same arguments as for
Y71, In Figures 8 and 9, we draw the phase portraits in v > 0 of Y} and
Y|, respectively. The vector fields Y75, respectively Y15 _, and Yig
are topologically equivalent to column by < —1, respectively by > —1,
of Figure 8. o

Lemma 34 (Phase portraits of Y3, Y5 and YX.) The vector
fields Y15, Y& and Y{i, respectively Y5, Yi3 and Y{;, are topologically
equivalent to Figure 10 (a), respectively Figure 10 (b).

Proof. Using similar arguments as in the proof of Lemma 26, we
obtain from Hy and Hq, for Yfg with b3 # 0, respectively b3 = 0, that
hi(u) = (2bsu — 2b3 + 1 — 2b3k exp (2bsu))/(4b3), respectively hy(u) =
(u?—2u+k)/2. For Y15, v = hy(u) = (2bsu+1-2b3k exp (2bzu))/(4b3).
For Y{%, v = hg(u) = u(u+ k) /2.

The vector fields Y75, Y;3 and Y; have no singular points and, by
Lemma 31, Y, has a unique internal fold at (—1,0), and Y75 and
Y7 at (0,0). The separatrix for Y;5, respectively Y75 and Y}, is the
trajectory v = hy(u) with hi(—1) = 0, respectively hj(0) = 0, which
has a quadratic contact at S.

For the vector fields Y75, Y73 and Y7,, applying the same arguments
of this proof we draw their phase portraits in v > 0, in Figure 10 (b).
O

Lemma 35 (Phase portraits of Y17 1, Yis, Y19 and Yag). The vector
fields Y174+ and Yig are topologically equivalent to Figure 11 (a). The
vector field Y17,— is topologically equivalent to Figure 11 (b). The vector
fields Y1g and Yag are topologically equivalent to Figure 11 (c).
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FIGURE 11. Phase portraits of Y17 4, Y18, Y19 and Y2g9. The dotted lines in
v > 0 denote lines filled with singular points.

Proof. Except in their singular points the vector fields Y17 +, Yis, Y19
and Ysg are topologically equivalent to the vertical field. These vector
fields have one straight line filled with singular points. O

6.3 Analysis of the family Y3. In this subsection we analyze the
vector field Y3(u,v) = (ap + a1u, —bg + 2bsv) and we draw the phase
portraits of Y3 in {v > 0}.

Lemma 36. Assume for the vector field Y3 that a; # 0. Then
L ={u=—ap/a1} is a invariant straight line of Ys.

Proof. As a; # 0, we have that Y3(—ag/a1,v) = (0, —bg + 2bsv), and
the proof is done. u]

Lemma 37 (Hyperbolic singular points of Y3). Assume for the vector
field Ys that a1b3 # 0 and by/bs > 0. Then Ys has a unique hyperbolic
singular point in L at A = (—ao/a1,bo/(2b3)). If sgnbs = —sgnaq,
then A is a hyperbolic saddle. If sgnbs = sgna, and negative, respec-
tively positive, then A is an attractor, respectively repellor. Moreover,
if ay = 2b3, the singular point is a degenerate node.

Proof. If p € R? satisfies Y3(p) = 0, then p = A with by /b3 > 0. Thus,
Y3 has isolated singular points if a1bs # 0. The matrix (DY3)4 has
eigenvalues a; and 2bs, with eigenvectors (1,0) and (0, 1), respectively.
So, this completes the proof. ]

Lemma 38 (Orbits of Y3 are transversal to {v = 0}). Assume for
the vector field Ys that by # 0. Then the orbits of Y3 are transversal to

{v=0}.
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Proof. The tangencies between the orbits of Y3 and S = {v = 0} are
given by the solutions of the equation Y30(u,0) = —bg # 0. Thus, the
orbits of Y3 are transversal to S. u]

Lemma 39 (Non-hyperbolic singular points of Y3). If either ap =
a1 =0 and bs # 0, or a; # 0 and bg = bs = 0, then Y3 has a straight
line filled with singular points.

Proof. If a1 # 0 and by = bz = 0, then Y3(—ap/a;,v) = 0 for all
v > 0. Hence, u = —ap/ay is the line of singular points of Y3. If
ap = a; = 0, then Y3(u,bo/(2b3)) = 0 for all v > 0. So the proof is
done. O

Lemma 40 (Phase portraits of Y1 4, Yoo, Yo7+ and Yos). The
vector fields Yo1 4+ and Yo7 4, Yo1,— and Yo7 _, and Yaz and Yag, are
topologically equivalent to column (a), (b) and (c), respectively, of
Figure 12.

Proof. We prove this lemma using the same arguments as in the proof
of Lemma 25. Using Hyo, Hyi3 and Hi4, we have that

hi(u) = =— (bo + k(u + 1))
203
and
i _ b koo 2bg
Jim oy (u) = % 3 Jim (14 1u)*,
hi(u) = bo + kbs(1 + u) and 1im1 (1) = by,
and

hig(u) =k —2bgIn(14+u) and lim hg(u) = —sgnbyoo.

u——1

We observe that Ya7 1, respectively Yo7 _, is topologically equivalent
to Y21 4, respectively Y21 _, because the difference between them is a
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FIGURE 12. Phase portraits of Y21, 4, Y22, Yo7 and Ya2g. The dotted lines in
v > 0 denote lines filled with singular points.

translated of their invariant straight line. The same occurs with Yas
and Yag.

By Lemma 38, the orbits of vector fields Y51 4+ and Y3, are transversal
to v = 0. By Lemma 37, if b3 < 0, then Y5; ; has a unique hyperbolic
saddle at A and the separatrices for Ys; 4 are L and the trajectory
v = hy(u) with hy(—1) = bo/(2b3). If b3 > 0, then Y5, 4 has no singular
points. By Lemma 37, if b3 < 0, then Y35 has a unique hyperbolic saddle
at A and the separatrices for Yag are L and the trajectory v = hy(u)
with hgx(—1) = 0. If b3 > 0, then Y55 has no singular points. By
Lemma 37, if b3 > 0, then Y5; _ has a unique repellor at A. If b3 < 0,
then Y;| has no singular points and the proof is done. O

The proof of Lemmas 41 and 42 will be omitted here because they
are similar to the proofs of Lemmas 34 and 35.



2038 J. LLIBRE AND J.C. MEDRADO

.t
K

FIGURE 13. Phase portraits of Y23 _, Y23 1, Y24, Y25 and Yag.

Lemma 41 (Phase portraits of Ya3 1, Y24, Y25 and Yag). The vector
fields Yoz _, Yoz 4+, You, Yo5 and Yae are topologically equivalent to
Figure 13 (a), (b), (c), (d) and (e), respectively.

Lemma 42 (Phase portraits of Ya9 1, Y30 and Ys1). The vector fields
Yao.—, Yag +, Y30 and Y31 are topologically equivalent to Figure 14 (a),
(b), (c) and (d), respectively.

7. Phase portraits of p—reversible quadratic vector fields.
In this section, in order to prove Theorem A, we use the normal forms
of Proposition 7 for ¢-reversible quadratic vector fields. We remember
that, for drawing the phase portraits of p-reversible quadratic vector
fields X in R2?, we use the phase portrait of the associated vector
field Y defined in v > 0 and the symmetry properties of X. So,
using the phase portraits given in Lemmas 1742 and the symmetry
properties of reversible vector fields, we shall prove Lemmas 44-52.
In these lemmas, using Neumann’s theorem, see Theorem 1, we show

FIGURE 14. Phase portraits of Y29, Y29 1+, Y30 and Y31. The dotted lines
in v > 0 denote lines filled with singular points.
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all the phase portraits of ¢-reversible quadratic vector fields in the
Poincaré disc, drawing their separatrices and sometimes one orbit for
every canonical region.

Lemma 43. If a; — b3 < 0, then the vector field X1 has a unique
infinite singular point at Iy = (0,0) in Us. If a1 — bs > 0, then X,
has three infinite singular points in Us, the I, Iy = (/a1 — b3, 0) and
Is = (—vay — b3,0). The (0,0) of Uy is never a singular point for X;.

Proof. In the local charts U; and Us, the compactified vector field
associated to X is given by Zj(z1,22) = (1 — (a1 — b3)z? — bpz3 —
apz3z9, —a12129 — agz125) and Zo(z1, 22) = (agze + (a1 — b3)zy — 2§ +
boz123, —b3za + bozs — 2223), respectively. The point (0,0) is not a
singular point for the vector field Z; because Z1(0,0) = (1,0). So, we
only consider the infinite singular points in Us. If a; — b3 < 0, then Z5
has a unique infinite singular point, the I3 in Us. If a; — b > 0, then
Z5 has three infinite singular points the I, I and I3. m]

Lemma 44 (Phase portraits of Xft, X;:i and Xg). The phase por-
traits of the vector field Xf, respectively X, is topologically equivalent
to Figure 15, respectively Figure 16. The phase portraits of the vector
field X5+, respectively X; , is topologically equivalent to column by < 0,
respectively by > 0, of Figure 15, respectively Figure 16. The phase
portraits of the vector field th is topologically equivalent to Figure 17.

Proof. For drawing the phase portraits in the Poincaré disc, we use
Lemmas 25 and 27 and the following characterization of the infinite
singular points.

For the vector field X", we have that
(5) ZQ = (ZQ + (1 - bg)Zl - Z% + boZl,Z%, —b322 + bozg — 2125)

The I is a singular point of Zs, and (DZ2), has eigenvalues 1 —b3 and
—bs with eigenvectors ((1,0) and (—1,1). If 1 — b > 0, then I and
I5 are singular points of Z3. Their linear parts (DZ2)r, and (DZ2),
have the same eigenvalues, —2(1 — b3) and —1 with eigenvectors (1,0)
and (1,1 — 2b3).

If b3 < 0, then Iy is a repellor and I, I3 are attractors.
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FIGURE 15. Phase portraits of Xfr and X;r. The dotted lines denote lines
filled with singular points.

If b3 = 0 then I, I3 are attractors and for I;, we have that:

(1) If by # 1, then (5), after a linear change of variables, has the form
Za(21,22) = ((=bo+1)23 +22220 — 2123, 20— 25 +221 25+ (=bg +1) 21 23),
and in order to apply the elementary degenerate theorem, we have the
function g(z1) = (—bo + 1)23 + ---. Hence, as m = 3, if by > 1,
respectively by < 1, then I; is a topological unstable node, respectively
saddle.

(2) If by = 1, then Za(z1,22) = (21 + 22 — 2§ + 2123, —2320 + 23).
The singular points of Zs are the straight line z; = —z5, and for each

point of this straight line, the Jacobian matrix associated to Zs has
eigenvalues 1 and 0 with eigenvectors (1,0) and (—1,1).

If 0 < b3 < 1, then I; is a hyperbolic saddle and I and I35 are
attractors.

If b3 = 1, then (5) has the form Z5(21, 22) = (agze — 23 +boz125, —22 —
2229+boz3). The Jacobian matrix associated to Zo at I; has eigenvalues
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FIGURE 16. Phase portraits of X, and X . The dotted lines denote lines
filled with singular points.

0 and —1 with eigenvectors (1,0) and (—1,1). After a linear change of
coordinates and applying the elementary degenerate theorem, we have
that the function g(z) = 23. So I is a topological stable node.

If b3 > 1, then I; is a hyperbolic node.

Using similar arguments we study the infinite singular points of X .
If b3 < —1, then [; is a repellor and I and I3 are hyperbolic saddles.
If b3 = —1, then [; is a topological saddle. If —1 < b3 < 0, then I; is
a hyperbolic saddle. If b5 = 0 and by < 1, respectively by > 1, then Iy
is a topological saddle, respectively stable node. If b3 = 0 and by = 1,
then I; belongs to the straight line of singular points z = aqg. If b3 > 0,
then Iy is an attractor.

The vector field X 5+ , respectively X, is topologically equivalent to
X 1+ , respectively X, , for by < 0, respectively by > 1.
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b3 <0 by =0 b3 >0

FIGURE 17. Phase portraits of Xéc. The dotted lines denote lines filled with
singular points.

From Lemma 27, Xgr is topologically equivalent to X . The descrip-
tion of infinite singular points is the same as for X7, except when b3 = 1.
For b3 = 1, we have that Zy(21, z2) = (—2§ +bo2123, —22 — 2329+ bo23),
and (DZ3)r, has eigenvalues 0 and —1 with eigenvectors (1,0) and
(0,1). So, by the elementary degenerate theorem, it follows that I is
a topological stable node. ]

Lemma 45 (Phase portraits of Xo 1, X3 1 and X4). Ifbs < 0 or
bs > 0, then the phase portrait of the vector field Xo 4, respectively
Xo,—, is topologically equivalent to Figure 18 (a) or (d), respectively (c)
or (f). If either by < 0 or bg = 0 or by > 0, then the phase portrait

TN
©
O
(a) (b) (c)
OQ
(d) (e) (f)

FIGURE 18. Phase portraits of X2 +, X3 4+ and Xjy.
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of the vector field X3 1, respectively X3 _, is topologically equivalent to
Figure 18 (d) or (e) or (f), respectively (a) or (b) or (c). The vector
field X4 is topologically equivalent to Figure 18 (e).

Proof. We use Lemma 26 and the same arguments as in the proof of
Lemma 44. The point I; is a singular point of Zy, and (DZs);, has
eigenvalue —b3 with multiplicity 2, having eigenvector (1,0). If b3 < 0
the linear parts (DZs)5, and (DZ2)r, have the same eigenvalues, 2b3
and 0, with eigenvectors (1,0) and (1, 2bs3).

If b3 < 0, then I is a repellor, and to study Is and I5, we apply the
elementary degenerate theorem. Thus,

v=b
g(z1) = —bzng + .- for I,
3

and

v—=b
9(z1) = — 2b23zf+-~- for I3.
3

Hence, I, and I3 are saddle-nodes.

If b3 = 0, applying the nilpotent theorem we obtain that f(z1) =
—22(1+--+), ®(21) = —422(1 +---) and b* +4a(B+ 1) = 4. Thus, I
is a topological stable node.

If b3 > 0, then I; is an attractor. o

Lemma 46 (Phase portraits of X7 1+ +, Xg +, X9 1 and Xy9). The
phase portraits of the vector fields X7 — _, Xo —, X7 4+ -, Xg,—, Xi0,
Xg.4+, X7,— +, Xo4+ and X7 4 are topologically equivalent to Figure 19
(a), (b), (c), (d), (e), (f), (g), (h) and (i), respectively.

Proof. We use Lemma 28 and the same arguments as in the proof
of Lemma 44. First, we consider the vector field X7+ ; and, by
Lemma 43, we have that

(6) Z2 = (—b321 - Z% + boleg, —ngQ + bozg — 2%22),

The point I is a singular point of Zs, and (DZs);, has eigenvalue
—bs with multiplicity 2 with eigenvectors (1,0) and (0,1). If b3 < 0,
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FIGURE 19. Phase portraits of X7 4+ 4+, Xg 4+, X9+ and X19. The dotted
lines denote lines filled with singular points.

then (DZ3)5, and (DZs3)1, have the same eigenvalues, 2b3 and 0 with
eigenvectors (1,0) and (0, 1), respectively.

The vector field X7 4 4 has a unique infinite singular point, the Iy,
and it is an attractor.

The vector field X7 4 _ has three infinite singular points, a repel-
lor, in I; and, applying the elementary degenerate theorem, we have
topological stable node at that I and I3 because g(z1) = 27 /8(1+---).

Associated to Xg  we obtain from (6), Zy = (27 + 23)(—z1, —22).
So, Z, is topologically equivalent to (z1,22) and has a unique infinite
singular point, the topological stable node at I.

Associated to Xg _ we obtain from (6), Zo = (—2% + 23)(21,22). So
Zs is topologically equivalent to (z1,22) and has the infinite singular
point I;. Moreover, the straight lines z9 = £2; are filled by singular
points of Zs.

For the vector field Xg ;, we get Za(21,22) = (1 + 27)(—21, —22). So
I, is a topological stable node.
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For the vector field Xg _, we obtain Zs(z1,22) = (1 — 2%) (21, 22) that
has the infinite singular point I;. The vector field Z5 has two straight
lines z; = +1 filled with singular points.

For X9 we get Zo(z1,22) = 22(—21, —22); it is topologically equiva-
lent to the vector field (—z1, —22) and has the straight line z; = 0 filled
with singular points. ]

Lemma 47 (Phase portraits of Xﬁ, X154+ and Xq6). The phase
portraits of the vector fields Xli1 are topologically equivalent to X1 4,
and these are topologically equivalent to Figure 20. The vector fields
X154+, respectively X5 —, and X6 are topologically equivalent to Xﬂ
for by < —1, respectively bg > —1.

BB

09 @9 @ a<b <1
O -
DOB-

by < —1 by =—1 by > —1

by =1

FIGURE 20. Phase portraits of Xlil, X15,4 and X16. The dotted lines denote
lines filled with singular points.
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Proof. From Lemma 33, we get that the phase portraits of Yﬁ is
topologically equivalent to Y77, _, and the vector fields Y75 y, respec-
tively Y15, and Yi6 are topologically equivalent to Yf{ for by < —1,
respectively by > —1.

The associated compactified vector field to X7 in the local chart Uy

is
Zi(21,22) = (22 — (1 — b3) 2% — boza — 2329, —2129 — 2123).

If b3 # 1, then Z; has a unique infinite singular point in U; at (0, 0).
Using the nilpotent theorem, since F(z1) = (1 —b3)2% + -+, f(z1) =
—(1=b3)23(1+--+), ®(21) = —(3—2b3)21(1+---) and b* +4a(B+1) =
(1 — 2b3)? > 0, we have that if by < 1, respectively bs > 1, then it is
a singularity whose neighborhood is the union of a hyperbolic and an
elliptic sector (index +1), see Figure 31 (e), respectively topological
saddle. If b3 = 1, then Z1(21,22) = 22(1 — bozg — 22, —21 — 2122).
Hence, the equator is filled with infinite singular points.

The associated compactified vector field to X7 in the local chart Us
is

Zg(Zl, ZQ) = ((1 — bg)Zl —+ zZ9 — 2%22 —+ boleg, —b322 —+ bozg — 2’12’2).

If b3 # 1, then Zy has a unique infinite singular point in Us at
(0,0). The linear part (DZ3) 9,0y has eigenvalues 1 — b3 and —bs, with
eigenvectors (1,0) and (—1,1). Thus, if either b5 < 0 or 0 < bg < 1 or
bs > 1, then X, has a unique infinite singular point at (0,0) € Us, and
it is either a repellor, or hyperbolic saddle or attractor, respectively. If
b3 = 1, then 22(21,22) = 22(1 - Z% + bozlzg, -1+ boZ% - 2122). So the
equator is filled with infinite singular points. If b3 = 0 and 1+ by > 0,
respectively 14by < 0, then, using the elementary degenerate theorem,
where f(z1) =0, g(21) = (£1+bg)z3(1+---), we have that (0,0) € U,
is a topological node, respectively saddle.

The infinite singular points in U; and Uy of X5+ and X6 are the
same of X. O

Lemma 48 (Phase portraits of X3, X5 and X§;). The phase
portraits of the vector field X\, respectively Xiy, are topologically
equivalent to Figure 21 (a), respectively Figure 21 (b). The vector fields
ng and Xﬂ, respectively X5 and Xi,, are topologically equivalent
X5, respectively X ,.
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FIGURE 21. Phase portraits of X;‘:Q, Xf:3, and Xﬁ. The dotted lines denote
lines filled with singular points.

Proof. By Lemma 34, it is sufficient that we analyze XliQ. The
associated compactified vector field to X, in the local chart U, is
Zi(z1,29) = (22 + b3z} — boz2 F 2329, F2123). So, if by # 0, then
Z1 has a unique infinite singular point in U; at (0,0). Using the
nilpotent theorem where F(z1) = —b3z? + -+, f(z1) = Fb320(1+---),
D(21) = 2b321(1 + ) and b? + 4a(B + 1) = (1 — 2b3)? > 0, we
get that the (0,0) € U is an infinite singular point of X, whose
neighborhood is the union of a hyperbolic and an elliptic sector (index
+1), see Figure 31 (e). The vector field X, has an infinite singular
point at (0,0) € U; and it is a topological saddle. If b3 = 0, then
Z1(21,22) = 29(1 — bozo F 22, F2122). So, the equator is filled with
infinite singular points.

The associated compactified vector field to X2+ in the local chart
U2 is

Z1 (217 22) = (—b3z1 :l: z9 — Z%ZQ —|— 602125, —b3z2 —|— bozg — 2123)

If b3 # 0, then Zs has a unique infinite singular point in Us at (0, 0) and
(DZ3)0,0) has eigenvalue —bz with multiplicity 2, having eigenvector
(1,0). So, if bg < 0, respectively b > 0, then Xli2 has a unique infinite
singular point at (0,0) € U and it is a repellor, respectively attractor.
If by = 0, then Zo(z1, 22) = 22(E£1 — 22 + byz1 22, bp23 — 2122). So, the
equator is filled with infinite singular points. O
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FIGURE 22. Phase portraits of X174+, X18, X19 and X20. The dotted lines
denote lines filled with singular points.

Lemma 49 (Phase portraits of X174, X1s, X19 and Xo). The phase
portraits of the vector fields Xi7 + and X9, X1s and Xog, and X7 -
are topologically equivalent to Figure 22 (a), (b) and (c), respectively.

Proof. The associated compactified vector field to X;7 4+ in the local
chart Uy is Z1(z1, 22) = (22 £ 27 + 22)(1,0). Then Z; is topologically
equivalent to the vector field (1,0) and has the curve zp & 2?2 + 22 =0
filled with singular points.

The associated compactified vector field to X7+ in the local chart
Us is Za(21,22) = (£1 — 23 — z120)(—21, —22). It follows that Zy is
topologically equivalent to the vector field (—z1, —z2), and it has the
curve +1 — 23 — 2125 = 0 filled with singular points.

The associated compactified vector field to X1g in the local chart Uy
is Z1(21,22) = (22 + 23)(1,0). So Z; is topologically equivalent to the
vector field (1,0) and has the curve zo(1 4 z5) = 0 filled with singular
points. The associated compactified vector field to Xig in local chart
Us is Zo(21,22) = (=23 — 2129)(—21, —22). Hence, Z5 is topologically
equivalent to vector field (—z1, —z2) and has the curve —z% — 21220 =0
filled with singular points.

The associated compactified vector field to Xi9 in the local chart
Uy is Z1(21,22) = (22 + 2%)(1,0). The vector field Z; is topologically
equivalent to the vector field (1,0) and has the curve z; + 27 = 0 filled
with singular points. The associated compactified vector field to Xig
in the local chart Uy is Zs(21,22) = (1 — 2122)(—21, —22). It follows
that Z5 is topologically equivalent to vector field (—z1, —z22), and it has
the curve z1z5 = 1 filled with singular points.
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FIGURE 23. Infinite singular points in Uy for the vector field X21,+. The
dotted lines denote lines filled with singular points.

The associated compactified vector field to X5g in the local chart
Ui is Z1(z1, 22) = 22(1,0). Thus, Z; is topologically equivalent to the
vector field (1,0), and it has the curve z5 = 0 filled with singular points.
The associated compactified vector field to Xog in the local chart Us
is Zy(z1,22) = z122(—21,—22). The vector field Z5 is topologically
equivalent to the vector field (—z1, —z3), and it has the curves z125 =0
filled with singular points. ]

Lemma 50 (Phase portraits of Xoi 4+, Xo2, Xo7 1+ and Xog). The
phase portraits of the vector fields Xo1 4, Xa2, or Xo1,—, are topolog-
ically equivalent to Figure 26 (a), (b), or (c), respectively. The vector
fields Xa7 4, respectively Xo7 —, is topologically equivalent to Xop 4,
respectively Xo1,—, and Xog to Xoo.

Proof. The associated compactified vector field to X2; + in the local
chart U; is

Zi(21,22) = (F22 + (bs — 1)23 — 2329, —2125 — 2120).

If b3 = 1, respectively bs # 1, then Z; has the equator filled with
infinite singular points, respectively a unique infinite singular point at
(0,0). In order to analyze the infinite singular point at (0,0) of Z;
for b3 # 1, we use directional blow-up and polar blow-up for obtaining
Figures 23 and 24 for X5, 4 and X1 _, respectively. We observe that
for Xo7 4, respectively Xo7 _, the infinite singular points in U; have
the same characterization of Xo; , respectively Xs;,—. Using the same
arguments for Xoo and Xog, we obtain Figure 25.
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FIGURE 24. Infinite singular points in Uy for the vector field X21,—. The
dotted lines denote lines filled with singular points.

The associated compactified vector field to Xo; + in the local chart
U2 is
ZQ(Zl, 22) = ((1 — bg)Zl —+ ) :l: 2125, —b322 :|: Z;’)

If b3 = 1, respectively b3 # 1, then Z5 has the equator filled with infinite
singular points, respectively a unique infinite singular point at (0, 0).
The matrix D(Z2)(0,0) has eigenvalues 1 —b3 and —bz, with eigenvectors
(1,0) and (—ap,1). If b3 < 0, then (0,0) € U, is a repellor. If b = 0,
then by the elementary degenerate theorem, we have that the infinite
singular point (0,0) € U of Xo; _ and Xo7 _, respectively Xoq + and
Xo7 1, is a topological saddle, respectively node. For X35 and Xos, S*
is filled with infinite singular points and Z, is topologically equivalent
to a vertical vector field. If 0 < b3 < 1, then the infinite singular point
(0,0) € Uy is a hyperbolic saddle. If b3 = 1, then S! is filled with
infinite singular points and Zs is topologically equivalent to a vertical
vector field. If b3 > 1, then the infinite singular point (0,0) € Us is an
attractor. So, we use Lemma 40 and we draw the phase portraits of
these vector fields. mi

FIGURE 25. Infinite singular points in Uy for the vector field X22. The dotted
lines denote lines filled with singular points.
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FIGURE 26. Phase portraits of X214+, X22, X27,4+ and X2g. The dotted lines
denote lines filled with singular points.

Lemma 51 (Phase portraits of Xosg _, Xas+ Xa4, Xos and Xog).
The phase portraits of the vector fields Xo3 —, Xo3 1, Xoa, Xos and
Xog are topologically equivalent to Figure 29 (a), (b), (c), (d) and (e),
respectively.

Proof. The associated compactified vector field to X3 + in the local
chart Uy is Z1 (21, 22) = (=25 + 22 — 2229, —2123). For the vector fields
X24, X25 and XQG, we have that Zl(zl,ZQ) = 2’2(—22 - 2%227—2’1),
Z1(21,22) = z21(21 — 2122, —25) and Zy(z1,20) = z122(—21, —22), re-
spectively. For these vector fields we use directional blow-up and po-
lar blow-up, and we obtain Figure 27 (a), (b), (c), (d) and (e), where
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FIGURE 27. Infinite singular points in U; for the vector field X23. The dotted
lines denote lines filled with singular points.

we draw the local phase portrait at the infinite singular point of Z;
associated to Xog _, Xog 1, Xo4, Xo5 and Xgg, respectively.

The associated compactified vector field to Xs3 + in the local chart Us
is Zo(z1,22) = (—bsz1 + 22 + 2125, —bsza + 23 ). The matrix D(Z3)0,0)
has eigenvalue —bs of the multiplicity 2, having eigenvectors (1,0) and
(—1,1). If b3 < 0, then (0,0) € Us is a repellor. If b3 = 0, then
Za(21,22) = z2(1 + 2122,23). So, S! is filled with infinite singular
points and Z; is topologically equivalent to a horizontal vector field.
If b3 > 0, then the infinite singular point (0,0) € U, is an attractor.
So, we use Lemma 41 and we draw the phase portraits of these vector
fields. n]

Lemma 52 (Phase portraits of Xog _, Xog 4, X30 and X31). The
phase portraits of the vector fields Xog —, Xog 4, X30 and X3 are
topologically equivalent to Figure 29 (a), (b), (¢) and (d).

Proof. The associated compactified vector field to Xo9 + in the local
chart Uy is Z1(21,22) = (—23 £ 2%)(1,0). For the vector fields X3

./'z:'\‘ ’ ./"-'\_

\ \
\< §>I ‘ \Iel
NE N7

(a) (0) (c) (d) (e)

FIGURE 28. Phase portraits of Xa3,_, X231, X24, X25 and X26. The dotted
lines denote lines filled with singular points.
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FIGURE 29. Phase portraits of X9 _, X291+, X30 and X31. The dotted lines
denote lines filled with singular points.

(d)

and X31, we have that Z1(21,22) = 22(1,0) and Z;(21,22) = 23(1,0),
respectively. These vector fields are topologically equivalent to a
horizontal field.

The associated compactified vector field to Xo9 + in the local chart
Us is Za(z1,20) = (Fz1 + 2123, F22 + 23). So the vector field Xag _,
respectively Xog 4, has an infinite singular point at (0,0) € U, and
it is a repellor, respectively an attractor. For the vector field X3,

respectively X3, we have that Zy(21,22) = 23(z1, 22), respectively
Z(z1,22) = (=21, —22)). So we use Lemma 42 and we draw the phase
portraits of these vector fields. ]

APPENDIX

The next theorem corresponds to Theorem 65 of [2].

Theorem 53 (Elementary Degenerate Theorem). Let (0,0) be
an isolated singularity of the system (&,9y) = (X(z,v),y + Y(x,y)),
where X and Y are analytic in a neighborhood of the origin and
have expansions that begin with second degree terms in x and y. Let
y = f(x) be the solution of the equation y + Y (x,y) = 0 in the
neighborhood of (0,0), and assume that the series expansions of the
function g(x) = X(x, f(z)) has the form g(x) = amaz™ + -+, where
m > 2, a, #0. Then

(1) If m is odd and an, > 0, then (0,0) is a topological node.

(2) If m is odd and a.,, < 0, then (0,0) is a topological saddle, two
of whose separatrices tend to (0,0) in the directions 0 and 7, the other
two in the directions /2 and 37 /2.
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FIGURE 30. The elementary degenerate saddle-nodes (the orientation of the
orbits can be reversed).

(3) If m is even, then (0,0) is a saddle-node, i.e., a singularity whose
neighborhood is the union of one parabolic and two hyperbolic sectors,
two of whose separatrices tend to (0,0) in the directions w/2 and 3mw/2,
and the other in the direction 0 or m according to a,, < 0 (Figure 30 (a))
or am > 0 (Figure 30 (b)).

The corresponding topological indices of these singular points are
+1,—1,0, so they may serve to distinguish the three types.

For the proof of the following theorem, see [1], or Theorems 66 and
67 of [2].

Theorem 54 (Nilpotent Theorem). Let (0,0) be an isolated singu-
larity of the system (&,9) = (y + X (x,y),Y (z,y)), where X and Y are
analytic in a neighborhood of the origin and have expansions that begin
with second degree terms in x andy. Lety = F(x) be the solution of the
equation y+ X (z,y) = 0 in the neighborhood of (0,0), and assume that
the series expansions for the functions f(x) =Y (x, f(x)) = ax*(1+4- )
and ®(x) = ((0X)/(0x) + (3Y)/(0y))(z, F(z)) = baP?(1 4+ ---), where
a#0,a>2and 3>1. Then

(1) If « is even, and

(a) a > 2B+ 1, then the origin is a saddle-node (index 0), see Figure
31 (a).
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FIGURE 31. The local behavior near a nilpotent singularity (the orientation
of the orbits can be reversed).

(b) Either a < 2641 or ®(x) = 0, then the origin is a singularity
whose neighborhood is the union of two hyperbolic sectors (index 0), see
Figure 31 (b).

(2) If ais odd and a > 0, then the origin is a saddle (index —1), see
Figure 31 (c).

(3) If ais odd, a <0, and

(a) either a > 26 4+ 1 and B even; or a« = 28 + 1, B even and
b% + 4a(B + 1) > 0, then the origin is a node (index +1), see Figure
31 (d). The node is stable if b < 0, or unstable if b > 0.

(b) Either a« > 268+ 1 and 8 odd, or « = 26 + 1, B odd and
b2 + 4a(B + 1) > 0, then the origin is the union of a hyperbolic and
an elliptic sector (index +1), see Figure 31 (e).

(c) Either a =238+ 1 and b®> +4a(B+1) < 0, or a < 28+ 1 (or

®(x) = 0), then the origin is either a focus, or a center, respectively
(index +1).



2056 J. LLIBRE AND J.C. MEDRADO

REFERENCES

1. A.F. Andreev, Investigation of the behavior of the integral curves of a system
of two differential equations in the neighborhood of a singular point, Trans. Amer.
Math. Soc. 8 (1958), 183-207.

2. A.A. Andronov, E.A. Leontovich, I.I. Gordon and A.L. Maier, Qualitative
theory of second-order dynamic systems, Wiley, New York, 1973.

3. V.I. Arnold and Y. S. Ilyashenko, Dynamical systems - I, Ordinary differential
equations, Encyclopaedia Math. Sci., Vols. 1-2; Springer, Heidelberg, 1988.

4. L. Cairé, M. R. Feix and J. Llibre, Integrability and algebraic solutions for
planar polynomial differential systems with emphasis on the quadratic systems,
Resenhas da Universidade de Sao Paulo 4 (1999), 127-161.

5. L. Cairé and J. Llibre, Darbouz first integrals and invariants for real quadratic
systems having an invariant conic, J. Phys. Math. Gen. 35 (2002), 589-608.

6. J. Chavarriga, J. Llibre and J. Sotomayor, Algebraic solutions for polynomial
vector fields with emphasis in the quadratic case, Exposition. Math. 15 (1997),
161-173.

7. C. Christopher, Invariant algebraic curves and conditions for a center, Proc.
Roy. Soc. Edinburgh 124 Sect. A (1994), 1209-1229.

8. C. Christopher and J. Llibre, Integrability via invariant algebraic curves for
planar polynomial differential systems, Ann. Differential Equations 16 (2000), 5-19.

9. , Algebraic aspects of integrability for polynomial systems, Qual. Theory
Dynam. Syst. 1 (1999), 71-95.

10. C. Christopher, J. Llibre and J.V. Pereira, Multiplicity of invariant algebraic
curves in polynomial vector fields, to appear.

11. G. Darboux, Mémoire sur les équations différentielles algébriques du premier
ordre et du premier degré (Mélanges), Bull. Sci. Math. 2eéme série 2 (1878), 60-96;
123-144; 151-200.

12. E.A.V. Gonzales, Generic properties of polynomial vector fields at infinity,
Trans. Amer. Math. Soc. 143 (1969), 201-222.

13. C. Gutierrez and J. Llibre, Darbouz integrability for polynomial vector fields
on the 2-dimensional sphere, Extracta Math. 17 (2002), 289-301.

14. K. Janich, Topology, Undergrad. Texts Math., Springer-Verlag, New York,
1984.

15. Qibao Jiang and J. Llibre, Qualitative classification of singular points,
preprint 319, Centre de Recerca Matematica, 1996.

16. J.P. Jouanolou, Equations de Pfaff algébriques, Lectures Notes in Math. 708,
Springer-Verlag, New York, 1979.

17. J. Llibre and G. Rodri’guez7 Invariant hyperplanes and Darboz integrability for
d-dimensional polynomial differential systems, Bull. Sci. Math. 124 (2000), 1-21.

18. , Darboux integrability of polynomial vector fields on 2-dimensional
surfaces, Inter. J. Bifurcations Chaos 12 (2002), 2821-2833.

19. J. Llibre and X. Zhang, Polynomzial first integrals of quadratic systems, Rocky
Mountain J. Math. 31 (2002), 1317-1371.




DARBOUX INTEGRABILITY AND VECTOR FIELDS 2057

20. L. Markus, Global structure of ordinary differential equations in the plane,
Trans. Amer. Math. Soc. 76 (1954), 127-148.

21. J.C.R. Medrado and M.A. Teixeira, Symmetric singularities of reversible
vector fields in dimension three, Physica 112 (1998), 122-131.

22. , Codimension-two singularities of reversible vector fields in 3 D, Qual.
Theory Dynam. Sys. 2 (2001), 399-428.

23. D. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer.
Math. Soc. 48 (1975), 73-81.

24. H. Poincaré, Sur l'intégration des équations différentielles du premier ordre
et du premier degré 1 and II, Rendiconti del Circolo Matematico di Palermo 5
(1891), 161-191; 11 (1897), 193-239.

25. J.W. Reyn, A bibliography of the qualitative theory of quadratic systems of
differential equations in the plane, 3rd ed., Delft Univ. of Technology, Faculty of
Tech. Math. and Informatics, Report, 1994; see also http://ta.twi.tudelft.nl/DV/
Staff/J.W.Reyn.html.

26. R. Roussarie, Bifurcation of planar vector fields and Hilbert’s sizteenth
problem, Progr. Math., vol. 164, Birkhduser Verlag, Basel, 1998.

27. D. Schlomiuk, Algebraic particular integrals, integrability and the problem of
the center, Trans. Amer. Math. Soc. 338 (1993), 799-841.

28. ML.A. Teixeira, Singularities of reversible vector fields, Physica D 100 (1997),
101-118.

29. J.A. Weil, Constant et polyndmes de Darboux en algébre différentielle:

applications auzx systémes différentiels linéaires, Ph.D. Thesis, Ecole Polytechnique,
1995, 673-688.

30. Ye Yangian, Qualitative theory of polynomial differential systems, Shanghai
Scientific & Technical Publ., Shanghai, 1995, in Chinese.

31. Ye Yangian et al., Theory of limit cycles, Amer. Math. Soc., Providence, RI,
1984.

32. Zhang Zhifen, Ding Tongren, Huang Wenzao and Dong Zhenxi, Qualitative
theory of differential equations, Transl. Math. Monogr., vol. 101, Amer. Math. Soc.,
Providence, RI, 1992.

DEPARTAMENT DE MATEMATIQUES, UNIVERSITAT AUTONOMA DE BARCELONA,
08193 — BELLATERRA, BARCELONA, SPAIN
E-mail address: jllibre@mat.uab.es

INSTITUTO DE MATEMATICA E ESTATISTICA, UNIVERSIDADE FEDERAL DE GOIAS,
74011-970 — GoI1ANIA, GOIAS, BRAZIL
E-mail address: medrado@mat .ufg.br



