## DARBOUX INTEGRABILITY AND REVERSIBLE QUADRATIC VECTOR FIELDS

JAUME LLIBRE AND JOÃO CARLOS MEDRADO

ABSTRACT. In this paper we improve the Darboux theory of integrability for reversible polynomial vector fields in  $\mathbb{R}^n$ , and we classify the phase portraits of all  $\varphi$ -reversible quadratic polynomial vector fields of  $\mathbb{R}^2$  such that the dimension of the set of fixed points of  $\varphi$  is equal to one.

1. Introduction and statement of the main results. The algebraic theory of integrability is a classical one. In 1878, Darboux [11] provided a link between algebraic geometry and the search of first integrals and showed how to construct the first integral of polynomial vector fields in  $\mathbb{R}^2$  or  $\mathbb{C}^2$  having sufficient invariant algebraic curves. The theory also received contributions from Poincaré [24], who mainly was interested in the rational first integrals.

Good extensions of the Darboux theory of integrability to polynomial systems in  $\mathbb{R}^n$  or  $\mathbb{C}^n$  are due to Jouanolou [16] and Weil [29], see also [17]. In [4, 6–9], the authors developed the Darboux theory of integrability essentially in  $\mathbb{R}^2$  or  $\mathbb{C}^2$  considering not only the invariant algebraic curves but also the exponential factors, the independent singular points and the multiplicity of the invariant algebraic curves. Recently, in [13] and [18] there are extensions of the Darboux theory of integrability to two-dimensional surfaces.

In this paper we present and prove properties of reversible polynomial vector fields. In Propositions 3 and 4 we prove that for  $\varphi$ -reversible polynomial vector fields, X, of degree greater than one and such that dim (Fix  $(\varphi)$ ) = k, the involution  $\varphi$  is linear and conjugated to  $\operatorname{diag}(+1,\ldots,+1,-1,\ldots,-1)$ , where the number of -1 is equal to k. In Proposition 5 we prove that if f=0 is an invariant curve of X, then  $f \circ \varphi$  is also an invariant curve. The same occurs with the exponential

AMS Mathematics Subject Classification. Primary 34C05, 58F14. Key words and phrases. Darboux integrability, reversible vector fields. Research of the first author is partially supported by a MCYT no. MTM2005-06098-C02-01 and the CIRIT grant no. 2005SGR 00550. The second author is partially supported by PADCT/CNPq and CAPES. Received by the editors on April 20, 2003.

factors and the first integrals. This result is useful to obtain first integral of vector fields using the Darboux theory of integrability, see Theorem 6, because if an invariant curve f=0 or exponential factor is not symmetric, i.e.,  $f \circ \varphi \neq f$  or  $F \circ \varphi \neq F$ , then the system has another invariant algebraic curve or exponential factor, respectively.

Quadratic vector fields, i.e., quadratic polynomial vector fields, have been investigated intensively, and nearly 1000 papers have been published about these systems, see, for instance, [25, 30, 31]. But it is an open problem to know what are the integrable quadratic systems, see, for instance, [19]. Here, we characterize all  $\varphi$ -reversible quadratic vector fields such that the dimension of the set of fixed points of  $\varphi$  is equal to one, and we prove that they are integrable.

Teixeira [28] and Medrado [21], see also [22], studying  $\varphi$ -reversible vector fields X in  $\mathbb{R}^n$  such that the dim (Fix  $(\varphi)$ ) = n-1 used a change of variables and reduce the study of X to analyze vector fields defined on manifolds with boundary. In the proof of the next theorem we also use this technique.

**Theorem A.** Let X be a reversible quadratic vector field with the dimension of the set of fixed points of the associated involution equal to one. Then, the phase portrait of X is topologically equivalent to one of the 77 phase portraits given in Figure 1. Moreover, each phase portrait of Figure 1 is realizable by some reversible quadratic reversible vector field with the dimension of the set of fixed points of the associated involution equal to one.

The paper is organized as follows. In Section 2 we give some basic definitions that we will need to draw the phase portraits of reversible polynomial vector fields. In Section 3 we define the reversible vector fields and present their basic properties. In the same section we prove Propositions 3 and 4. In Section 4 we state the Darboux theory of integrability for real polynomial reversible vector fields and we prove Proposition 5. In Section 5 we prove that the  $\varphi$ -reversible polynomial vector fields in  $\mathbb{R}^2$ , such that the dimension of the set of fixed points of  $\varphi$  is equal to one, are integrable and we present their normal forms. In Section 6 we draw the phase portraits of reversible quadratic vector fields defined on half-plane. In Section 7 we draw the phase portraits of reversible quadratic vector fields and prove Theorem A.

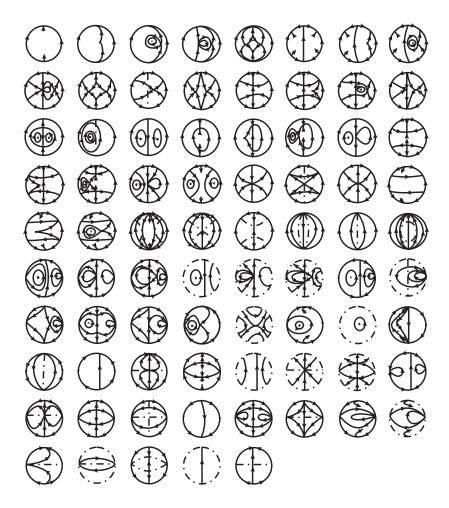


FIGURE 1. Phase portraits of  $\varphi$ -reversible quadratic vector fields in  ${\bf R}^2$  such that dim (Fix  $(\varphi)$ ) = 1.

- 2. Preliminary definitions. In this section we introduce some basic definitions and notations for the investigation of topological phase portraits of  $\varphi$ -reversible quadratic vector fields X.
- **2.1 Singular points.** Let X = (P(x, y), Q(x, y)) be a planar real polynomial vector field of degree n. A point  $q \in \mathbf{R}^2$  is a *singular point* of the vector field X if P(q) = Q(q) = 0.

If  $D = P_x(q)Q_y(q) - P_y(q)Q_x(q)$  and  $T = P_x(q) + Q_y(q)$ , then a singular point q is elementary nondegenerate if  $D \neq 0$ . Then the singular point is isolated. Furthermore, q is a saddle if D < 0, a node if  $T^2 \geq 4D > 0$  (stable if T < 0, unstable if T > 0), a focus if  $T^2 < 4D$  and  $T \neq 0$  (stable if T < 0, unstable if T > 0), and either a weak focus or a center if T = 0 < D; for more details see [2, p. 183]. A singular point q is elementary degenerate if D = 0 and  $T \neq 0$ , and then q is also isolated in the set of all singular points. The results on elementary degenerate singular points are summarized in the elementary degenerate theorem of the Appendix.

A singular point q is nilpotent if D=T=0 and the Jacobian matrix at q is not the zero matrix and q is isolated in the set of all singular points. The results on nilpotent singular points are summarized in the nilpotent theorem of the Appendix.

If the Jacobian matrix at the singular point q is identically zero and q is isolated in the set of all singular points, we say that q is linearly zero. Then the study of its local phase portraits needs a particular treatment (directional blow-ups), see for more details [23] and [26]. If q = (0,0) is linearly zero and the vector field X has some nonzero second degree term, then the local phase portraits are characterized in [15].

**2.2 Poincaré compactification.** We denote by  $\mathcal{P}_2(\mathbf{R}^2)$  the set of all planar real vector fields of degree 2. For  $X \in \mathcal{P}_2(\mathbf{R}^2)$  the Poincaré compactified vector field p(X) corresponding to X is a vector field induced in  $\mathbf{S}^2$  as follows, see for instance [12] and [2]. Let  $\mathbf{S}^2 = \{y = (y_1, y_2, y_3) \in \mathbf{R}^3 : y_1^2 + y_2^2 + y_3^2 = 1\}$ , called the Poincaré sphere, and  $T_y\mathbf{S}^2$  be the tangent space to  $\mathbf{S}^2$  at point y. Consider the central projections  $f_+: T_{(0,0,1)}\mathbf{S}^2 \to \mathbf{S}_+^2 = \{y \in \mathbf{S}^2 : y_3 > 0\}$  and  $f_-: T_{(0,0,1)}\mathbf{S}^2 \to \mathbf{S}_-^2 = \{y \in \mathbf{S}^2 : y_3 < 0\}$ . These maps define two copies of X, one in the northern hemisphere and the other in

the southern hemisphere. Denote by X' the vector fields  $Df_+ \circ X$  and  $Df_- \circ X$  in  $\mathbf{S}^2$  except on its equator  $\mathbf{S}^1 = \{y \in \mathbf{S}^2 : y_3 = 0\}$ . Obviously  $\mathbf{S}^1$  is identified to the infinity of  $\mathbf{R}^2$ . In order to extend X' to an analytic vector field in  $\mathbf{S}^2$ , including  $\mathbf{S}^1$ , it is necessary that X satisfies suitable hypotheses. In the case that  $X \in \mathcal{P}_2(\mathbf{R}^2)$ , the Poincaré compactification p(X) is the only analytic extension of  $y_3X'$  to  $\mathbf{S}^2$ . The set of all compactified vector fields p(X) with  $X \in \mathcal{P}_2(\mathbf{R}^2)$  is denoted by  $\mathcal{P}_2(\mathbf{S}^2)$ . For the flow of the compactified vector field p(X), the equator  $\mathbf{S}^1$  is invariant. On  $\mathbf{S}^2 \setminus \mathbf{S}^1$  there are two symmetric copies of X, and knowing the behavior of p(X) around  $\mathbf{S}^1$ , we know the behavior of X near infinity. The projection of the closed northern hemisphere of  $\mathbf{S}^2$  in  $y_3 = 0$  under  $(y_1, y_2, y_3) \mapsto (y_1, y_2)$  is called the Poincaré disc, and it is denoted by  $\mathbf{D}^2$ .

As  $\mathbf{S}^2$  is a differentiable manifold, for computing the expression of p(X), we can consider the six local charts  $U_i = \{y \in \mathbf{S}^2 : y_i > 0\}$ , and  $V_i = \{y \in \mathbf{S}^2 : y_i < 0\}$  where i = 1, 2, 3, and the diffeomorphisms  $F_i : U_i \to \mathbf{R}^2$  and  $G_i : V_i \to \mathbf{R}^2$  defined as the inverses of the central projections from the tangent planes at the points (1,0,0), (-1,0,0), (0,1,0), (0,-1,0), (0,0,1) and (0,0,-1), respectively. If we denote by  $z = (z_1, z_2)$  the value of  $F_i(y)$  or  $G_i(y)$  for any i = 1,2,3, then z represents different things according to the local charts under consideration. Some straightforward calculations give for p(X) the following expressions:

$$z_{2}^{2}\Delta(z)\left[Q\left(\frac{1}{z_{2}},\frac{z_{1}}{z_{2}}\right)-z_{1}P\left(\frac{1}{z_{2}},\frac{z_{1}}{z_{2}}\right),-z_{2}P\left(\frac{1}{z_{2}},\frac{z_{1}}{z_{2}}\right)\right] \quad \text{in} \quad U_{1},$$

$$z_{2}^{2}\Delta(z)\left[P\left(\frac{z_{1}}{z_{2}},\frac{1}{z_{2}}\right)-z_{1}Q\left(\frac{z_{1}}{z_{2}},\frac{1}{z_{2}}\right),-z_{2}Q\left(\frac{z_{1}}{z_{2}},\frac{1}{z_{2}}\right)\right] \quad \text{in} \quad U_{2},$$

$$\Delta(z)[P(z_{1},z_{2}),Q(z_{1},z_{2})] \quad \text{in} \quad U_{3},$$

where  $\Delta(z) = (z_1^2 + z_2^2 + 1)^{-1/2}$ . The expression for  $V_i$  is the same as that for  $U_i$  except for the multiplicative factor -1. In these coordinates for  $i = 1, 2, z_2 = 0$  always denotes the points of  $\mathbf{S}^1$ . In what follows we omit the factor  $\Delta(z)$  by rescaling the vector field p(X). Thus we obtain a polynomial vector field of degree at most 3 in each local chart.

Since the unique singular point at infinity which cannot be contained into the charts  $U_2 \cup V_2$  are the origins (0,0) of  $U_1$  and  $V_1$ , when we study

the infinity singular points on the charts  $U_1 \cup V_1$ , we only consider if the (0,0) of these charts are or not singular points.

**2.3 Topological equivalence.** We say that polynomial vector fields X and Y in  $\mathbf{R}^2$  are topologically equivalent if there exists a homeomorphism in  $\mathbf{S}^2$  preserving the infinity  $\mathbf{S}^1$  carrying orbits of the flow induced by p(X) into orbits of the flow induced by p(Y), preserving or reversing simultaneously the sense of all orbits.

A separatrix of p(X) is an orbit which is a singular point, or a limit cycle, or a trajectory which lies in the boundary of a hyperbolic sector at a singular point, finite or infinity. If a quadratic system has a polynomial first integral, then it has no limit cycles.

We denote by  $\operatorname{Sep}(p(X))$  the set formed by all separatrices of p(X). Neumann [23] proved that the set  $\operatorname{Sep}(p(X))$  is closed. Each open connected component of  $\mathbf{S}^2\backslash\operatorname{Sep}(p(X))$  is called a canonical region of p(X). A separatrix configuration is defined as a union of  $\operatorname{Sep}(p(X))$  plus one representative solution chosen from each canonical region. We say that  $\operatorname{Sep}(p(X))$  and  $\operatorname{Sep}(p(Y))$  are equivalent if there exists a homeomorphism in  $\mathbf{S}^2$  preserving the infinity  $\mathbf{S}^1$  carrying orbits of  $\operatorname{Sep}(p(X))$  into orbits of  $\operatorname{Sep}(p(Y))$ , preserving or reversing simultaneously the sense of all orbits.

The next theorem due to Neumann [23] states the characterization of two topologically equivalent Poincaré compactified vector fields. We shall need it later on for the analysis of the global phase portraits of the  $\varphi$ -reversible quadratic vector fields.

**Theorem 1** (Neumann's theorem). Suppose that p(X) and p(Y) are two continuous flows in  $\mathbf{S}^2$  with isolated singular points. Then p(X) and p(Y) are topologically equivalent if and only if their separatrix configurations are equivalent.

Neumann's theorem implies that in order to obtain the global phase portrait of a vector field p(X) with isolated singular points, we essentially need to determine the  $\alpha$ - and  $\omega$ -limit sets of all separatrices of p(X).

Neumann's theorem was obtained under the additional assumption that the flow has no limit separatrices by Markus [20] in 1954.

**3. Reversible vector fields.** Let  $\varphi : \mathbf{R}^n \to \mathbf{R}^n$  be an involution, i.e.,  $\varphi \circ \varphi = \mathrm{Id}$ . We say that X is a  $\varphi$ -reversible vector field, or only  $\varphi$ -reversible, if X satisfies

$$D\varphi(p)X(p) = -X \circ \varphi(p), \quad p \in \mathbf{R}^n.$$

We denote by  $S \subset \mathbf{R}^n$  the set of fixed points of  $\varphi$ , or  $S = \operatorname{Fix}(\varphi)$ . If  $p \in S$  and X(p) = 0, we say that p is a symmetric singular point of X; otherwise, it is an asymmetric singular point. Any periodic orbit of X crossing S is called a symmetric periodic orbit; otherwise, it is an asymmetric periodic orbit.

If p is a singular point of X, then  $\varphi(p)$  is also a singular point of X, and since  $\varphi$  interchanges the stable and unstable manifolds, a symmetric singular point cannot be an attractor or a repellor. If  $\gamma$  is a periodic orbit of X, then  $\varphi(\gamma)$  is also a periodic orbit.

**Lemma 2.** Let  $\varphi : \mathbf{R}^n \to \mathbf{R}^n$  be an involution, and let X be a  $\varphi$ -reversible vector field in  $\mathbf{R}^n$ . If  $\gamma$  is an asymmetric periodic orbit, then  $\varphi(\gamma)$  is an asymmetric periodic orbit too; and if  $\gamma$  is a symmetric periodic orbit, then it is not a limit cycle.

*Proof.* The proof follows directly from equation  $D\varphi(p)X(p) = -X(\varphi(p))$  and from [21, Lemma 3.2].

**Proposition 3.** Let  $\varphi : \mathbf{R}^n \to \mathbf{R}^n$  be a polynomial involution of degree q, and let X be a  $\varphi$ -reversible polynomial vector field of degree p in  $\mathbf{R}^n$ . If  $p \neq 1$ , then  $\varphi$  is a linear involution.

*Proof.* As X is a  $\varphi$ -reversible vector field, then  $D\varphi(p)X(p) = -X(\varphi(p))$ . This equation implies that q-1+p=pq, or equivalently q(p-1)=p-1. So, q=1 provided that  $p\neq 1$ .

**Proposition 4.** Let  $\varphi : \mathbf{R}^n \to \mathbf{R}^n$  be a linear involution such that the vector subspace  $Fix(\varphi)$  has dimension equal to k. Then the involution  $\varphi$ 

is conjugated to  $\psi$  given by  $\psi = \text{diag}(+1, \dots, +1, -1, \dots, -1)$ , where the number of elements -1 is equal to k.

Proof. We observe that as  $\varphi$  is a linear involution, then  $\det(\varphi) = \pm 1$ . By Jordan's normal form theorem, there is a linear change of variables  $h: \mathbf{R}^n \to \mathbf{R}^n$  such that  $\psi = h^{-1}\varphi h$  is formed by Jordan's blocks, and the elements of the principal diagonal of  $\psi$  are formed by not zero eigenvalues  $\lambda_i$ ,  $i = 1, \ldots, n$ . Now, we suppose that  $\psi$  has a  $k \times k$  Jordan's block of nilpotent type associated to eigenvalue  $\lambda_{i_0}$ ,  $1 \le i_0 \le n$  which we denote by  $C = (c_{ij}), i, j = 1, \ldots, k$ . We compute  $C^2 = (d_{ij}), i, j = 1, \ldots, k$ , and we have that  $d_{12} = 2\lambda_{i_0} \ne 0$ . But, C is an involution, provided that  $\psi$  is an involution too, this implies that  $d_{12} = 0$  and we have a contradiction. So,  $\psi$  has no nilpotent Jordan's blocks.

Now, if there is  $1 \le i_0 \le n$  such that  $\lambda_{i_0} = a + ib$ , with  $b \ne 0$ , we have the associated Jordan' block:

$$C = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}.$$

Thus we have a contradiction because  $C^2 = \text{Id}$  if and only if b = 0.

In short,  $\psi$  is a diagonal matrix, and  $\psi^2 = \text{Id implies } \lambda_i = \pm 1$ , and the proof of the proposition is completed.  $\Box$ 

4. Darboux theory of integrability for reversible polynomial vector fields. In this section we state the Darboux theory of integrability for real polynomial reversible vector fields. Of course, this theory can be extended in a natural way to complex polynomial vector fields, but here we do not consider these extensions. We consider the following polynomial vector fields in  $\mathbb{R}^n$ :

$$X = \sum_{i=1}^{n} P_i(x_1, \dots, x_n) \frac{\partial}{\partial x_i}, \quad (x_1, \dots, x_n) \in \mathbf{R}^n,$$

where  $P_i$  for i = 1, ..., n, are polynomials of degree at most m. The integer  $m = \max\{\deg P_1, ..., \deg P_n\}$  is the *degree* of the vector field X

The polynomial vector field X has a first integral in an open subset U of  $\mathbf{R}^n$  if there exists a nonconstant analytic function  $H: U \to \mathbf{R}^n$ ,

which is constant on all solutions  $(x_1(t), \ldots, x_n(t))$  of X in U. Clearly H is a first integral of X in U if and only if  $XH \equiv 0$  in U.

Let  $f(x_1, \ldots, x_n) \in \mathbf{C}[x_1, \ldots, x_n]$ . As usual,  $\mathbf{C}[x_1, \ldots, x_n]$  denotes the ring of all complex polynomials in the variables  $x_1, \ldots, x_n$ . We say that f = 0 is an invariant algebraic hypersurface of the vector field Xon  $\mathbf{R}^n$ , or simply an invariant algebraic hypersurface on  $\mathbf{R}^n$ , if there exists a polynomial  $k \in \mathbf{C}[x_1, \ldots, x_n]$  such that

$$Xf = \sum_{i=1}^{n} P_i \frac{\partial f}{\partial x_i} = kf$$
, on  $\mathbf{C}^n$ ,

the polynomial  $k = k(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n]$  is called the *cofactor* of f = 0 in  $\mathbb{C}^n$ . We can prove easily that for a polynomial vector field X of degree m the cofactor of an invariant algebraic hypersurface is of degree at most m - 1.

We allow that the invariant algebraic hypersurfaces (and later on the exponential factors) can be complex, because often the existence of a real first integral is forced by existence of these complex objects, for more details see [4, 8].

Let f=0 be an invariant algebraic hypersurface of X in  $\mathbf{R}^n$ . Suppose that  $f(x_1,\ldots,x_n) \notin \mathbf{R}[x_1,\ldots,x_n]$ , if f=0 is an invariant algebraic hypersurface of X in U, then the conjugate  $\bar{f}(x_1,\ldots,x_n)$  of the polynomial  $f(x_1,\ldots,x_n)$  (which means to conjugate all the coefficients of f) defines another invariant algebraic hypersurface  $\bar{f}=0$  of X in U.

We remark that, in the above definitions, in  $\mathbb{R}^n$  with n > 2, then f = 0 is called an *invariant algebraic hypersurface*. If n = 2, then f = 0 is called an *invariant algebraic curve*. If n = 3, then f = 0 is called an *invariant algebraic surface*.

Since on an invariant algebraic hypersurface f = 0 the gradient  $\nabla f$  in f = 0 is orthogonal to the polynomial vector  $(P_1, \ldots, P_n)$ , it follows that the vector field X is tangent to the algebraic hypersurface f = 0. Therefore, the hypersurface f = 0 is formed by trajectories of the vector field X. This justifies the name of *invariant* by the flow of the vector field X in  $\mathbb{R}^n$ .

An exponential factor  $F(x_1, \ldots, x_n)$  of the polynomial vector field X of degree m in  $\mathbb{R}^n$  is a function of the form  $\exp(g/h)$  with g and h

polynomials of  $\mathbf{C}[x_1,\ldots,x_n]$  and satisfying XF=KF in  $\mathbf{C}^n$  for some  $K \in \mathbf{C}_{m-1}[x_1,\ldots,x_n]$ , where  $\mathbf{C}_{m-1}[x_1,\ldots,x_n]$  denotes the set of all polynomials of  $\mathbf{C}[x_1,\ldots,x_n]$  of degree at most m-1. The notion of exponential factor is due to Christopher [7], and it controls the multiplicity of the invariant hypersurface h=0, see [10].

**Proposition 5.** Let X be a  $\varphi$ -reversible polynomial vector field of  $\mathbb{R}^n$ . Then the following statements hold.

- (a) f=0 is an invariant algebraic hypersurface of X with cofactor K if and only if  $f_{\varphi}=f\circ\varphi=0$  is also an invariant algebraic hypersurface with cofactor  $K_{\varphi}=-K\circ\varphi$ .
- (b)  $F = \exp(g/h)$  is an exponential factor of X with cofactor L, if and only if  $F_{\varphi} = F \circ \varphi$  is also an exponential factor with cofactor  $L_{\varphi} = -L \circ \varphi$ .
- (c)  $H: \mathbf{R}^n \to \mathbf{R}$  is a first integral of X if and only if  $H_{\varphi} = H \circ \varphi$  is also a first integral of X.

*Proof.* Initially, we observe that, as f = 0 is an invariant algebraic hypersurface with cofactor K and X is  $\varphi$ -reversible, we have that

$$Xf = Kf$$
 and  $D\varphi X = -X \circ \varphi$ ,

respectively. Then, we obtain

$$Xf_{\varphi} = \nabla f_{\varphi} \cdot X = \nabla f \circ \varphi \cdot D\varphi \cdot X = \nabla f \circ \varphi(-X \circ \varphi)$$
$$= -(Xf) \circ \varphi = -(K \circ \varphi)(f \circ \varphi) = K_{\varphi} f_{\varphi}.$$

Thus, if f=0 is an invariant algebraic hypersurface with cofactor K, then  $f_{\varphi}=0$  is also an invariant algebraic hypersurface with cofactor  $K_{\varphi}=-K\circ\varphi$ .

This implies that, if  $f_{\varphi} = f \circ \varphi = 0$  is an invariant algebraic hypersurface with cofactor  $K_{\varphi} = -K \circ \varphi$ , then  $f_{\varphi} \circ \varphi = 0$  is also an invariant algebraic hypersurface with cofactor  $\tilde{K} = -K_{\varphi} \circ \varphi$ . But, we observe that

$$f_{\varphi} \circ \varphi = f \circ \varphi \circ \varphi = f$$
 and  $\tilde{K} = -K_{\varphi} \circ \varphi = -(-K \circ \varphi)\varphi = K$ .

This proves statement (1).

Now, as  $F = \exp(g/h)$  is an exponential factor with cofactor L, we have by Proposition 7 of [8] that h = 0 is an invariant algebraic hypersurface of X with cofactor  $K_h$ , i.e.,  $Xh = K_hh$ , and g satisfies the equation  $Xg = gK_h + hL$  where L is the cofactor of F.

We consider  $g_{\varphi} = g \circ \varphi$  and  $f_{\varphi} = f \circ \varphi$ , we get

$$XF_{\varphi} = X \exp\left(\frac{g_{\varphi}}{h_{\varphi}}\right) = \exp\left(\frac{g_{\varphi}}{h_{\varphi}}\right) \, \frac{(Xg_{\varphi})h_{\varphi} - g_{\varphi}(Xh_{\varphi})}{(h_{\varphi})^2}.$$

Now,

$$(Xg_{\varphi})h_{\varphi} - g_{\varphi}(Xh_{\varphi}) = -[g_{\varphi}(K_h \circ \varphi) + h_{\varphi}(L \circ \varphi)]h_{\varphi} - g_{\varphi}[-K_h \circ \varphi]h_{\varphi}$$
$$= -(L \circ \varphi)(h_{\varphi})^2.$$

Consequently,

$$X \exp\left(\frac{g_{\varphi}}{h_{\varphi}}\right) = -L \circ \varphi \ \exp\left(\frac{g_{\varphi}}{h_{\varphi}}\right).$$

Thus, if F is an exponential factor with cofactor L, then  $F_{\varphi}$  is also an exponential factor with cofactor  $L_{\varphi} = -L \circ \varphi$ .

We now apply the argument used in the proof of above statement, with F replaced by  $F_{\varphi}$  and L replaced by  $L_{\varphi}$  to conclude the proof of statement (2).

Finally, H is a first integral if and only if  $XH \equiv 0$ , and we have that

$$XH_{\varphi} = \nabla H \circ \varphi \cdot X \circ \varphi = XH(\varphi) \equiv 0.$$

So,  $XH \equiv 0$  if and only if  $XH_{\varphi} \equiv 0$ . This proves statement (3).

The following result is a summary of the Darboux theory of integrability in  $\mathbb{R}^n$ , see for instance, [16, 17, 29].

**Theorem 6.** Suppose that the polynomial vector field X defined in  $\mathbf{R}^n$  of degree m admits p irreducible invariant algebraic hypersurfaces  $f_i = 0$  with cofactors  $K_i$  for  $i = 1, \ldots, p$ ; q exponential factors  $F_j = \exp(g_j/h_j)$  with cofactors  $L_j$  for  $j = 1, \ldots, q$ ; and r independent singular points  $\mathbf{x}_k \in \mathbf{R}^n$  of X such that  $f_i(\mathbf{x}_k) \neq 0$  for  $i = 1, \ldots, p$ 

and k = 1, ..., r. We note that the irreducible factors  $h_j$  are some  $f_i$ . Then the following statements hold.

(a) There exist  $\lambda_i, \mu_j \in \mathbf{C}$  not all zero such that  $\sum_{i=1}^p \lambda_i K_i + \sum_{j=1}^q \mu_j L_j = 0$ , if and only if the following real, multi-valued, function of Darbouxian type

$$f_1^{\lambda_1}\cdots f_p^{\lambda_p}F_1^{\mu_1}\cdots F_q^{\mu_q},$$

substituting  $f_i^{\lambda_i}$  by  $|f_i|^{\lambda_i}$  if  $\lambda_i \in \mathbf{R}$ , is a first integral of the vector field X.

- (b) If  $p+q+r \geq \binom{n+m-1}{m-1}+1$ , then there exist  $\lambda_i, \mu_j \in \mathbf{C}$  not all zero such that  $\sum_{i=1}^p \lambda_i K_i + \sum_{j=1}^q \mu_j L_j = 0$ .
- (c) There exist  $\lambda_i, \mu_j \in \mathbf{C}$  not all zero such that  $\sum_{i=1}^p \lambda_i K_i + \sum_{j=1}^q \mu_j L_j = -\sigma$  for some  $\sigma \in \mathbf{R} \setminus \{0\}$ , if and only if the real, multivalued, function

$$f_1^{\lambda_1}\cdots f_p^{\lambda_p}F_1^{\mu_1}\cdots F_q^{\mu_q}e^{\sigma t},$$

substituting  $f_i^{\lambda_i}$  by  $|f_i|^{\lambda_i}$  if  $\lambda_i \in \mathbf{R}$ , is an invariant of the vector field X.

(d) The vector field X has a rational first integral if and only if

$$p+q+r \ge \binom{n+m-1}{m-1} + n.$$

 $Moreover,\ all\ trajectories\ are\ contained\ in\ invariant\ algebraic\ hypersurfaces.$ 

For reversible vector fields we must take into account in the statements of Theorem 6 the existence of the symmetric invariant algebraic curves and exponential factors.

5. Normal forms for reversible quadratic vector fields. In this section we find the normal forms of all  $\varphi$ -reversible quadratic polynomial vector fields defined in  $\mathbf{R}^2$  such that  $\dim(\operatorname{Fix}(\varphi)) = 1$ . By Propositions 3 and 4, we can consider that involution  $\varphi$  is given by  $\varphi(x,y) = (x,-y)$ . Let X be a  $\varphi$ -reversible quadratic (polynomial) vector field in  $\mathbf{R}^2$ . Then X has the following form:

(1) 
$$X(x,y) = (y(a_0 + a_1x), -b_0 + b_1x + b_2x^2 + b_3y^2).$$

The next result provides the normal form for the family of  $\varphi$ -reversible quadratic vector fields.

**Lemma 7.** Any  $\varphi$ -reversible quadratic vector field (1) can be written in one of the following normal forms:

- (a)  $X_1(x,y) = (y(a_0 + a_1x), -b_0 + x^2 + b_3y^2).$
- (b)  $X_2(x,y) = (y(a_0 + a_1x), -b_0 + x + b_3y^2).$
- (c)  $X_3(x,y) = (y(a_0 + a_1x), -b_0 + b_3y^2).$

Proof. If  $b_2 \neq 0$ , doing the change of variables  $(u,v) = (x+(b_1/2b_2),y)$ , and the rescaling of the time by  $T = b_2t$ , system (1) becomes  $(v((a_0 - ((a_1b_1)/(2b_2)))(1/b_2) + a_1u), -(b_0 - ((b_1^2)/(4b_2)))(1/b_2) + u^2 + (b_3/b_2)v^2)$ . So, we obtain  $X_1$  after changing (u,v) by (x,y) and rename their coefficients. If  $b_2 = 0$  and  $b_1 \neq 0$ , then rescaling the time by  $T = b_1t$ , we get  $X_2$ . If  $b_2 = b_1 = 0$ , we have  $X_3$ .

**Lemma 8.** Any  $\varphi$ -reversible quadratic vector field  $X_1(x,y)$  can be written in one of the following normal forms:

- (1) If  $a_0a_1 \neq 0$ , then  $X_1^{\pm}(x,y) = (y(1\pm x), -b_0 + x^2 + b_3y^2)$ .
- (2) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 \neq 0$ , then  $X_{2,\pm}(x,y) = (y, \pm 1 + x^2 + b_3 y^2)$ .
- (3) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_3 \neq 0$ , then  $X_{3,\pm}(x,y) = (y, -b_0 + x^2 \pm y^2)$ .
- (4) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 = b_3 = 0$ , then  $X_4(x, y) = (y, x^2)$ .
- (5) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 \neq 0$ , then  $X_{5,\pm}^{\pm}(x,y) = (\pm xy, \pm 1 + x^2 + b_3y^2)$ .
  - (6) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 = 0$ , then  $X_6^{\pm}(x, y) = (\pm xy, x^2 + b_3 y^2)$ .
  - (7) If  $a_0 = a_1 = 0$  and  $b_0 b_3 \neq 0$ , then  $X_{7,\pm,\pm}(x,y) = (0,\pm 1 + x^2 \pm y^2)$ .
  - (8) If  $a_0 = a_1 = 0$  and  $b_0 \neq 0$ ,  $b_3 = 0$ , then  $X_{8,\pm}(x,y) = (0, \pm 1 + x^2)$ .
  - (9) If  $a_0 = a_1 = 0$  and  $b_0 = 0$ ,  $b_3 \neq 0$ , then  $X_{9,\pm}(x,y) = (0, x^2 \pm y^2)$ .
  - (10) If  $a_0 = a_1 = b_0 = b_3 = 0$ , then  $X_{10}(x, y) = (0, x^2)$ .

*Proof.* After the change of variables  $(x, y, t) = (\alpha x_1, \beta y_1, \gamma T)$ , the vector field  $X_1(x, y)$  has the form

$$\tilde{X}_1(x_1, y_1) = \left(y_1(a_0\gamma^2\alpha + a_1\gamma^2\alpha^2x_1), -\frac{b_0}{\alpha^2} + x_1^2 + b_3\gamma^2\alpha^2y_1^2\right),$$

where  $\beta=\alpha^2\gamma$ . If  $a_0a_1\neq 0$ , then we obtain the normal form  $X_1^\pm(x,y)=(y_1(1\pm x_1),-b_0+x_1^2+b_3y_1^2)$ , where  $\alpha=\pm a_0/a_1$  and  $\gamma^2=\pm a_1/a_0^2$ . In a similar way, we obtain the other normal forms.

**Lemma 9.** Any  $\varphi$ -reversible quadratic vector field  $X_2(x,y)$  can be written in one of the following normal forms:

- (1) If  $a_0a_1 \neq 0$ , then  $X_{11}^{\pm}(x,y) = (y(\pm 1+x), -b_0 + x + b_3y^2)$ .
- (2) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 \neq 0$ , then  $X_{12}^{\pm}(x,y) = (\pm y, 1 + x + b_3 y^2)$ .
- (3) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 = 0$ ,  $b_3 \neq 0$ , then  $X_{13,\pm}(x,y) = (\pm y, x + y^2)$ .
  - (4) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 = b_3 = 0$ , then  $X_{14}^{\pm}(x, y) = (\pm y, x)$ .
- (5) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 \neq 0$ , then  $X_{15,\pm}(x,y) = (xy,\pm 1 + x + b_3y^2)$ .
  - (6) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 = 0$ , then  $X_{16}(x, y) = (xy, x + b_3y^2)$ .
  - (7) If  $a_0 = a_1 = 0$  and  $b_0 b_3 \neq 0$ , then  $X_{17,+}(x,y) = (0, 1 + x \pm y^2)$ .
  - (8) If  $a_0 = a_1 = 0$  and  $b_0 \neq 0$ ,  $b_3 = 0$ , then  $X_{18}(x, y) = (0, 1 + x)$ .
  - (9) If  $a_0 = a_1 = 0$  and  $b_0 = 0$ ,  $b_3 \neq 0$ , then  $X_{19}(x, y) = (0, x + y^2)$ .
  - (10) If  $a_0 = a_1 = b_0 = b_3 = 0$ , then  $X_{20}(x, y) = (0, x)$ .

*Proof.* For  $X_2(x,y)$  we do the same change of variables as in the proof of Lemma 8, and we obtain

$$\tilde{X}_2(x_1, y_1) = (y_1(a_0\gamma^2 + a_1\alpha\gamma^2x_1), -b_0/\alpha + x_1 + b_3\alpha\gamma^2y_1^2),$$

where  $\beta = \alpha \gamma$ . If  $a_0 a_1 \neq 0$ , then we have the normal form  $X_{11}^{\pm}(x_1, y_1) = (y_1(\pm 1 + x_1), -b_0 + x_1 + b_3 y_1^2)$ , doing  $\alpha = \pm a_0/a_1$  and  $\gamma^2 = \pm 1/a_0$ . Repeating these arguments we obtain the other normal forms.

**Lemma 10.** Any  $\varphi$ -reversible quadratic vector field  $X_3(x,y)$  can be written in one of the following normal forms:

- (1) If  $a_0a_1 \neq 0$  and  $b_0 \neq 0$ , then  $X_{21,\pm}(x,y) = (y(1+x), \pm 1 + b_3y^2)$ .
- (2) If  $a_0a_1 \neq 0$  and  $b_0 = 0$ , then  $X_{22}(x, y) = (y(1+x), b_3y^2)$ .
- (3) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 b_3 \neq 0$ , then  $X_{23,\pm}(x,y) = (y, 1 \pm y^2)$ .
- (4) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 \neq 0$ ,  $b_3 = 0$ , then  $X_{24}(x, y) = (y, 1)$ .
- (5) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 = 0$ ,  $b_3 \neq 0$ , then  $X_{25}(x, y) = (y, y^2)$ .
- (6) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 = b_3 = 0$ , then  $X_{26}(x, y) = (y, 0)$ .
- (7) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 \neq 0$ , then  $X_{27,\pm}(x,y) = (xy,\pm 1 + b_3y^2)$ .
- (8) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 = 0$ , then  $X_{28}(x, y) = (xy, b_3y^2)$ .
- (9) If  $a_0 = a_1 = 0$  and  $b_0 b_3 \neq 0$ , then  $X_{29,\pm}(x,y) = (0, 1 \pm y^2)$ .
- (10) If  $a_0 = a_1 = 0$  and  $b_0 \neq 0$ ,  $b_3 = 0$ , then  $X_{30}(x, y) = (0, 1)$ .
- (11) If  $a_0 = a_1 = 0$  and  $b_0 = 0$ ,  $b_3 \neq 0$ , then  $X_{31}(x, y) = (0, y^2)$ .

*Proof.* For  $X_3(x,y)$  we do the same change of variables as above and we obtain

$$\tilde{X}_3(x_1, y_1) = \left(y_1 \left(a_0 \frac{\beta \gamma}{\alpha} + a_1 \beta \gamma x_1\right), -b_0 \frac{\gamma}{\alpha} + b_3 \beta \gamma y_1^2\right).$$

If  $a_0a_1 \neq 0$ , then we have the normal form  $X_{21,\pm}(x,y) = (y(1+x),\pm 1+b_3y^2)$ , using  $\alpha = a_0/a_1$  and  $\beta\gamma = 1/a_1$ . Following the same arguments we obtain the other normal forms.  $\square$ 

We have the following results:

**Proposition 11.** Let  $\varphi : \mathbf{R}^2 \to \mathbf{R}^2$  be the involution  $\varphi(x,y) = (x,-y)$ . If X is a  $\varphi$ -reversible quadratic vector field in  $\mathbf{R}^2$ , then X is integrable and has the following first integrals.

- (a) For  $X_1$  we have:
- (i) If  $a_1 \neq 0$  and  $b_3 \notin \{0, a_1/2, a_1\}$ , then

$$H_1(x,y) = (a_1x + a_0)^{-2b_3} \left( \left( x - \frac{a_0}{a_1 - 2b_3} \right)^2 - (a_1 - b_3)y^2 + K \right)^{a_1},$$

where 
$$K = -((a_1 - b_3)(-b_0(a_1 - 2b_3)^2 + a_0^2))/(b_3(a_1 - 2b_3)^2)$$
.

(ii) If  $a_1 \neq 0$  and  $b_3 = a_1/2$ , then

$$H_2(x,y) = -2x + \frac{4b_3^2(b_3y^2 - b_0) + a_0^2}{b_3(a_0 + 2b_3x)} + 2\frac{a_0 \ln(a_0 + 2b_3x)}{b_3}.$$

(iii) If  $a_1 \neq 0$  and  $b_3 = a_1$ , then

$$H_3(x,y) = \frac{b_0 b_3^2 - a_0^2 + 4a_0(a_0 + b_3 x) + 2(a_0 + b_3 x)^2}{(a_0 + b_3 x)^2} \times \frac{\ln(a_0 + b_3 x) - b_3^3 y^2}{(a_0 + b_3 x)^2}.$$

(iv) If  $a_1 \neq 0$  and  $b_3 = 0$ , then

$$H_4(x,y) = y^2 - \frac{(2\ln(a_0 + a_1x)(a_0^2 - a_1^2b_0) + (a_1x - a_0)^2 - a_0^2)}{a_1^3}.$$

(v) If  $a_1 = 0$  and  $a_0b_3 \neq 0$ , then

$$H_5(x,y) = \exp\left(-\frac{2b_3}{a_0}x\right)\left((2b_3x + a_0)^2 + 4b_3^3y^2 - 4b_0b_3^2 + a_0^2\right).$$

(vi) If  $a_1 = b_3 = 0$  and  $a_0 \neq 0$ , then

$$H_6(x,y) = -2x^3 + 6b_0x + 3a_0y^2.$$

- (b) For  $X_2$  we have:
- (i) If  $a_1 \neq 0$  and  $b_3 \notin \{0, a_1/2\}$ , then

$$H_7(x,y) = (a_0 + a_1 x)^{-2b_3} \left( x - \frac{a_1 - 2b_3}{2} y^2 + \frac{b_0(a_1 - 2b_3) + a_0}{2b_3} \right)^{a_1}.$$

(ii) If  $a_1 \neq 0$  and  $b_3 = a_1/2$ , then

$$H_8(x,y) = 2\ln(a_0 + a_1x) + \frac{-a_1^2y^2 + 2a_1b_0 + 2a_0}{a_0 + a_1x}.$$

(iii) If  $a_1 \neq 0$  and  $b_3 = 0$ , then

$$H_9(x,y) = \frac{1}{a_1^2} \left( -2a_1x + a_1^2y^2 + 2\ln(a_0 + a_1x)(b_0a_1 + a_0) \right).$$

(iv) If  $a_1 = 0$  and  $a_0b_3 \neq 0$ , then

$$H_{10}(x,y) = \left(\frac{x}{b_3} + y^2 + \frac{a_0 - 2b_0b_3}{2b_3^2}\right) \exp\left(-\frac{2b_3}{a_0}x\right).$$

(v) If  $a_1 = b_3 = 0$  and  $a_0 \neq 0$ , then

$$H_{11}(x,y) = -\frac{1}{a_0}(x^2 - 2b_0x - a_0y^2).$$

- (c) For  $X_3$  we have:
- (i) If  $a_1 \neq 0$  and  $b_3 \notin \{0, a_1/2\}$ , then

$$H_{12}(x,y) = (a_1x + a_0)^{-2b_3} (-b_0 + b_3y^2)^{a_1}.$$

(ii) If  $a_1 \neq 0$  and  $b_3 = a_1/2$ , then

$$H_{13}(x,y) = \frac{-b_0 + b_3 y^2}{b_3(a_0 + 2b_3 x)}.$$

(iii) If  $a_1 \neq 0$  and  $b_3 = 0$ , then

$$H_{14}(x,y) = \frac{1}{a_1} (a_1 y^2 + 2b_0 \ln (a_0 + a_1 x)).$$

(iv) If  $a_1 = 0$  and  $a_0b_3 \neq 0$ , then

$$H_{15}(x,y) = \frac{1}{b_3} (b_3 y^2 - b_0) \exp \frac{2b_3}{a_0}.$$

(v) If  $a_1 = b_3 = 0$  and  $a_0 \neq 0$ , then

$$H_{16}(x,y) = b_0 x + a_0 y^2.$$

(d) If, for  $X_i$  with i = 1, 2, 3,  $a_0 = a_1 = 0$ , then  $H_{19} = x$ .

*Proof.* The proposition follows easily from tedious computations from the equation XH = 0 and using Theorem 6.

**Lemma 12.** Let  $X(x,y) = (y(a_0 + a_1x), -b_0 + b_1x + b_2x^2 + b_3y^2)$  be a  $\varphi$ -reversible quadratic vector field with  $\varphi(x,y) = (x,-y)$ . If  $a_1 \neq 0$ , then the straight line  $L := \{(x,y) \in \mathbf{R}^2 : f(x,y) = a_0 + a_1x = 0\}$  is an invariant algebraic curve of X. If we denote by  $x_0 = -a_0/a_1$  and  $\Delta = -b_0 + b_1x_0 + b_2x_0^2$ , then f = 0 has the following characterization

- (1) Case  $b_3 \neq 0$ .
- (a) If  $\Delta b_3 < 0$ , then the straight line L contains two singular points of X, denoted by  $A_+ = (x_0, \sqrt{-\Delta/b_3})$  and  $A_- = (x_0, -\sqrt{-\Delta/b_3})$ . So, L is formed by three open trajectories of X without contact points  $\overline{\infty A_+}$ ,  $\overline{A_+A_-}$  and  $\overline{A_-\infty}$ . Moreover, the direction of the trajectories of X is the same in  $\overline{\infty A_+}$  and in  $\overline{A_-\infty}$ , and opposite in  $\overline{A_+A_-}$ .
- (b) If  $\Delta=0$ , then the straight line L contains only one singular point of X, denoted by  $A_0=(x_0,0)=L\cap\{y=0\}$ . So, L is formed by two open trajectories without contact points  $\overline{\infty}A_0$  and  $\overline{A_0\infty}$ . Moreover, the directions of the trajectories of X on the segments are the same.
- (c) If  $\Delta b_3 > 0$ , then the straight line L has no singular points of X and it contains a unique trajectory.
- (2) Case  $b_3 = 0$ . All points of the straight line L are singular points of X.

Proof. We start verifying that  $Xf = a_1yf$ , to conclude that L is an invariant algebraic curve. As  $a_1 \neq 0$ , we have that  $X(x_0, y) = (0, \Delta + b_3y^2)$ , thus  $(x_0, y(t))$  is a solution of X with initial conditions in f = 0 where y(t) is a solution of  $\dot{y} = \Delta + b_3y^2$ . When  $y_0 = -\Delta/b_3 > 0$ , we have two asymmetric singular points of X,  $A_+ \in L$  and  $A_- \in L$ . If  $y_0 = 0$ , then X has one symmetric singular point  $A_0 \in \{f = 0\}$ . If  $y_0 < 0$ , then X has no singular points in f = 0. Finally, we observe that the directions of trajectories depends on the sign of  $\dot{y}$ , and then the lemma follows.  $\square$ 

6. Quadratic vectors fields in the half-plane. In this section we study a particular family of quadratic vector fields defined on the half-plane which will be very useful later on for studying the  $\varphi$ -reversible quadratic vector fields. Here, we deal with the family of quadratic vector fields

(2) 
$$Y(u,v) = (a_0 + a_1u, -b_0 + b_1u + b_2u^2 + b_3v),$$

defined in  $v \geq 0$ .

To analyze the class of  $\varphi$ -reversible vector fields in  $y \geq 0$ , the following change of coordinates is useful (see, for instance, [21]). So, doing the change of variables  $u=x, \ v=y^2/2$ , to the vector field (1) in  $y\geq 0$ , we get  $Y(u,v)=(a_0+a_1u,-b_0+b_1u+b_2u^2+2b_3v)$  in  $v\geq 0$ . Therefore, by the symmetry properties, Section 3, for the reversible vector fields knowing the phase portrait of Y, we can obtain the phase portrait of X. We comment that at a regular point of S the trajectory of S is always orthogonal to S. If S is a singular point of S, then the trajectory S is a singular point of S, then the trajectory S is a singular point of S. If S is a singular point of S in S is a singular point of S, then the trajectory S is a singular point of S in S in

Let  $\theta: \mathbf{R}^2 \to \mathbf{R}$  be the projection  $\theta(u,v) = v$ . In this case  $S = \theta^{-1}(0)$ . We say that Y has an internal (external) fold singularity at  $p \in S$  if  $Y\theta(p) = 0$  and  $Y^2\theta(p) > 0$  (< 0). We say that Y has a cusp singularity,  $p \in S$ , if  $Y\theta(p) = Y^2\theta(p) = 0$  and  $Y^3\theta(p) \neq 0$ .

We note that a fold or cusp of Y is a singular point of X, and if Y has a singular point in  $\{v > 0\}$ , then X has two singular points, see Section 3. Figure 2 illustrates these comments.

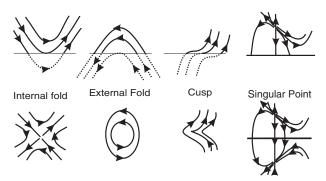


FIGURE 2. Relations between the singularities of X and Y.

Using the same arguments as in the proof of Proposition 7 and Lemmas 8, 9 and 10, we obtain the normal forms for the vector field Y associated to X, presented in the following results.

**Proposition 13.** Any quadratic vector field (2) can be written in one of the following normal forms:

- (a)  $Y_1(u, v) = (a_0 + a_1 u, -b_0 + u^2 + 2b_3 v).$
- (b)  $Y_2(u, v) = (a_0 + a_1 u, -b_0 + u + 2b_3 v).$
- (c)  $Y_3(u, v) = (a_0 + a_1u, -b_0 + 2b_3v).$

**Lemma 14.** Any  $\varphi$ -reversible quadratic vector field  $Y_1(u, v)$  can be written in one of the following normal forms:

- (1) If  $a_0a_1 \neq 0$ , then  $Y_1^{\pm}(u,v) = (1 \pm u, -b_0 + u^2 + 2b_3v)$ .
- (2) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 \neq 0$ , then  $Y_{2,\pm}(u,v) = (1,\pm 1 + u^2 + 2b_3v)$ .
- (3) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_3 \neq 0$ , then  $Y_{3,\pm}(u,v) = (1, -b_0 + u^2 \pm 2v)$ .
- (4) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 = b_3 = 0$ , then  $Y_4(u, v) = (1, u^2)$ .
- (5) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 \neq 0$ , then  $Y_{5,\pm}^{\pm}(u,v) = (\pm u, \pm 1 + u^2 + 2b_3v)$ .
  - (6) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 = 0$ , then  $Y_6^{\pm}(u, v) = (\pm u, u^2 + 2b_3 v)$ .
  - (7) If  $a_0 = a_1 = 0$  and  $b_0 b_3 \neq 0$ , then  $Y_{7,+,+}(u,v) = (0, \pm 1 + u^2 \pm 2v)$ .
  - (8) If  $a_0 = a_1 = 0$  and  $b_0 \neq 0$ ,  $b_3 = 0$ , then  $Y_{8,\pm}(u,v) = (0,\pm 1 + u^2)$ .
  - (9) If  $a_0 = a_1 = 0$  and  $b_0 = 0$ ,  $b_3 \neq 0$ , then  $Y_{9,+}(u,v) = (0, u^2 \pm 2v)$ .
  - (10) If  $a_0 = a_1 = b_0 = b_3 = 0$ , then  $Y_{10}(u, v) = (0, u^2)$ .

**Lemma 15.** Any  $\varphi$ -reversible quadratic vector field  $Y_2(u, v)$  can be written in one of the following normal forms:

- (1) If  $a_0a_1 \neq 0$ , then  $Y_{11}^{\pm}(u,v) = (\pm 1 + u, -b_0 + u + 2b_3v)$ .
- (2) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 \neq 0$ , then  $Y_{12}^{\pm}(u, v) = (\pm 1, 1 + u + 2b_3 v)$ .
- (3) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 = 0$ ,  $b_3 \neq 0$ , then  $Y_{13}^{\pm}(u, v) = (\pm 1, u + 2v)$ .
- (4) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 = b_3 = 0$ , then  $Y_{14}^{\pm}(u, v) = (\pm 1, u)$ .
- (5) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 \neq 0$ , then  $Y_{15,\pm}(u,v) = (u, \pm 1 + u + 2b_3v)$ .

- (6) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 = 0$ , then  $Y_{16}(u, v) = (u, u + 2b_3 v)$ .
- (7) If  $a_0 = a_1 = 0$  and  $b_0 b_3 \neq 0$ , then  $Y_{17,\pm}(u,v) = (0, 1 + u \pm 2v)$ .
- (8) If  $a_0 = a_1 = 0$  and  $b_0 \neq 0$ ,  $b_3 = 0$ , then  $Y_{18}(u, v) = (0, 1 + u)$ .
- (9) If  $a_0 = a_1 = 0$  and  $b_0 = 0$ ,  $b_3 \neq 0$ , then  $Y_{19}(u, v) = (0, u + 2v)$ .
- (10) If  $a_0 = a_1 = b_0 = b_3 = 0$ , then  $Y_{20}(u, v) = (0, u)$ .

**Lemma 16.** Any  $\varphi$ -reversible quadratic vector field  $Y_3(u, v)$  can be written in one of the following normal forms:

- (1) If  $a_0a_1 \neq 0$  and  $b_0 \neq 0$ , then  $Y_{21,\pm}(u,v) = (1+u,\pm 1+2b_3v)$ .
- (2) If  $a_0a_1 \neq 0$  and  $b_0 = 0$ , then  $Y_{22}(u, v) = (1 + u, 2b_3v)$ .
- (3) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 b_3 \neq 0$ , then  $Y_{23,\pm}(u, v) = (1, 1 \pm 2v)$ .
- (4) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 \neq 0$ ,  $b_3 = 0$ , then  $Y_{24}(u, v) = (1, 1)$ .
- (5) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 = 0$ ,  $b_3 \neq 0$ , then  $Y_{25}(u, v) = (1, 2v)$ .
- (6) If  $a_0 \neq 0$ ,  $a_1 = 0$  and  $b_0 = b_3 = 0$ , then  $Y_{26}(u, v) = (1, 0)$ .
- (7) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 \neq 0$ , then  $Y_{27,\pm}(u,v) = (u,\pm 1 + 2b_3v)$ .
- (8) If  $a_0 = 0$ ,  $a_1 \neq 0$  and  $b_0 = 0$ , then  $Y_{28}(u, v) = (u, 2b_3y)$ .
- (9) If  $a_0 = a_1 = 0$  and  $b_0 b_3 \neq 0$ , then  $Y_{29,\pm}(u,v) = (0, 1 \pm 2v)$ .
- (10) If  $a_0 = a_1 = 0$  and  $b_0 \neq 0$ ,  $b_3 = 0$ , then  $Y_{30}(u, v) = (0, 1)$ .
- (11) If  $a_0 = a_1 = 0$  and  $b_0 = 0$ ,  $b_3 \neq 0$ , then  $Y_{31}(u, v) = (0, 2v)$ .

**6.1 Analysis of the family**  $Y_1$ . In the sequel, if  $a_1 \neq 0$  and  $b_0 \geq 0$ , we denote by  $\delta = -b_0 + x_0^2$  (remember that  $x_0 = -a_0/a_1$ ),  $\delta_1 = \sqrt{b_0} + a_0/a_1$  and  $\delta_2 = -\sqrt{b_0} + a_0/a_1$ . We observe that  $\delta = \delta_1 \delta_2$  and  $\delta_1 = \delta_2 = 0$  if and only if  $a_0 = b_0 = 0$ . As in Lemma 12, we denote by  $A_0 = (x_0, 0) = L \cap \{v = 0\}$ . If  $b_0 > 0$ , we denote by  $S_+$  and  $S_-$  the points  $(-\sqrt{b_0}, 0)$  and  $(\sqrt{b_0}, 0)$ , respectively. If  $b_0 = 0$ , then we denote by  $S_0$  the point (0, 0).

**Lemma 17.** Assume for the vector field  $Y_1$  that  $a_1 \neq 0$  and  $b_0 > 0$ . If  $\delta < 0$  then  $A_0 \in \overline{S_-S_+}$ . If  $\delta > 0$  then  $A_0 \in \overline{\infty S_-}$  or  $A_0 \in \overline{S_+\infty}$ , provided that  $\delta_2 > 0$  or  $\delta_1 < 0$ , respectively. Finally,  $A_0 = S_+$  or  $A_0 = S_-$ , if  $\delta_1 = 0$  or  $\delta_2 = 0$ , respectively.

*Proof.* As  $a_1 \neq 0$ , it follows that the position of point  $A_0 = L \cap \{v = 0\}$  depends on  $\operatorname{sgn} \delta$ . So, if  $\delta < 0$  then  $x_0 \in (-\sqrt{b_0}, \sqrt{b_0})$ . Now, if  $\delta > 0$ , then  $|x_0| > \sqrt{b_0}$  and  $\operatorname{sgn} x_0 = -\operatorname{sgn} \delta_1$ . Finally, if  $\delta_1 = 0$  then  $x_0 > 0$  or if  $\delta_2 = 0$ , then  $x_0 < 0$ .

**Lemma 18.** Assume for the vector field  $Y_1$  that  $a_1 \neq 0$  and  $b_0 = 0$ . If  $\delta_1$  is positive or negative, then  $A_0 \in \overline{S_0 \infty}$  or  $A_0 \in \overline{\infty S_0}$ , respectively. If  $\delta_1 = 0$ , then  $A_0 = S_0$ .

*Proof.* As  $a_1 \neq 0$ , then  $\delta_1 = a_0/a_1$ . Thus, if  $\delta_1 \neq 0$  the position of  $A_0$  in relation to  $S_0$  depends directly of  $\operatorname{sgn} \delta_1$ . So, if  $\delta_1 = 0$ , then  $a_0 = 0$  and  $A_0 = S_0$ .

Lemmas 19 and 20 characterize the isolated singular points of  $Y_1$ .

**Lemma 19** (Hyperbolic singular points of  $Y_1$ ). Assume for the vector field  $Y_1$  that  $a_1b_3 \neq 0$  and  $\delta/b_3 \leq 0$ . Then  $Y_1$  has a unique hyperbolic singular point in L,  $A = (-a_0/a_1, -\delta/(2b_3))$ . If  $\operatorname{sgn} b_3 = -\operatorname{sgn} a_1$ , then A is a saddle. If  $\operatorname{sgn} b_3 = \operatorname{sgn} a_1$  and negative, respectively positive, then A is an attractor, respectively repellor. Moreover, if  $a_1 = 2b_3$ , the singular point is a degenerate node. Note that  $A = A_0$  when  $\delta = 0$ .

Proof. If  $p \in \mathbf{R}^2$  satisfies  $Y_1(p) = 0$ , then p = A with  $\delta/b_3 \leq 0$ . Thus,  $Y_1$  has isolated singular points if  $a_1b_3 \neq 0$ . If  $Y_1(A) = 0$  and  $\delta/b_3 < 0$ , then A is singular point of  $Y_1$  in v > 0. If  $\delta = 0$  we have that  $A_0 \in L \cup \{v = 0\}$  or  $A_0$  is a singular point in v = 0. If  $a_0 \neq 0$ , then  $(DY_1)_A$  has eigenvalues  $a_1$  and  $2b_3$  and with eigenvectors  $(-a_1(a_1 - 2b_3), 2a_0)$  and (0, 1), respectively. If  $a_0 = 0$ , then  $(DY_1)_A$  has the same eigenvalues  $a_1$  and  $2b_3$ , but with eigenvectors (1, 0) and (0, 1), respectively. Therefore, the proof is done.

**Lemma 20** (Fold and cusp of  $Y_1$ ). Assume for the vector field  $Y_1$  that  $b_0 \geq 0$ .

(1) If  $b_0 > 0$  and  $\delta \neq 0$ , then the trajectories of  $Y_1$  are tangent to  $\{v = 0\}$  only at two points,  $S_-$  and  $S_+$ . Moreover, the trajectories of  $Y_1$  which intersect  $\overline{\infty S_-} \cup \overline{S_+\infty}$ , respectively  $\overline{S_-S_+}$ , are increasing,

respectively decreasing. If  $b_0 = 0$ , then all trajectories that intersect  $\{v = 0\}$  are increasing, except the trajectory that is tangent at the point (0,0).

- (2) If  $b_0 > 0$ , then  $Y_1$  has two-fold singularities. If  $\operatorname{sgn} \delta = -1$  and  $\operatorname{sgn} a_1 = 1$ , respectively -1, the singularities  $S_-$  and  $S_+$  are internal, respectively external, folds. If either  $\operatorname{sgn} \delta = 1$  or  $a_1 = 0$ , the singularities  $S_-$  and  $S_+$  are internal and external, respectively external and internal, folds, provided that  $\operatorname{sgn} a_0 = -1$ , respectively (1).
- (3) If  $\delta = 0$  and  $a_0 a_1 \neq 0$ , then  $Y_1$  has one internal, respectively external, fold,  $S_1 = (a_0/a_1, 0)$ , provided  $\operatorname{sgn} a_1$  is positive, respectively negative.
  - (4) If  $b_0 = 0$  and  $a_0 \neq 0$ , then  $Y_1$  has one cusp singularity at  $S_0$ .

*Proof.* The tangencies between the orbits of  $Y_1$  and S are given by the solutions of the equation:

(3) 
$$Y_1 \theta(u,0) = -b_0 + u^2 = 0.$$

If  $b_0 > 0$ , this equation has two solutions, and this implies  $Y_1$  has two singularities,  $S_-$  and  $S_+$ . If  $a_1 \neq 0$ , then we have that  $Y_1^2\theta(S_+) = a_1\sqrt{b_0}\,\delta_1$  and  $Y_1^2\theta(S_-) = -a_1\sqrt{b_0}\,\delta_2$ . If  $a_1 = 0$ , then  $Y_1^2\theta(S_+) = 2a_0\sqrt{b_0}$  and  $Y_1^2\theta(S_-) = -2a_0\sqrt{b_0}$ . But,  $\operatorname{sgn}\delta = \operatorname{sgn}\delta_1\operatorname{sgn}\delta_2$ , and this implies that if  $\operatorname{sgn}\delta = -1$ , respectively 1,  $\operatorname{sgn}Y_1^2\theta(S_+) = -\operatorname{sgn}Y_1^2\theta(S_-) = \operatorname{sgn}a_1$ , respectively  $\operatorname{sgn}Y_1^2\theta(S_+) = \operatorname{sgn}Y_1^2\theta(S_-) = \operatorname{sgn}a_1$ . If  $a_1 = 0$ , then  $\operatorname{sgn}Y_1^2\theta(S_+) = -\operatorname{sgn}Y_1^2\theta(S_-) = \operatorname{sgn}a_0$ , and the proof of statement (1) follows from the definition of internal and external singularities. If  $b_0 = 0$  and  $a_0 \neq 0$ ,  $Y_1$  has a unique symmetric singularity  $S_0$ . In this case  $Y_1\theta(S_0) = Y_1^2\theta(S_0) = 0$  and  $Y_1^3\theta(S_0) = 2a_0^2 \neq 0$ , so  $S_0$  is a cusp symmetric singularity. Finally, to end the proof of this lemma, it is sufficient to observe that: if  $\delta = 0$  and  $a_0a_1b_3 \neq 0$ , equation (3) has two solutions,  $S_- = A_0$  (see Lemma 19) and  $S_+$ . For the point  $S_+$  we have  $F^2\theta(S_+) = 4a_0^2/a_1 \neq 0$ .

Lemma 21 characterizes the vector fields  $Y_1$  which have curves of singularities.

**Lemma 21** (Non-hyperbolic singular points of  $Y_1$ ). (1) If  $a_1 \neq 0$  and  $b_3 = \delta = 0$ , then  $Y_1$  has the invariant straight line  $\beta : u = -a_0/a_1$ ,

- $v \geq 0$ , filled by singularities of  $Y_1$  and, for each singularity  $p \in \beta$ , the  $DY_1(p)$  has eigenvalues  $\lambda_1 = 0$ ,  $\lambda_2 = a_1$  and with eigenvectors  $\omega_1 = (0,1)$ ,  $\omega_2 = (-a_1^2, 2a_0)$ , respectively.
- (2) If  $a_0 = a_1 = b_0 = b_3 = 0$ , then  $Y_1$  has the invariant straight line  $\beta : u = 0, v \ge 0$ , filled by singularities of  $Y_1$  and, for each singularity  $p \in \beta$ , the  $DY_1(p)$  has the eigenvalue  $\lambda = 0$  with multiplicity two, and with eigenvector  $\omega = (0,1)$ .
- (3) If  $a_0 = a_1 = b_3 = 0$  and  $b_0 > 0$ , then  $Y_1$  has two invariants straight lines  $\beta_1 : u = -\sqrt{b_0}$ ,  $v \ge 0$ ,  $\beta_2 : u = \sqrt{b_0}$ ,  $v \ge 0$ , filled by singularities of  $Y_1$  and, for each singularity  $p \in \beta_1 \cup \beta_2$ , the  $DY_1(p)$  has the eigenvalue  $\lambda = 0$  with multiplicity two and eigenvector  $\omega = (1,0)$ .
- (4) If  $a_0 = a_1 = 0$  and  $\operatorname{sgn} b_3 = -1$  or  $a_0 = a_1 = 0$  and  $\operatorname{sgn} b_3 = \operatorname{sgn} b_0 = 1$ , then the singularities of  $Y_1$  are in the curve  $\beta : v = (b_0 u^2)/(2b_3), v \ge 0$ . In this case, for each singularity  $p = (u_0, v_0) \in \beta$ , the  $DY_1(p)$  has eigenvalues  $\lambda_1 = 0, \lambda_2 = 2b_3$  and with eigenvectors  $\omega_1 = (-b_3, u_0), \omega_2 = (0, 1)$ , respectively.
- (5) If  $a_0 = a_1 = b_0 = 0$  and  $\operatorname{sgn} b_3 = 1$ , then  $Y_1$  has a unique singularity, p = (0,0) and the  $DY_1(p)$  has eigenvalues  $\lambda_1 = 0$  and  $\lambda_2 = 2b_3$  and with eigenvectors  $\omega_1 = (-b_3,0)$  and  $\omega_2 = (0,1)$ .

*Proof.* The proof of the lemma, follows from the computing of solutions of  $Y_1(u,v) = (a_0 + a_1u, -b_0 + u^2 + 2b_3v) = 0$  and the eigenvalues of  $DY_1(p)$  with  $p \in \{Y_1(u,v) = 0\}$ .

The next lemma describes the vectors fields  $Y_1$  with no singularities.

**Lemma 22** ( $Y_1$  without singularities). Assume for vector field  $Y_1$  that  $b_0 < 0$ . If either  $a_1b_3 \neq 0$  and  $\delta/b_3 > 0$  or  $a_1\delta \neq 0$  and  $b_3 = 0$ , or  $a_0 = a_1 = b_3 = 0$  or  $a_1 = 0$  and  $a_0 \neq 0$ , then  $Y_1$  has no singularities.

*Proof.* As  $b_0 < 0$ , then by Lemma 20,  $Y_1$  has no folds or cusps and  $Y_1(p) = 0$  implies that  $a_0, a_1, b_0$  and  $b_3$  satisfy one of the following conditions:

- (i) if  $a_1 \neq 0$ , then  $\operatorname{sgn} \delta = -\operatorname{sgn} b_3 \neq 0$  or  $\delta = b_3 = 0$ .
- (ii) If  $a_1 = 0$ , then  $a_0 = 0$  and  $b_3 \neq 0$ .

The proof of the lemma follows when the conditions (i) and (ii) do not hold.  $\Box$ 

The next lemma characterizes the connections between singularities.

**Lemma 23** (Non-connection orbits between the singular points of  $Y_1$ ). If either  $a_1 = 0$ ,  $a_0 \neq 0$  and  $b_0 > 0$  or  $\delta < 0$   $b_3 < 0$  and  $a_1 \neq 0$ , then there is no connection between the singular points of  $Y_1$ .

Proof. In the first case, without loss of generality, we assume that  $a_0 > 0$ . By Lemma 20 (1),  $Y_1$  has two singular points, an external fold,  $S_-$  and an internal fold,  $S_+$ . Let  $\gamma$  be a solution of  $Y_1$  such that  $\gamma(0) = S_+$ . As  $Y_1\theta(u,0) = -b_0 + u^2$  is negative for  $-\sqrt{b_0} < u < \sqrt{b_0}$ , this implies that  $\gamma$  decreases in this interval and increases out of this. Thus, let  $Q \neq S_+ \in \overline{\infty S_-}$  be the other point that  $\gamma$  intersects  $\{v = 0\}$ . By continuity, all solutions of  $Y_1$  passing by a point of  $\overline{S_-S_+}$  cross  $\{v = 0\}$  in  $\overline{QS_-}$ . The solutions of  $Y_1$ , crossing  $\overline{\infty Q} \cup \overline{S_+\infty}$ , have only this point in common with  $\{v = 0\}$ .

In the second case, without loss of generality, we assume that  $a_1 > 0$ . By Lemma 20 (1),  $Y_1$  has two internal folds  $S_-$  and  $S_+$ . As  $\delta < 0$  and  $b_3 < 0$ , we have that L cross  $\overline{S_-S_+}$  in the point  $(-a_0/a_1, 0)$  and by Lemma 17, L has no singular point of  $Y_1$  and L is invariant by  $Y_1$ . This complete the proof of the lemma.

**Lemma 24.** Assume that  $a_1 \neq b_3, 2b_3$  and  $a_1b_3 < 0$ . Then A is a hyperbolic saddle of  $Y_1$ , and the parabola v = h(u) with

(4) 
$$v = h(u) = \frac{1}{2(a_1 - b_3)} \left( u - \frac{a_0}{a_1 - 2b_3} \right)^2 + \frac{b_0(a_1 - 2b_3)^2 - a_0^2}{2b_3(a_1 - 2b_3)^2};$$

contains A and two separatrices of A. If  $b_0 - (a_0/(a_1 - 2b_3))^2 = 0$ , then v = h(u) has a quadratic contact with  $\{v = 0\}$  at the point  $S_+$ , respectively  $S_-$ , if  $\operatorname{sgn} a_0/(a_1 - 2b_3)$  is positive, respectively negative.

*Proof.* The function v = h(u) is a first integral of  $Y_1$ . So v - h(u) = 0 is invariant. The discriminant of the equation h(u) = 0 is given by  $D = b_3(a_1 - b_3)(-b_0(a_1 - 2b_3)^2 + a_0^2)$ , and D = 0 implies that

 $b_0 = (a_0/(a_1 - 2b_3))^2$  because  $b_3 \neq 0$  and  $a_1 - b_3 \neq 0$  and we have that  $h''(u) = 1/(a_1 - b_3)$ . So, h(u) = h'(u) = 0 implies that  $u = a_0/(a_1 - 2b_3) = \sqrt{b_0}$  or  $u = a_0/(a_1 - 2b_3) = -\sqrt{b_0}$  according to whether  $\operatorname{sgn} a_0/(a_1 - 2b_3)$  is 1 or -1, respectively.

**Lemma 25** (Phase portraits of  $Y_1^{\pm}$ ). The vector field  $Y_1^{+}$ , respectively  $Y_1-$ , is topologically equivalent to Figure 3, respectively Figure 4.

*Proof.* If  $b_3 \notin \{0, 1/2, 1\}$ , then by Proposition 11, the function  $H_1$ , after the change of variables  $(u, v) = (x, y^2/2)$ , becomes the first integral  $\tilde{H}_1(u, v)$  of  $Y_1^+$ . Now we isolate the variable v in the equation  $\tilde{H}_1(u, v) - k = 0$  to obtain  $v = h_k(u)$ .

$$h_k(u) = \frac{1}{2(1-b_3)} \left( \left( u - \frac{1}{1-2b_3} \right)^2 - k(1+u)^{2b_3} + \frac{K}{(1-2b_3)^2} \right),$$

where  $K = (1 - b_3)(-b_0(1 - 2b_3)^2 + 1)/b_3$ . So we have that

$$\lim_{u \to -1} h_k(u) = -\frac{-b_0 + 1}{2b_3} - \frac{k}{2(1 - b_3)} \lim_{u \to -1} (1 + 1u)^{2b_3}.$$

If  $b_3 = 1/2$ , then as above using  $H_2$ , from Proposition 11, we get

$$h_k(u) = (2(b_0 - 1) + k + (2 + k)u - 4\ln(1 + u)(1 + u) + 2u^2).$$

So we have that  $\lim_{u\to -1} h_k(u) = b_0 - 1$ . If  $b_3 = 0$ , then as above using  $H_4$  from Proposition 11, we have

$$h_k(u) = (k - 2u + 2(-b_0 + 1)\ln(1 + u) + u^2).$$

It follows that  $\lim_{u\to -1} h_k(u) = -\operatorname{sgn} -b_0 + 1\infty$ . If  $b_3 = 1$ , then using  $H_3$  from Proposition 11, we get

$$h_k(u) = -(1+u)k + 2(1+u)^2 \ln(1+u) + 4(1+u) + b_0 - 1.$$

So we have that  $\lim_{u\to -1} h_k(u) = (b_0 - 1)/2$ .

Assume that  $b_0 < 0$ . By Lemma 20, the vector field  $Y_1^+$  has no folds and cusps. So all trajectories of  $Y_1^+$  are transversal to v = 0. By

Lemma 19, if  $b_3 < 0$ , then  $Y_1^+$  has a unique hyperbolic saddle at A and the separatrices are given by the straight line L and the parabola (4). If  $b_3 \ge 0$ , then  $Y_1^+$  has no singular points and it is topologically equivalent to the vertical vector field (0,1).

Assume that  $b_0 = 0$ . By Lemma 20, the vector field  $Y_1^+$  has a cusp at  $S_0$ . By Lemma 19, if  $b_3 < 0$ , then  $Y_1^+$  has a unique hyperbolic saddle at A and the separatrices are given by the straight line L and the parabola (4). If  $b_3 \geq 0$ , then  $Y_1^+$  has no singular points.

Assume that  $0 < b_0 < 1$ . By Lemma 20, the vector field  $Y_1^+$  has two folds, one external and the other internal at  $S_-$  and  $S_+$ , respectively. By Lemma 19, if  $b_3 < 0$ , then  $Y_1^+$  has a unique hyperbolic saddle at A. If  $b_3 \geq 0$ , then  $Y_1^+$  has no singular points, only the two folds. Moreover, for any  $b_3$ , we have the separatrices L and the trajectory  $v = h_k(u)$  with  $h_k(\sqrt{b_0}) = 0$  which has a quadratic contact at  $S_+$ .

Assume that  $b_0 = 1$ . By Lemma 20, the vector field  $Y_1^+$  has one internal fold at  $S_+$ . By Lemma 19, if  $b_3 < 0$ , then  $Y_1^+$  has a unique hyperbolic saddle at  $S_-$ . If  $b_3 = 0$ , then  $Y_1^+(u,v) = (1+u)(1,-1+u)$ . So L is filled with singular points and  $Y_1^+$  is topologically equivalent to the vector field (1,-1+u). If  $0 < b_3 \le 1/2$ , then  $Y_1^+$  has a repellor at  $S_-$  and the trajectories starting at A are tangent to the straight line L. If  $b_3 > 1/2$ , then  $Y_1^+$  has a repellor at  $S_-$  and the trajectories starting at  $S_-$  are tangent to  $v = h_k(u)$  with  $h_k(\sqrt{b_0}) = 0$ . Moreover, for any  $b_3 > 0$  we have that L and the trajectory  $v = h_k(u)$  with  $h_k(\sqrt{b_0}) = 0$  are separatrices of  $Y_1^+$ .

Assume that  $b_0 > 1$ . By Lemma 20, the vector field  $Y_1^+$  has two internal folds at  $S_-$  and  $S_+$ . By Lemma 19, if  $b_3 \le 0$ , then  $Y_1^+$  has no singular points, only two folds. If  $0 < b_3 \le 1/2$ , then  $Y_1^+$  has a repellor at A and the trajectories starting at A are tangent to the straight line L. If  $b_3 > 1/2$ , then  $Y_1^+$  has a repellor at  $S_-$  and the trajectories starting at  $S_-$  are tangent to  $v = h_k(u)$  with  $h_k(\sqrt{b_0}) = 0$ . Moreover, for any  $b_3 > 0$  we have that L and the trajectory  $v = h_k(u)$  with  $h_k(\pm \sqrt{b_0}) = 0$  are separatrices of  $Y_1^+$ .

The vector field  $Y_1^-$  can be studied using the same arguments as for  $Y_1^+$ . In Figures 3 and 4 we draw the phase portraits in  $v \geq 0$  of  $Y_1^+$  and  $Y_1^-$ , respectively.  $\square$ 

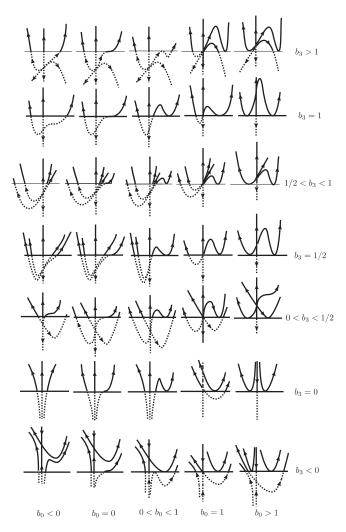


FIGURE 3. Phase portraits of  $Y_1^+$ . The dotted lines in  $v \geq 0$  denote lines filled with singular points.

**Lemma 26** (Phase portraits of  $Y_{2,\pm}, Y_{3,\pm}$  and  $Y_4$ ). The vector fields  $Y_{2,+}$ , respectively  $Y_{2,-}$ , and  $Y_{3,\pm}$  such that  $b_0 > 0$ , respectively  $b_0 < 0$ , are topologically equivalent to Figure 5 (a), respectively (c). The vector fields  $Y_4$  is topologically equivalent to Figure 5 (b).

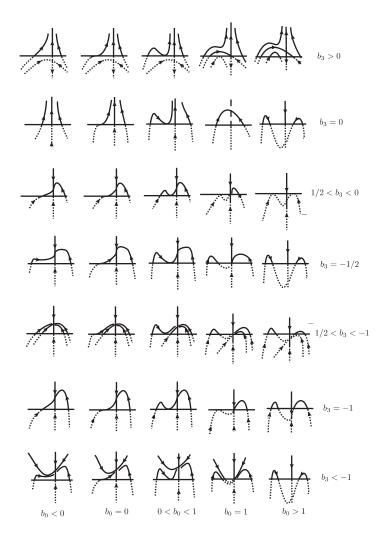


FIGURE 4. Phase portraits of  $Y_1^-$ . The dotted lines in  $v \geq 0$  denote lines filled with singular points.

*Proof.* Applying Proposition 11 to vector fields  $Y_{2,\pm}$  with  $b_3 \neq 0$  and to  $Y_{3,\pm}$ , we have that the function  $H_5$ , after the change of variables  $(u,v)=(x,y^2/2)$ , becomes a first integral  $\tilde{H}_5(u,v)$  of  $Y_{2,\pm}$  with  $b_3\neq 0$  and to  $Y_{3,\pm}$ . Now we isolate the variable v in the equation

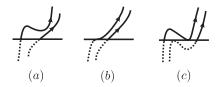


FIGURE 5. Phase portraits of  $Y_{2,\pm}, Y_{3,\pm}$  and  $Y_4$ .

$$\tilde{H}_5(u,v) - k = 0$$
 to obtain  $v = h_k(u)$ , where

$$h_k(u) = \frac{1}{8b_3^3} (-(2b_3u + 1)^2 + 4b_0b_3^2 - 1 + k\exp 2b_3u).$$

For the vector fields  $Y_{2,\pm}$  with  $b_3=0$  and  $Y_4$ , we use the function  $H_6$  and in a similar way we get that  $h_k(u)=k+2u^3-6b_0u$ .

By Lemma 22,  $Y_{2,\pm}$ ,  $Y_{3,\pm}$  and  $Y_4$  have no singular points. By Lemma 20,  $Y_{2,-}$  and  $Y_{3,\pm}$  with  $b_0 < 0$  has two folds, an external at  $S_-$  and an internal at  $S_+$ , see Figure 5 (c). The vector fields  $Y_{2,+}$  and  $Y_{3,\pm}$  with  $b_0 > 0$  has no folds or cusps, and they are topologically equivalent to the vertical field, see Figure 5 (a). The vector fields  $Y_4$  and  $Y_{3,\pm}$  with  $b_0 = 0$ , have one cusp at (0,0), see Figure 5 (b). We obtain the separatrices  $v = h_k(u)$  following the same arguments of the proof of Lemma 25.

**Lemma 27** (Phase portraits of  $Y_{5,\pm}^{\pm}$  and  $Y_6^{\pm}$ ). The vector fields  $Y_{5,+}^{\pm}$ , respectively  $Y_{5,-}^{\pm}$ , are topologically equivalent to Figure 3, respectively Figure 4, for columns  $b_0 < 0$  and  $b_0 > 1$ , respectively. The vector fields  $Y_6^{\pm}$ , respectively  $Y_6^{-}$ , are topologically equivalent to Figure 6 (a), respectively Figure 6 (b).

*Proof.* In this proof we use the same arguments as in the proof of Lemma 25.

Assume that  $b_0 = -1$ . By Lemma 20,  $Y_{5,\pm}^+$  has no folds and cusps. Hence all trajectories of  $Y_{5,\pm}^+$  are transversal to v = 0. By Lemma 19, if  $b_3 < 0$ , then  $Y_{5,\pm}^+$  has a unique hyperbolic saddle at A and the separatrices are given by the straight line L and the parabola (4). If  $b_3 \geq 0$ , then  $Y_{5,\pm}^+$  has no singular points and it is topologically equivalent to vertical vector field (0,1).

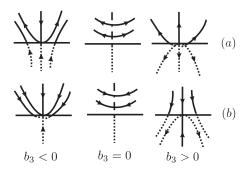


FIGURE 6. Phase portraits of  $Y_6^\pm$ . The dotted lines in  $v\geq 0$  denote lines filled with singular points.

Assume that  $b_0 = 0$ . By Lemma 19, if  $b_3 < 0$ , then  $Y_6^+$  has a unique hyperbolic saddle at A and the separatrices are given by the straight line L and the parabola (4). If  $b_3 > 0$ , then  $Y_6^+$  has no singular points. If  $b_3 = 0$ , then  $Y_6^+(u, v) = u(1, u)$  has the line u = 0 filled with singular points.

Assume that  $b_0 = 1$ . By Lemma 20, the vector field  $Y_1^+$  has two internal folds at  $S_-$  and  $S_+$ . By Lemma 19, if  $b_3 \leq 0$ , then  $Y_1^+$  has no singular points, only two folds. If  $0 < b_3 \leq 1/2$ , then  $Y_1^+$  has a repellor at A and the trajectories starting at A are tangent to straight line L. If  $b_3 > 1/2$ , then  $Y_1^+$  has a repellor at  $S_-$  and the trajectories starting at  $S_-$  are tangent to  $v = h_k(u)$  with  $h_k(\sqrt{b_0}) = 0$ . Moreover, for any  $b_3 > 0$  we have that L and the trajectory  $v = h_k(u)$  with  $h_k(\pm \sqrt{b_0}) = 0$  are separatrices of  $Y_1^+$ .

The vector field  $Y_{5,\pm}^-$  can be studied using the same arguments as for  $Y_{5,\pm}^+$ . In Figures 3 and 4, for  $b_0 < 0$  and  $b_0 > 1$ , we draw the phase portraits in  $v \geq 0$  of  $Y_{5,+}^{\pm}$  and  $Y_{5,-}^{\pm}$ , respectively. In Figure 6 (a), respectively 6 (b), we draw the vector fields that are topologically equivalent to  $Y_6^+$ , respectively  $Y_6^-$ .  $\square$ 

**Lemma 28** (Phase portraits of  $Y_{7,\pm,\pm}$ ,  $Y_{8,\pm}$ ,  $Y_{9,\pm}$  and  $Y_{10}$ ). The vector fields  $Y_{7,+,+}$ ,  $Y_{7,+,-}$ ,  $Y_{7,-,+}$ ,  $Y_{7,-,-}$ ,  $Y_{8,+}$ ,  $Y_{8,-}$ ,  $Y_{9,+}$ ,  $Y_{9,-}$  and  $Y_{10}$  are topologically equivalent to Figure 7 (a), (b), (c), (d), (e), (f), (g), (h) and (i), respectively.

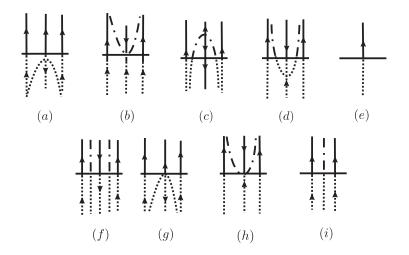


FIGURE 7. Phase portraits of  $Y_{7,\pm,\pm}$ ,  $Y_{8,\pm}$ ,  $Y_{9,\pm}$  and  $Y_{10}$ . The dotted lines in  $v \geq 0$  denote lines filled with singular points.

*Proof.* Except in their singular points, the vector fields  $Y_{7,\pm,\pm}$ ,  $Y_{8,\pm}$ ,  $Y_{9,\pm}$  and  $Y_{10}$  are topologically equivalent to the vertical field. The vector fields  $Y_{7,+,\pm}$ ,  $Y_{7,-,\pm}$  and  $Y_{9,\pm}$  have the parabolas  $v=\mp(1+u^2)/2\geq 0$ ,  $v=\mp(-1+u^2)/2\geq 0$  and  $v=\mp u^2/2\geq 0$ , respectively, filled with with singular points. The vector fields  $Y_{8,+}$  have no singular points. The vector field  $Y_{8,-}$  has the two lines  $u^2=1$  in  $v\geq 0$  filled with singular points. Finally,  $Y_{10}$  has the line u=0, filled with singular points.  $\square$ 

**6.2** Analysis of the family  $Y_2$ . In this subsection we analyze the vector field  $Y_2(u, v) = (a_0 + a_1 u, -b_0 + u + 2b_3 v)$  and we draw the phase portraits of  $Y_2$  in  $\{v \ge 0\}$ .

**Lemma 29.** Assume for the vector field  $Y_2$  that  $a_1 \neq 0$ . Then  $L = \{u = -a_0/a_1\}$  is an invariant straight line of  $Y_2$ .

*Proof.* As  $a_1 \neq 0$ , we have that  $Y_2(-a_0/a_1, v) = (0, -b_0-a_0/a_1+2b_3v)$  and the proof follows.  $\square$ 

**Lemma 30** (Hyperbolic singular points of  $Y_2$ ). Assume for the vector field  $Y_2$  that  $a_1b_3 \neq 0$  and  $(b_0 + a_0/a_1)/b_3 \geq 0$ . Then  $Y_2$  has a unique hyperbolic singular point in L,  $A = (-a_0/a_1, (b_0 + a_0/a_1)/(2b_3))$ . If  $\operatorname{sgn} b_3 = -\operatorname{sgn} a_1$ , then A is a hyperbolic saddle. If  $\operatorname{sgn} b_3 = \operatorname{sgn} a_1$  and negative, respectively positive, then A is an attractor, respectively repellor. Moreover, if  $a_1 = 2b_3$ , the singular point is a degenerate node.

Proof. If  $p \in \mathbf{R}^2$  satisfies  $Y_2(p) = 0$ , then p = A with  $(b_0 + a_0/a_1)/b_3 \ge 0$ . Thus,  $Y_2$  has isolated singular points if  $a_1b_3 \ne 0$ . The linear part  $(DY_2)_A$  has eigenvalues  $a_1$  and  $2b_3$  with eigenvectors  $(a_1 - 2b_3, 1)$  and (0,1), respectively. Therefore, the proof is done.

**Lemma 31** (Fold of  $Y_2$ ). Assume for  $Y_2$  that  $a_1b_0 + a_0 \neq 0$ . If  $a_1b_0 + a_0 > 0$ , respectively < 0, then  $Y_2$  has an internal, respectively external, fold at  $S_1 = (b_0, 0)$ .

*Proof.* The tangencies between the orbits of  $Y_2$  and S are given by the solutions of the equation  $Y_2\theta(u,0) = -b_0 + u = 0$ . So we have that  $Y_2^2\theta(b_0,0) = a_1b_0 + a_0$ , and  $S_1$  is an internal, respectively external, fold if  $\operatorname{sgn} b_0 + a_0/a_1 > 0$ , respectively < 0. We observe that if  $b_0 + a_0/a_1 = 0$ , then  $S_1$  is a singular point of  $Y_2$ .

**Lemma 32** (Non-hyperbolic singular points of  $Y_2$ ). Assume for  $Y_2$  that  $a_1b_0 + a_0 = 0$ . If either  $a_0 = a_1 = 0$ , or  $a_1 \neq 0$  and  $b_3 = 0$ , then  $Y_2$  has a straight line filled with singular points.

*Proof.* If  $a_1 \neq 0$  and  $b_3 = 0$ , then  $Y_2(-a_0/a_1, v) = 0$  for all  $v \geq 0$ . Hence, the straight line  $(-a_0/a_1, v)$  is filled with singular points of  $Y_2$ . If  $a_0 = a_1 = 0$  and  $b_3 \neq 0$ , respectively  $b_3 = 0$ , then  $Y_2(b_0 - 2b_3v, v) = 0$ , respectively  $Y_2(b_0, v) = 0$ , for all  $v \geq 0$ , and this ends the proof.  $\square$ 

**Lemma 33** (Phase portraits of  $Y_{11}^{\pm}$ ,  $Y_{15,\pm}$  and  $Y_{16}$ ). The vector field  $Y_{11}^{+}$ , respectively  $Y_{11}^{-}$ , is topologically equivalent to Figure 8, respectively Figure 9. The vector fields  $Y_{15,+}$ , respectively  $Y_{15,-}$ , and  $Y_{16}$  are topologically equivalent to column  $b_0 < -1$ , respectively  $b_0 > -1$ , of Figure 8.

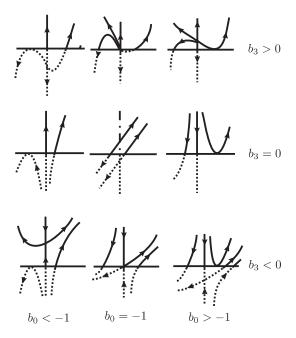


FIGURE 8. Phase portraits of  $Y_{11}^+,\,Y_{15,\pm}$  and  $Y_{16}$ . The dotted lines in  $v\geq 0$  denote lines filled with singular points.

Proof. We prove this lemma in a similar way to the proof of Lemma 25.

If  $b_3 \notin \{0, 1/2\}$ , then by Proposition 11, the function  $H_7$ , after the change of variables  $(u, v) = (x, y^2/2)$ , becomes the first integral  $\tilde{H}_7(u, v)$  of  $Y_{11}^+$ . Now we isolate the variable v in the equation  $\tilde{H}_7(u, v) - k = 0$  to obtain

$$v = h_k(u) = \frac{1}{2(1 - b_3)} \left( \frac{1 + 2b_3u + b_0 - 2b_0b_3 + 1}{2b_3} - 2^{2b_3}k \right).$$

So  $\lim_{u\to -1}h_k(u)=(b_0+1)/(2b_3)-(k)/(2(1-b_3))\lim_{u\to -1}(1+1u)^{2b_3}$ . If  $b_3=1/2$ , then using the same arguments for  $H_8$ , we get  $v=h_k(u)=((1+u)(k-2\ln{(1+u)})-2(b_0+a_0))/2$ . So  $\lim_{u\to -1}h_k(u)=b_0+1$ . If  $b_3=0$ , we have  $v=h_k(u)=(k+2u-2(1+b_0)\ln{(1+u)})/2$ . Therefore,  $\lim_{u\to -1}h_k(u)=-\operatorname{sgn}b_0+1\infty$ .

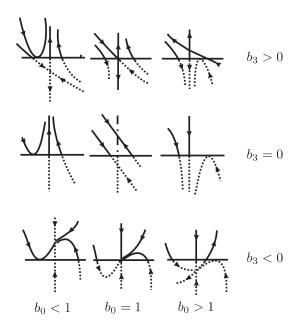


FIGURE 9. Phase portraits of  $Y_{11}^-$ . The dotted lines in  $v \ge 0$  denote lines filled with singular points.

Assume that  $b_0 < -1$ . By Lemma 31,  $Y_{11}^+$  has one external fold at  $(b_0,0)$ . By Lemma 30, if  $b_3 < 0$ , then  $Y_{11}^+$  has a unique hyperbolic saddle at A. The separatrices are L and the trajectory  $v = h_k(u)$  with  $h_k(-1) = (b_0 + 1)/(2b_3)$ . If  $b_3 \ge 0$ , then  $Y_{11}^+$  has no singular points.

Assume that  $b_0 = -1$ . By Lemma 31,  $Y_{11}^+$  has no folds. By Lemma 30, if  $b_3 < 0$ , then  $Y_{11}^+$  has a unique hyperbolic saddle at A. The separatrices are L and the trajectory  $v = h_k(u)$  with  $h_k(-1) = 0$ . If  $b_3 \ge 0$ , then  $Y_1^+$  has no singular points.

Assume that  $b_0 > -1$ . By Lemma 31,  $Y_{11}^+$  has one internal fold at  $(b_0,0)$ . By Lemma 30, if  $b_3 > 0$ , then  $Y_{11}^+$  has a unique repellor at A. If  $b_3 \leq 0$ , then  $Y_{11}^+$  has no singular points, only the internal fold at  $S_1$ . The separatrices are the straight line L and the trajectory  $v = h_k(u)$  with  $h_k(b_0) = 0$  which has a quadratic contact at  $S_1$ .

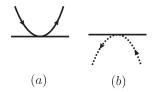


FIGURE 10. Phase portraits of  $Y_{12}^{\pm}$ ,  $Y_{13}^{\pm}$  and  $Y_{14}^{\pm}$ .

The vector field  $Y_{11}^-$  can be studied using the same arguments as for  $Y_{11}^+$ . In Figures 8 and 9, we draw the phase portraits in  $v \ge 0$  of  $Y_{11}^+$  and  $Y_{11}^-$ , respectively. The vector fields  $Y_{15,+}$ , respectively  $Y_{15,-}$ , and  $Y_{16}$  are topologically equivalent to column  $b_0 < -1$ , respectively  $b_0 > -1$ , of Figure 8.  $\square$ 

**Lemma 34** (Phase portraits of  $Y_{12}^{\pm}$ ,  $Y_{13}^{\pm}$  and  $Y_{14}^{\pm}$ .) The vector fields  $Y_{12}^{+}$ ,  $Y_{13}^{+}$  and  $Y_{14}^{+}$ , respectively  $Y_{12}^{-}$ ,  $Y_{13}^{-}$  and  $Y_{14}^{-}$ , are topologically equivalent to Figure 10 (a), respectively Figure 10 (b).

*Proof.* Using similar arguments as in the proof of Lemma 26, we obtain from  $H_{10}$  and  $H_{11}$ , for  $Y_{12}^+$  with  $b_3 \neq 0$ , respectively  $b_3 = 0$ , that  $h_k(u) = (2b_3u - 2b_3 + 1 - 2b_3^2k \exp{(2b_3u)})/(4b_3^2)$ , respectively  $h_k(u) = (u^2 - 2u + k)/2$ . For  $Y_{13}^+$ ,  $v = h_k(u) = (2b_3u + 1 - 2b_3^2k \exp{(2b_3u)})/(4b_3^2)$ . For  $Y_{14}^+$ ,  $v = h_k(u) = u(u + k)/2$ .

The vector fields  $Y_{12}^+$ ,  $Y_{13}^+$  and  $Y_{14}^+$  have no singular points and, by Lemma 31,  $Y_{12}^+$  has a unique internal fold at (-1,0), and  $Y_{13}^+$  and  $Y_{14}^+$  at (0,0). The separatrix for  $Y_{12}^+$ , respectively  $Y_{13}^+$  and  $Y_{14}^+$ , is the trajectory  $v = h_k(u)$  with  $h_k(-1) = 0$ , respectively  $h_k(0) = 0$ , which has a quadratic contact at  $S_1$ .

For the vector fields  $Y_{12}^-$ ,  $Y_{13}^-$  and  $Y_{14}^-$ , applying the same arguments of this proof we draw their phase portraits in  $v \geq 0$ , in Figure 10 (b).

**Lemma 35** (Phase portraits of  $Y_{17,\pm}$ ,  $Y_{18}$ ,  $Y_{19}$  and  $Y_{20}$ ). The vector fields  $Y_{17,+}$  and  $Y_{19}$  are topologically equivalent to Figure 11 (a). The vector field  $Y_{17,-}$  is topologically equivalent to Figure 11 (b). The vector fields  $Y_{18}$  and  $Y_{20}$  are topologically equivalent to Figure 11 (c).

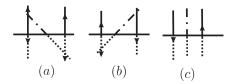


FIGURE 11. Phase portraits of  $Y_{17,\pm}$ ,  $Y_{18}$ ,  $Y_{19}$  and  $Y_{20}$ . The dotted lines in  $v \ge 0$  denote lines filled with singular points.

*Proof.* Except in their singular points the vector fields  $Y_{17,\pm}$ ,  $Y_{18}$ ,  $Y_{19}$  and  $Y_{20}$  are topologically equivalent to the vertical field. These vector fields have one straight line filled with singular points.

**6.3 Analysis of the family**  $Y_3$ . In this subsection we analyze the vector field  $Y_3(u, v) = (a_0 + a_1u, -b_0 + 2b_3v)$  and we draw the phase portraits of  $Y_3$  in  $\{v \ge 0\}$ .

**Lemma 36.** Assume for the vector field  $Y_3$  that  $a_1 \neq 0$ . Then  $L = \{u = -a_0/a_1\}$  is a invariant straight line of  $Y_3$ .

*Proof.* As  $a_1 \neq 0$ , we have that  $Y_3(-a_0/a_1, v) = (0, -b_0 + 2b_3v)$ , and the proof is done.  $\square$ 

**Lemma 37** (Hyperbolic singular points of  $Y_3$ ). Assume for the vector field  $Y_3$  that  $a_1b_3 \neq 0$  and  $b_0/b_3 \geq 0$ . Then  $Y_3$  has a unique hyperbolic singular point in L at  $A = (-a_0/a_1, b_0/(2b_3))$ . If  $\operatorname{sgn} b_3 = -\operatorname{sgn} a_1$ , then A is a hyperbolic saddle. If  $\operatorname{sgn} b_3 = \operatorname{sgn} a_1$  and negative, respectively positive, then A is an attractor, respectively repellor. Moreover, if  $a_1 = 2b_3$ , the singular point is a degenerate node.

Proof. If  $p \in \mathbf{R}^2$  satisfies  $Y_3(p) = 0$ , then p = A with  $b_0/b_3 \ge 0$ . Thus,  $Y_3$  has isolated singular points if  $a_1b_3 \ne 0$ . The matrix  $(DY_3)_A$  has eigenvalues  $a_1$  and  $2b_3$ , with eigenvectors (1,0) and (0,1), respectively. So, this completes the proof.

**Lemma 38** (Orbits of  $Y_3$  are transversal to  $\{v = 0\}$ ). Assume for the vector field  $Y_3$  that  $b_0 \neq 0$ . Then the orbits of  $Y_3$  are transversal to  $\{v = 0\}$ .

*Proof.* The tangencies between the orbits of  $Y_3$  and  $S = \{v = 0\}$  are given by the solutions of the equation  $Y_3\theta(u,0) = -b_0 \neq 0$ . Thus, the orbits of  $Y_3$  are transversal to S.

**Lemma 39** (Non-hyperbolic singular points of  $Y_3$ ). If either  $a_0 = a_1 = 0$  and  $b_3 \neq 0$ , or  $a_1 \neq 0$  and  $b_0 = b_3 = 0$ , then  $Y_3$  has a straight line filled with singular points.

*Proof.* If  $a_1 \neq 0$  and  $b_0 = b_3 = 0$ , then  $Y_3(-a_0/a_1, v) = 0$  for all  $v \geq 0$ . Hence,  $u = -a_0/a_1$  is the line of singular points of  $Y_3$ . If  $a_0 = a_1 = 0$ , then  $Y_3(u, b_0/(2b_3)) = 0$  for all  $v \geq 0$ . So the proof is done.  $\square$ 

**Lemma 40** (Phase portraits of  $Y_{21,\pm}$ ,  $Y_{22}$ ,  $Y_{27,\pm}$  and  $Y_{28}$ ). The vector fields  $Y_{21,+}$  and  $Y_{27,+}$ ,  $Y_{21,-}$  and  $Y_{27,-}$ , and  $Y_{22}$  and  $Y_{28}$ , are topologically equivalent to column (a), (b) and (c), respectively, of Figure 12.

*Proof.* We prove this lemma using the same arguments as in the proof of Lemma 25. Using  $H_{12}$ ,  $H_{13}$  and  $H_{14}$ , we have that

$$h_k(u) = \frac{1}{2b_3}(b_0 + k(u+1)^{2b_3})$$

and

$$\lim_{u \to -1} h_k(u) = \frac{b_0}{2b_3} - \frac{k}{2b_3} \lim_{u \to -1} (1 + 1u)^{2b_3},$$

$$h_k(u) = b_0 + kb_3(1+u)$$
 and  $\lim_{u \to -1} h_k(u) = b_0$ ,

and

$$h_k(u) = k - 2b_0 \ln(1+u)$$
 and  $\lim_{u \to -1} h_k(u) = -\operatorname{sgn} b_0 \infty$ .

We observe that  $Y_{27,+}$ , respectively  $Y_{27,-}$ , is topologically equivalent to  $Y_{21,+}$ , respectively  $Y_{21,-}$ , because the difference between them is a

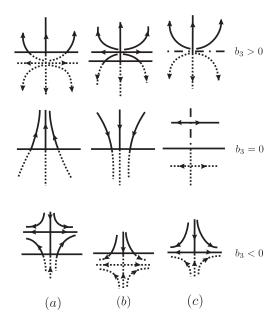


FIGURE 12. Phase portraits of  $Y_{21,\pm}$ ,  $Y_{22}$ ,  $Y_{27}$  and  $Y_{28}$ . The dotted lines in  $v \ge 0$  denote lines filled with singular points.

translated of their invariant straight line. The same occurs with  $Y_{22}$  and  $Y_{28}$ .

By Lemma 38, the orbits of vector fields  $Y_{21,\pm}$  and  $Y_{22}$  are transversal to v=0. By Lemma 37, if  $b_3<0$ , then  $Y_{21,+}$  has a unique hyperbolic saddle at A and the separatrices for  $Y_{21,+}$  are L and the trajectory  $v=h_k(u)$  with  $h_k(-1)=b_0/(2b_3)$ . If  $b_3\geq 0$ , then  $Y_{21,+}$  has no singular points. By Lemma 37, if  $b_3<0$ , then  $Y_{22}$  has a unique hyperbolic saddle at A and the separatrices for  $Y_{22}$  are L and the trajectory  $v=h_k(u)$  with  $h_k(-1)=0$ . If  $b_3\geq 0$ , then  $Y_{22}$  has no singular points. By Lemma 37, if  $b_3>0$ , then  $Y_{21,-}$  has a unique repellor at A. If  $b_3\leq 0$ , then  $Y_{11}^+$  has no singular points and the proof is done.  $\square$ 

The proof of Lemmas 41 and 42 will be omitted here because they are similar to the proofs of Lemmas 34 and 35.

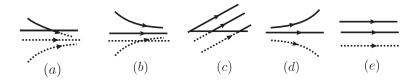


FIGURE 13. Phase portraits of  $Y_{23,-}$ ,  $Y_{23,+}$ ,  $Y_{24}$ ,  $Y_{25}$  and  $Y_{26}$ .

**Lemma 41** (Phase portraits of  $Y_{23,\pm}$ ,  $Y_{24}$ ,  $Y_{25}$  and  $Y_{26}$ ). The vector fields  $Y_{23,-}$ ,  $Y_{23,+}$ ,  $Y_{24}$ ,  $Y_{25}$  and  $Y_{26}$  are topologically equivalent to Figure 13 (a), (b), (c), (d) and (e), respectively.

**Lemma 42** (Phase portraits of  $Y_{29,\pm}$ ,  $Y_{30}$  and  $Y_{31}$ ). The vector fields  $Y_{29,-}$ ,  $Y_{29,+}$ ,  $Y_{30}$  and  $Y_{31}$  are topologically equivalent to Figure 14 (a), (b), (c) and (d), respectively.

## 7. Phase portraits of $\varphi$ -reversible quadratic vector fields. In this section, in order to prove Theorem A, we use the normal forms of Proposition 7 for $\varphi$ -reversible quadratic vector fields. We remember that, for drawing the phase portraits of $\varphi$ -reversible quadratic vector fields X in $\mathbb{R}^2$ , we use the phase portrait of the associated vector field Y defined in $v \geq 0$ and the symmetry properties of X. So, using the phase portraits given in Lemmas 17–42 and the symmetry properties of reversible vector fields, we shall prove Lemmas 44–52. In these lemmas, using Neumann's theorem, see Theorem 1, we show

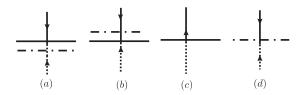


FIGURE 14. Phase portraits of  $Y_{29,-}$ ,  $Y_{29,+}$ ,  $Y_{30}$  and  $Y_{31}$ . The dotted lines in  $v \ge 0$  denote lines filled with singular points.

all the phase portraits of  $\varphi$ -reversible quadratic vector fields in the Poincaré disc, drawing their separatrices and sometimes one orbit for every canonical region.

**Lemma 43.** If  $a_1 - b_3 \le 0$ , then the vector field  $X_1$  has a unique infinite singular point at  $I_1 = (0,0)$  in  $U_2$ . If  $a_1 - b_3 > 0$ , then  $X_1$  has three infinite singular points in  $U_2$ , the  $I_1$ ,  $I_2 = (\sqrt{a_1 - b_3}, 0)$  and  $I_3 = (-\sqrt{a_1 - b_3}, 0)$ . The (0,0) of  $U_1$  is never a singular point for  $X_1$ .

Proof. In the local charts  $U_1$  and  $U_2$ , the compactified vector field associated to  $X_1$  is given by  $Z_1(z_1,z_2)=(1-(a_1-b_3)z_1^2-b_0z_2^2-a_0z_1^2z_2,-a_1z_1z_2-a_0z_1z_2^2)$  and  $Z_2(z_1,z_2)=(a_0z_2+(a_1-b_3)z_1-z_1^3+b_0z_1z_2^2,-b_3z_2+b_0z_2^3-z_1^2z_2)$ , respectively. The point (0,0) is not a singular point for the vector field  $Z_1$  because  $Z_1(0,0)=(1,0)$ . So, we only consider the infinite singular points in  $U_2$ . If  $a_1-b_3\leq 0$ , then  $Z_2$  has a unique infinite singular point, the  $I_1$  in  $U_2$ . If  $a_1-b_3>0$ , then  $Z_2$  has three infinite singular points the  $I_1$ ,  $I_2$  and  $I_3$ . □

**Lemma 44** (Phase portraits of  $X_1^{\pm}$ ,  $X_{5,\pm}^{+}$  and  $X_6^{+}$ ). The phase portraits of the vector field  $X_1^{+}$ , respectively  $X_1^{-}$ , is topologically equivalent to Figure 15, respectively Figure 16. The phase portraits of the vector field  $X_5^{+}$ , respectively  $X_5^{-}$ , is topologically equivalent to column  $b_0 < 0$ , respectively  $b_0 > 0$ , of Figure 15, respectively Figure 16. The phase portraits of the vector field  $X_6^{\pm}$  is topologically equivalent to Figure 17.

*Proof.* For drawing the phase portraits in the Poincaré disc, we use Lemmas 25 and 27 and the following characterization of the infinite singular points.

For the vector field  $X_1^+$ , we have that

(5) 
$$Z_2 = (z_2 + (1 - b_3)z_1 - z_1^3 + b_0 z_1 z_2^2, -b_3 z_2 + b_0 z_2^3 - z_1 z_2^2).$$

The  $I_1$  is a singular point of  $Z_2$ , and  $(DZ_2)_{I_1}$  has eigenvalues  $1-b_3$  and  $-b_3$  with eigenvectors ((1,0) and (-1,1). If  $1-b_3>0$ , then  $I_2$  and  $I_3$  are singular points of  $Z_2$ . Their linear parts  $(DZ_2)_{I_2}$  and  $(DZ_2)_{I_3}$  have the same eigenvalues,  $-2(1-b_3)$  and -1 with eigenvectors (1,0) and  $(1,1-2b_3)$ .

If  $b_3 < 0$ , then  $I_1$  is a repellor and  $I_2$ ,  $I_3$  are attractors.

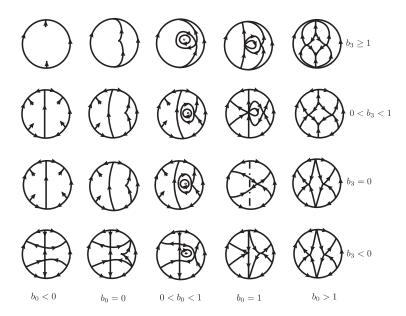


FIGURE 15. Phase portraits of  $X_1^+$  and  $X_5^+$ . The dotted lines denote lines filled with singular points.

If  $b_3 = 0$  then  $I_2, I_3$  are attractors and for  $I_1$ , we have that:

- (1) If  $b_0 \neq 1$ , then (5), after a linear change of variables, has the form  $Z_2(z_1,z_2)=((-b_0+1)z_1^3+2z_1^2z_2-z_1z_2^2,z_2-z_2^3+2z_1z_2^2+(-b_0+1)z_1z_2^2)$ , and in order to apply the elementary degenerate theorem, we have the function  $g(z_1)=(-b_0+1)z_1^3+\cdots$ . Hence, as m=3, if  $b_0>1$ , respectively  $b_0<1$ , then  $I_1$  is a topological unstable node, respectively saddle
- (2) If  $b_0 = 1$ , then  $Z_2(z_1, z_2) = (z_1 + z_2 z_1^3 + z_1 z_2^2, -z_1^2 z_2 + z_2^3)$ . The singular points of  $Z_2$  are the straight line  $z_1 = -z_2$ , and for each point of this straight line, the Jacobian matrix associated to  $Z_2$  has eigenvalues 1 and 0 with eigenvectors (1,0) and (-1,1).

If  $0 < b_3 < 1$ , then  $I_1$  is a hyperbolic saddle and  $I_2$  and  $I_3$  are attractors.

If  $b_3=1$ , then (5) has the form  $Z_2(z_1,z_2)=(a_0z_2-z_1^3+b_0z_1z_2^2,-z_2-z_1^2z_2+b_0z_2^3)$ . The Jacobian matrix associated to  $Z_2$  at  $I_1$  has eigenvalues

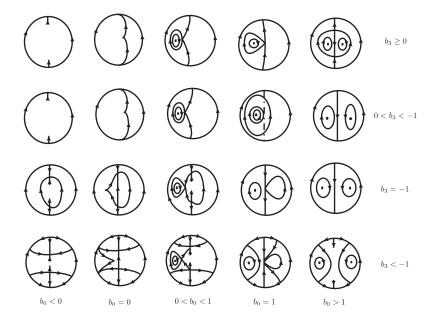


FIGURE 16. Phase portraits of  $X_1^-$  and  $X_5^-$ . The dotted lines denote lines filled with singular points.

0 and -1 with eigenvectors (1,0) and (-1,1). After a linear change of coordinates and applying the elementary degenerate theorem, we have that the function  $g(x) = z_2^3$ . So  $I_1$  is a topological stable node.

If  $b_3 > 1$ , then  $I_1$  is a hyperbolic node.

Using similar arguments we study the infinite singular points of  $X_1^-$ . If  $b_3 < -1$ , then  $I_1$  is a repellor and  $I_2$  and  $I_3$  are hyperbolic saddles. If  $b_3 = -1$ , then  $I_1$  is a topological saddle. If  $-1 < b_3 < 0$ , then  $I_1$  is a hyperbolic saddle. If  $b_3 = 0$  and  $b_0 < 1$ , respectively  $b_0 > 1$ , then  $I_1$  is a topological saddle, respectively stable node. If  $b_3 = 0$  and  $b_0 = 1$ , then  $I_1$  belongs to the straight line of singular points  $x = a_0$ . If  $b_3 > 0$ , then  $I_1$  is an attractor.

The vector field  $X_5^+$ , respectively  $X_5^-$ , is topologically equivalent to  $X_1^+$ , respectively  $X_1^-$ , for  $b_0 < 0$ , respectively  $b_0 > 1$ .

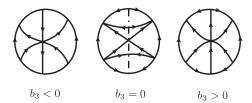


FIGURE 17. Phase portraits of  $X_6^{\pm}$ . The dotted lines denote lines filled with singular points.

From Lemma 27,  $X_6^+$  is topologically equivalent to  $X_6^-$ . The description of infinite singular points is the same as for  $X_1$ , except when  $b_3=1$ . For  $b_3=1$ , we have that  $Z_2(z_1,z_2)=(-z_1^3+b_0z_1z_2^2,-z_2-z_1^2z_2+b_0z_2^3)$ , and  $(DZ_2)_{I_1}$  has eigenvalues 0 and -1 with eigenvectors (1,0) and (0,1). So, by the elementary degenerate theorem, it follows that  $I_1$  is a topological stable node.  $\Box$ 

**Lemma 45** (Phase portraits of  $X_{2,\pm}$ ,  $X_{3,\pm}$  and  $X_4$ ). If  $b_3 < 0$  or  $b_3 \geq 0$ , then the phase portrait of the vector field  $X_{2,+}$ , respectively  $X_{2,-}$ , is topologically equivalent to Figure 18 (a) or (d), respectively (c) or (f). If either  $b_0 < 0$  or  $b_0 = 0$  or  $b_0 > 0$ , then the phase portrait

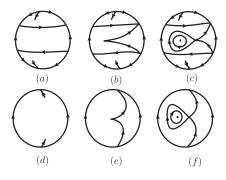


FIGURE 18. Phase portraits of  $X_{2,\pm}, X_{3,\pm}$  and  $X_4$ .

of the vector field  $X_{3,+}$ , respectively  $X_{3,-}$ , is topologically equivalent to Figure 18 (d) or (e) or (f), respectively (a) or (b) or (c). The vector field  $X_4$  is topologically equivalent to Figure 18 (e).

*Proof.* We use Lemma 26 and the same arguments as in the proof of Lemma 44. The point  $I_1$  is a singular point of  $Z_2$ , and  $(DZ_2)_{I_1}$  has eigenvalue  $-b_3$  with multiplicity 2, having eigenvector (1,0). If  $b_3 < 0$  the linear parts  $(DZ_2)_{I_2}$  and  $(DZ_2)_{I_3}$  have the same eigenvalues,  $2b_3$  and 0, with eigenvectors (1,0) and  $(1,2b_3)$ .

If  $b_3 < 0$ , then  $I_1$  is a repellor, and to study  $I_2$  and  $I_3$ , we apply the elementary degenerate theorem. Thus,

$$g(z_1) = \frac{\sqrt{-b_3}}{2b_3^2} z_1^2 + \cdots$$
 for  $I_2$ ,

and

$$g(z_1) = -\frac{\sqrt{-b_3}}{2b_3^2}z_1^2 + \cdots$$
 for  $I_3$ .

Hence,  $I_2$  and  $I_3$  are saddle-nodes.

If  $b_3 = 0$ , applying the nilpotent theorem we obtain that  $f(z_1) = -z_1^5(1+\cdots)$ ,  $\Phi(z_1) = -4z_1^2(1+\cdots)$  and  $b^2 + 4a(\beta+1) = 4$ . Thus,  $I_1$  is a topological stable node.

If  $b_3 > 0$ , then  $I_1$  is an attractor.  $\square$ 

**Lemma 46** (Phase portraits of  $X_{7,\pm,\pm}$ ,  $X_{8,\pm}$ ,  $X_{9,\pm}$  and  $X_{10}$ ). The phase portraits of the vector fields  $X_{7,-,-}$ ,  $X_{9,-}$ ,  $X_{7,+,-}$ ,  $X_{8,-}$ ,  $X_{10}$ ,  $X_{8,+}$ ,  $X_{7,-,+}$ ,  $X_{9,+}$  and  $X_{7,+,+}$  are topologically equivalent to Figure 19 (a), (b), (c), (d), (e), (f), (g), (h) and (i), respectively.

*Proof.* We use Lemma 28 and the same arguments as in the proof of Lemma 44. First, we consider the vector field  $X_{7,\pm,+}$  and, by Lemma 43, we have that

(6) 
$$Z_2 = (-b_3 z_1 - z_1^3 + b_0 z_1 z_2^2, -b_3 z_2 + b_0 z_2^3 - z_1^2 z_2)$$

The point  $I_1$  is a singular point of  $Z_2$ , and  $(DZ_2)_{I_1}$  has eigenvalue  $-b_3$  with multiplicity 2 with eigenvectors (1,0) and (0,1). If  $b_3 < 0$ ,

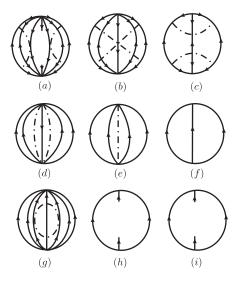


FIGURE 19. Phase portraits of  $X_{7,\pm,\pm}$ ,  $X_{8,\pm}$ ,  $X_{9,\pm}$  and  $X_{10}$ . The dotted lines denote lines filled with singular points.

then  $(DZ_2)_{I_2}$  and  $(DZ_2)_{I_3}$  have the same eigenvalues,  $2b_3$  and 0 with eigenvectors (1,0) and (0,1), respectively.

The vector field  $X_{7,\pm,+}$  has a unique infinite singular point, the  $I_1$ , and it is an attractor.

The vector field  $X_{7,\pm,-}$  has three infinite singular points, a repellor, in  $I_1$  and, applying the elementary degenerate theorem, we have topological stable node at that  $I_2$  and  $I_3$  because  $g(z_1) = z_1^5/8(1+\cdots)$ .

Associated to  $X_{8,+}$  we obtain from (6),  $Z_2 = (z_1^2 + z_2^2)(-z_1, -z_2)$ . So,  $Z_2$  is topologically equivalent to  $(z_1, z_2)$  and has a unique infinite singular point, the topological stable node at  $I_1$ .

Associated to  $X_{8,-}$  we obtain from (6),  $Z_2 = (-z_1^2 + z_2^2)(z_1, z_2)$ . So  $Z_2$  is topologically equivalent to  $(z_1, z_2)$  and has the infinite singular point  $I_1$ . Moreover, the straight lines  $z_2 = \pm z_1$  are filled by singular points of  $Z_2$ .

For the vector field  $X_{9,+}$ , we get  $Z_2(z_1, z_2) = (1 + z_1^2)(-z_1, -z_2)$ . So  $I_1$  is a topological stable node.

For the vector field  $X_{9,-}$ , we obtain  $Z_2(z_1, z_2) = (1 - z_1^2)(z_1, z_2)$  that has the infinite singular point  $I_1$ . The vector field  $Z_2$  has two straight lines  $z_1 = \pm 1$  filled with singular points.

For  $X_{10}$  we get  $Z_2(z_1,z_2)=z_1^2(-z_1,-z_2)$ ; it is topologically equivalent to the vector field  $(-z_1,-z_2)$  and has the straight line  $z_1=0$  filled with singular points.  $\Box$ 

**Lemma 47** (Phase portraits of  $X_{11}^{\pm}$ ,  $X_{15,\pm}$  and  $X_{16}$ ). The phase portraits of the vector fields  $X_{11}^{\pm}$  are topologically equivalent to  $X_{11,+}$ , and these are topologically equivalent to Figure 20. The vector fields  $X_{15,+}$ , respectively  $X_{15,-}$ , and  $X_{16}$  are topologically equivalent to  $X_{11}^{+}$  for  $b_0 < -1$ , respectively  $b_0 > -1$ .

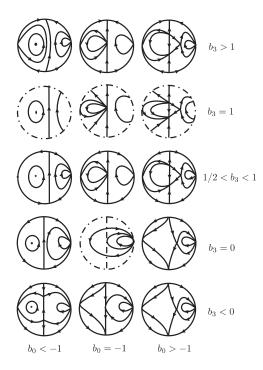


FIGURE 20. Phase portraits of  $X_{11}^{\pm}$ ,  $X_{15,\pm}$  and  $X_{16}$ . The dotted lines denote lines filled with singular points.

*Proof.* From Lemma 33, we get that the phase portraits of  $Y_{11}^+$  is topologically equivalent to  $Y_{11,-}$ , and the vector fields  $Y_{15,+}$ , respectively  $Y_{15,-}$ , and  $Y_{16}$  are topologically equivalent to  $Y_{11}^+$  for  $b_0 < -1$ , respectively  $b_0 > -1$ .

The associated compactified vector field to  $X_{11}^+$  in the local chart  $U_1$  is

$$Z_1(z_1, z_2) = (z_2 - (1 - b_3)z_1^2 - b_0z_2^2 - z_1^2z_2, -z_1z_2 - z_1z_2^2).$$

If  $b_3 \neq 1$ , then  $Z_1$  has a unique infinite singular point in  $U_1$  at (0,0). Using the nilpotent theorem, since  $F(z_1) = (1-b_3)z_1^2 + \cdots$ ,  $f(z_1) = -(1-b_3)z_1^3(1+\cdots)$ ,  $\Phi(z_1) = -(3-2b_3)z_1(1+\cdots)$  and  $b^2 + 4a(\beta+1) = (1-2b_3)^2 \geq 0$ , we have that if  $b_3 < 1$ , respectively  $b_3 > 1$ , then it is a singularity whose neighborhood is the union of a hyperbolic and an elliptic sector (index +1), see Figure 31 (e), respectively topological saddle. If  $b_3 = 1$ , then  $Z_1(z_1, z_2) = z_2(1-b_0z_2-z_1^2, -z_1-z_1z_2)$ . Hence, the equator is filled with infinite singular points.

The associated compactified vector field to  $X_{11}^+$  in the local chart  $U_2$  is

$$Z_2(z_1, z_2) = ((1 - b_3)z_1 + z_2 - z_1^2 z_2 + b_0 z_1 z_2^2, -b_3 z_2 + b_0 z_2^3 - z_1 z_2^2).$$

If  $b_3 \neq 1$ , then  $Z_2$  has a unique infinite singular point in  $U_2$  at (0,0). The linear part  $(DZ_2)_{(0,0)}$  has eigenvalues  $1-b_3$  and  $-b_3$ , with eigenvectors (1,0) and (-1,1). Thus, if either  $b_3 < 0$  or  $0 < b_3 < 1$  or  $b_3 > 1$ , then  $X_{11}^+$  has a unique infinite singular point at  $(0,0) \in U_2$ , and it is either a repellor, or hyperbolic saddle or attractor, respectively. If  $b_3 = 1$ , then  $Z_2(z_1, z_2) = z_2(1 - z_1^2 + b_0 z_1 z_2, -1 + b_0 z_2^2 - z_1 z_2)$ . So the equator is filled with infinite singular points. If  $b_3 = 0$  and  $1 + b_0 > 0$ , respectively  $1 + b_0 < 0$ , then, using the elementary degenerate theorem, where  $f(z_1) = 0$ ,  $g(z_1) = (\pm 1 + b_0) z_1^3 (1 + \cdots)$ , we have that  $(0,0) \in U_2$  is a topological node, respectively saddle.

The infinite singular points in  $U_1$  and  $U_2$  of  $X_{15,\pm}$  and  $X_{16}$  are the same of  $X_{11}^+$ .  $\square$ 

**Lemma 48** (Phase portraits of  $X_{12}^{\pm}$ ,  $X_{13}^{\pm}$  and  $X_{14}^{\pm}$ ). The phase portraits of the vector field  $X_{12}^{+}$ , respectively  $X_{12}^{-}$ , are topologically equivalent to Figure 21 (a), respectively Figure 21 (b). The vector fields  $X_{13}^{+}$  and  $X_{14}^{+}$ , respectively  $X_{13}^{-}$  and  $X_{14}^{-}$ , are topologically equivalent  $X_{12}^{+}$ , respectively  $X_{12}^{-}$ .

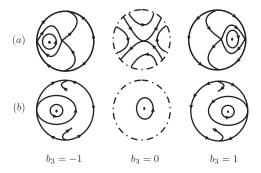


FIGURE 21. Phase portraits of  $X_{12}^{\pm}$ ,  $X_{13}^{\pm}$ , and  $X_{14}^{\pm}$ . The dotted lines denote lines filled with singular points.

Proof. By Lemma 34, it is sufficient that we analyze  $X_{12}^{\pm}$ . The associated compactified vector field to  $X_{12}^{\pm}$  in the local chart  $U_1$  is  $Z_1(z_1, z_2) = (z_2 + b_3 z_1^2 - b_0 z_2^2 \mp z_1^2 z_2, \mp z_1 z_2^2)$ . So, if  $b_3 \neq 0$ , then  $Z_1$  has a unique infinite singular point in  $U_1$  at (0,0). Using the nilpotent theorem where  $F(z_1) = -b_3 z_1^2 + \cdots$ ,  $f(z_1) = \mp b_3^2 z_1^5 (1 + \cdots)$ ,  $\Phi(z_1) = 2b_3 z_1 (1 + \cdots)$  and  $b^2 + 4a(\beta + 1) = (1 - 2b_3)^2 \geq 0$ , we get that the  $(0,0) \in U_1$  is an infinite singular point of  $X_{12}^+$ , whose neighborhood is the union of a hyperbolic and an elliptic sector (index +1), see Figure 31 (e). The vector field  $X_{12}^-$  has an infinite singular point at  $(0,0) \in U_1$  and it is a topological saddle. If  $b_3 = 0$ , then  $Z_1(z_1, z_2) = z_2(1 - b_0 z_2 \mp z_1^2, \mp z_1 z_2)$ . So, the equator is filled with infinite singular points.

The associated compactified vector field to  $X_{12}\pm$  in the local chart  $U_2$  is

$$Z_1(z_1, z_2) = (-b_3 z_1 \pm z_2 - z_1^2 z_2 + b_0 z_1 z_2^2, -b_3 z_2 + b_0 z_2^3 - z_1 z_2^2).$$

If  $b_3 \neq 0$ , then  $Z_2$  has a unique infinite singular point in  $U_2$  at (0,0) and  $(DZ_2)_{(0,0)}$  has eigenvalue  $-b_3$  with multiplicity 2, having eigenvector (1,0). So, if  $b_3 < 0$ , respectively  $b_3 > 0$ , then  $X_{12}^{\pm}$  has a unique infinite singular point at  $(0,0) \in U_2$  and it is a repellor, respectively attractor. If  $b_3 = 0$ , then  $Z_2(z_1,z_2) = z_2(\pm 1 - z_1^2 + b_0 z_1 z_2, b_0 z_2^2 - z_1 z_2)$ . So, the equator is filled with infinite singular points.

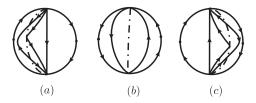


FIGURE 22. Phase portraits of  $X_{17,\pm}$ ,  $X_{18}$ ,  $X_{19}$  and  $X_{20}$ . The dotted lines denote lines filled with singular points.

**Lemma 49** (Phase portraits of  $X_{17,\pm}$ ,  $X_{18}$ ,  $X_{19}$  and  $X_{20}$ ). The phase portraits of the vector fields  $X_{17,+}$  and  $X_{19}$ ,  $X_{18}$  and  $X_{20}$ , and  $X_{17,-}$  are topologically equivalent to Figure 22 (a), (b) and (c), respectively.

*Proof.* The associated compactified vector field to  $X_{17,\pm}$  in the local chart  $U_1$  is  $Z_1(z_1, z_2) = (z_2 \pm z_1^2 + z_2^2)(1,0)$ . Then  $Z_1$  is topologically equivalent to the vector field (1,0) and has the curve  $z_2 \pm z_1^2 + z_2^2 = 0$  filled with singular points.

The associated compactified vector field to  $X_{17,\pm}$  in the local chart  $U_2$  is  $Z_2(z_1, z_2) = (\pm 1 - z_2^2 - z_1 z_2)(-z_1, -z_2)$ . It follows that  $Z_2$  is topologically equivalent to the vector field  $(-z_1, -z_2)$ , and it has the curve  $\pm 1 - z_2^2 - z_1 z_2 = 0$  filled with singular points.

The associated compactified vector field to  $X_{18}$  in the local chart  $U_1$  is  $Z_1(z_1, z_2) = (z_2 + z_2^2)(1, 0)$ . So  $Z_1$  is topologically equivalent to the vector field (1,0) and has the curve  $z_2(1+z_2)=0$  filled with singular points. The associated compactified vector field to  $X_{18}$  in local chart  $U_2$  is  $Z_2(z_1, z_2) = (-z_2^2 - z_1 z_2)(-z_1, -z_2)$ . Hence,  $Z_2$  is topologically equivalent to vector field  $(-z_1, -z_2)$  and has the curve  $-z_2^2 - z_1 z_2 = 0$  filled with singular points.

The associated compactified vector field to  $X_{19}$  in the local chart  $U_1$  is  $Z_1(z_1, z_2) = (z_2 + z_1^2)(1, 0)$ . The vector field  $Z_1$  is topologically equivalent to the vector field (1,0) and has the curve  $z_2 + z_1^2 = 0$  filled with singular points. The associated compactified vector field to  $X_{19}$  in the local chart  $U_2$  is  $Z_2(z_1, z_2) = (1 - z_1 z_2)(-z_1, -z_2)$ . It follows that  $Z_2$  is topologically equivalent to vector field  $(-z_1, -z_2)$ , and it has the curve  $z_1 z_2 = 1$  filled with singular points.

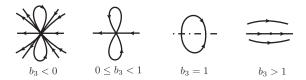


FIGURE 23. Infinite singular points in  $U_1$  for the vector field  $X_{21,+}$ . The dotted lines denote lines filled with singular points.

The associated compactified vector field to  $X_{20}$  in the local chart  $U_1$  is  $Z_1(z_1, z_2) = z_2(1, 0)$ . Thus,  $Z_1$  is topologically equivalent to the vector field (1,0), and it has the curve  $z_2 = 0$  filled with singular points. The associated compactified vector field to  $X_{20}$  in the local chart  $U_2$  is  $Z_2(z_1, z_2) = z_1 z_2(-z_1, -z_2)$ . The vector field  $Z_2$  is topologically equivalent to the vector field  $(-z_1, -z_2)$ , and it has the curves  $z_1 z_2 = 0$  filled with singular points.  $\square$ 

**Lemma 50** (Phase portraits of  $X_{21,\pm}$ ,  $X_{22}$ ,  $X_{27,\pm}$  and  $X_{28}$ ). The phase portraits of the vector fields  $X_{21,+}$ ,  $X_{22}$ , or  $X_{21,-}$ , are topologically equivalent to Figure 26 (a), (b), or (c), respectively. The vector fields  $X_{27,+}$ , respectively  $X_{27,-}$ , is topologically equivalent to  $X_{21,+}$ , respectively  $X_{21,-}$ , and  $X_{28}$  to  $X_{22}$ .

*Proof.* The associated compactified vector field to  $X_{21,\pm}$  in the local chart  $U_1$  is

$$Z_1(z_1, z_2) = (\mp z_2^2 + (b_3 - 1)z_1^2 - z_1^2 z_2, -z_1 z_2^2 - z_1 z_2).$$

If  $b_3=1$ , respectively  $b_3\neq 1$ , then  $Z_1$  has the equator filled with infinite singular points, respectively a unique infinite singular point at (0,0). In order to analyze the infinite singular point at (0,0) of  $Z_1$  for  $b_3\neq 1$ , we use directional blow-up and polar blow-up for obtaining Figures 23 and 24 for  $X_{21,+}$  and  $X_{21,-}$ , respectively. We observe that for  $X_{27,+}$ , respectively  $X_{27,-}$ , the infinite singular points in  $U_1$  have the same characterization of  $X_{21,+}$ , respectively  $X_{21,-}$ . Using the same arguments for  $X_{22}$  and  $X_{28}$ , we obtain Figure 25.

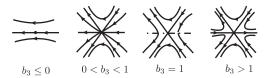


FIGURE 24. Infinite singular points in  $U_1$  for the vector field  $X_{21,-}$ . The dotted lines denote lines filled with singular points.

The associated compactified vector field to  $X_{21,\pm}$  in the local chart  $U_2$  is

$$Z_2(z_1, z_2) = ((1 - b_3)z_1 + z_2 \pm z_1 z_2^2, -b_3 z_2 \pm z_2^3).$$

If  $b_3=1$ , respectively  $b_3\neq 1$ , then  $Z_2$  has the equator filled with infinite singular points, respectively a unique infinite singular point at (0,0). The matrix  $D(Z_2)_{(0,0)}$  has eigenvalues  $1-b_3$  and  $-b_3$ , with eigenvectors (1,0) and  $(-a_0,1)$ . If  $b_3<0$ , then  $(0,0)\in U_2$  is a repellor. If  $b_3=0$ , then by the elementary degenerate theorem, we have that the infinite singular point  $(0,0)\in U_2$  of  $X_{21,-}$  and  $X_{27,-}$ , respectively  $X_{21,+}$  and  $X_{27,+}$ , is a topological saddle, respectively node. For  $X_{22}$  and  $X_{28}$ ,  $\mathbf{S}^1$  is filled with infinite singular points and  $Z_2$  is topologically equivalent to a vertical vector field. If  $0< b_3<1$ , then the infinite singular point  $(0,0)\in U_2$  is a hyperbolic saddle. If  $b_3=1$ , then  $\mathbf{S}^1$  is filled with infinite singular points and  $Z_2$  is topologically equivalent to a vertical vector field. If  $b_3>1$ , then the infinite singular point  $(0,0)\in U_2$  is an attractor. So, we use Lemma 40 and we draw the phase portraits of these vector fields.  $\square$ 

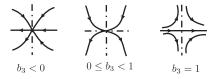


FIGURE 25. Infinite singular points in  $U_1$  for the vector field  $X_{22}$ . The dotted lines denote lines filled with singular points.

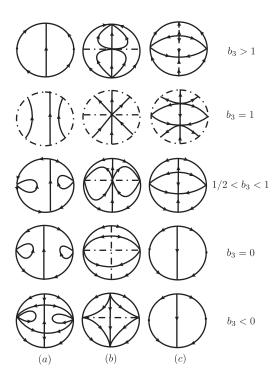


FIGURE 26. Phase portraits of  $X_{21,\pm}$ ,  $X_{22}$ ,  $X_{27,\pm}$  and  $X_{28}$ . The dotted lines denote lines filled with singular points.

**Lemma 51** (Phase portraits of  $X_{23,-}$ ,  $X_{23,+}$ ,  $X_{24}$ ,  $X_{25}$  and  $X_{26}$ ). The phase portraits of the vector fields  $X_{23,-}$ ,  $X_{23,+}$ ,  $X_{24}$ ,  $X_{25}$  and  $X_{26}$  are topologically equivalent to Figure 29 (a), (b), (c), (d) and (e), respectively.

*Proof.* The associated compactified vector field to  $X_{23,\pm}$  in the local chart  $U_1$  is  $Z_1(z_1,z_2)=(-z_2^2\pm z_1^2-z_1^2z_2,-z_1z_2^2)$ . For the vector fields  $X_{24}$ ,  $X_{25}$  and  $X_{26}$ , we have that  $Z_1(z_1,z_2)=z_2(-z_2-z_1^2z_2,-z_1)$ ,  $Z_1(z_1,z_2)=z_1(z_1-z_1z_2,-z_2^2)$  and  $Z_1(z_1,z_2)=z_1z_2(-z_1,-z_2)$ , respectively. For these vector fields we use directional blow-up and polar blow-up, and we obtain Figure 27 (a), (b), (c), (d) and (e), where



FIGURE 27. Infinite singular points in  $U_1$  for the vector field  $X_{23}$ . The dotted lines denote lines filled with singular points.

we draw the local phase portrait at the infinite singular point of  $Z_1$  associated to  $X_{23,-}$ ,  $X_{23,+}$ ,  $X_{24}$ ,  $X_{25}$  and  $X_{26}$ , respectively.

The associated compactified vector field to  $X_{23,\pm}$  in the local chart  $U_2$  is  $Z_2(z_1,z_2)=(-b_3z_1+z_2+z_1z_2^2,-b_3z_2+z_2^3)$ . The matrix  $D(Z_2)_{(0,0)}$  has eigenvalue  $-b_3$  of the multiplicity 2, having eigenvectors (1,0) and (-1,1). If  $b_3<0$ , then  $(0,0)\in U_2$  is a repellor. If  $b_3=0$ , then  $Z_2(z_1,z_2)=z_2(1+z_1z_2,z_2^2)$ . So,  $\mathbf{S}^1$  is filled with infinite singular points and  $Z_2$  is topologically equivalent to a horizontal vector field. If  $b_3>0$ , then the infinite singular point  $(0,0)\in U_2$  is an attractor. So, we use Lemma 41 and we draw the phase portraits of these vector fields.  $\square$ 

**Lemma 52** (Phase portraits of  $X_{29,-}$ ,  $X_{29,+}$ ,  $X_{30}$  and  $X_{31}$ ). The phase portraits of the vector fields  $X_{29,-}$ ,  $X_{29,+}$ ,  $X_{30}$  and  $X_{31}$  are topologically equivalent to Figure 29 (a), (b), (c) and (d).

*Proof.* The associated compactified vector field to  $X_{29,\pm}$  in the local chart  $U_1$  is  $Z_1(z_1,z_2)=(-z_2^2\pm z_1^2)(1,0)$ . For the vector fields  $X_{30}$ 

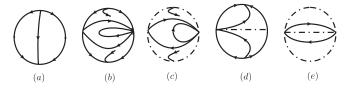


FIGURE 28. Phase portraits of  $X_{23,-}$ ,  $X_{23,+}$ ,  $X_{24}$ ,  $X_{25}$  and  $X_{26}$ . The dotted lines denote lines filled with singular points.

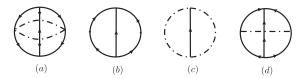


FIGURE 29. Phase portraits of  $X_{29,-}$ ,  $X_{29,+}$ ,  $X_{30}$  and  $X_{31}$ . The dotted lines denote lines filled with singular points.

and  $X_{31}$ , we have that  $Z_1(z_1, z_2) = z_2^2(1, 0)$  and  $Z_1(z_1, z_2) = z_1^2(1, 0)$ , respectively. These vector fields are topologically equivalent to a horizontal field.

The associated compactified vector field to  $X_{29,\pm}$  in the local chart  $U_2$  is  $Z_2(z_1,z_2)=(\mp z_1+z_1z_2^2,\mp z_2+z_2^3)$ . So the vector field  $X_{29,-}$ , respectively  $X_{29,+}$ , has an infinite singular point at  $(0,0)\in U_2$  and it is a repellor, respectively an attractor. For the vector field  $X_{30}$ , respectively  $X_{31}$ , we have that  $Z_2(z_1,z_2)=z_2^2(z_1,z_2)$ , respectively  $Z_2(z_1,z_2)=(-z_1,-z_2)$ . So we use Lemma 42 and we draw the phase portraits of these vector fields.

## Appendix

The next theorem corresponds to Theorem 65 of [2].

**Theorem 53** (Elementary Degenerate Theorem). Let (0,0) be an isolated singularity of the system  $(\dot{x},\dot{y})=(X(x,y),y+Y(x,y)),$  where X and Y are analytic in a neighborhood of the origin and have expansions that begin with second degree terms in x and y. Let y=f(x) be the solution of the equation y+Y(x,y)=0 in the neighborhood of (0,0), and assume that the series expansions of the function g(x)=X(x,f(x)) has the form  $g(x)=a_mx^m+\cdots$ , where  $m\geq 2$ ,  $a_m\neq 0$ . Then

- (1) If m is odd and  $a_m > 0$ , then (0,0) is a topological node.
- (2) If m is odd and  $a_m < 0$ , then (0,0) is a topological saddle, two of whose separatrices tend to (0,0) in the directions 0 and  $\pi$ , the other two in the directions  $\pi/2$  and  $3\pi/2$ .

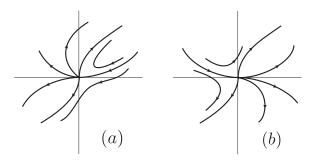


FIGURE 30. The elementary degenerate saddle-nodes (the orientation of the orbits can be reversed).

(3) If m is even, then (0,0) is a saddle-node, i.e., a singularity whose neighborhood is the union of one parabolic and two hyperbolic sectors, two of whose separatrices tend to (0,0) in the directions  $\pi/2$  and  $3\pi/2$ , and the other in the direction 0 or  $\pi$  according to  $a_m < 0$  (Figure 30 (a)) or  $a_m > 0$  (Figure 30 (b)).

The corresponding topological indices of these singular points are +1, -1, 0, so they may serve to distinguish the three types.

For the proof of the following theorem, see [1], or Theorems 66 and 67 of [2].

**Theorem 54** (Nilpotent Theorem). Let (0,0) be an isolated singularity of the system  $(\dot{x},\dot{y})=(y+X(x,y),Y(x,y))$ , where X and Y are analytic in a neighborhood of the origin and have expansions that begin with second degree terms in x and y. Let y=F(x) be the solution of the equation y+X(x,y)=0 in the neighborhood of (0,0), and assume that the series expansions for the functions  $f(x)=Y(x,f(x))=ax^{\alpha}(1+\cdots)$  and  $\Phi(x)=((\partial X)/(\partial x)+(\partial Y)/(\partial y))(x,F(x))=bx^{\beta}(1+\cdots)$ , where  $a\neq 0,\ \alpha\geq 2$  and  $\beta\geq 1$ . Then

- (1) If  $\alpha$  is even, and
- (a)  $\alpha > 2\beta + 1$ , then the origin is a saddle-node (index 0), see Figure 31 (a).

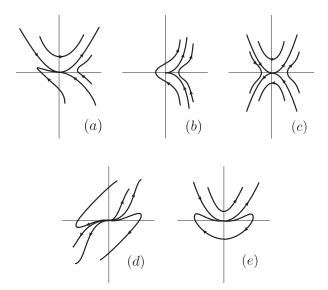


FIGURE 31. The local behavior near a nilpotent singularity (the orientation of the orbits can be reversed).

- (b) Either  $\alpha < 2\beta + 1$  or  $\Phi(x) \equiv 0$ , then the origin is a singularity whose neighborhood is the union of two hyperbolic sectors (index 0), see Figure 31 (b).
- (2) If  $\alpha$  is odd and a > 0, then the origin is a saddle (index -1), see Figure 31 (c).
  - (3) If  $\alpha$  is odd, a < 0, and
- (a) either  $\alpha > 2\beta + 1$  and  $\beta$  even; or  $\alpha = 2\beta + 1$ ,  $\beta$  even and  $b^2 + 4a(\beta + 1) \ge 0$ , then the origin is a node (index +1), see Figure 31 (d). The node is stable if b < 0, or unstable if b > 0.
- (b) Either  $\alpha > 2\beta + 1$  and  $\beta$  odd, or  $\alpha = 2\beta + 1$ ,  $\beta$  odd and  $b^2 + 4a(\beta + 1) \geq 0$ , then the origin is the union of a hyperbolic and an elliptic sector (index +1), see Figure 31 (e).
- (c) Either  $\alpha=2\beta+1$  and  $b^2+4a(\beta+1)<0$ , or  $\alpha<2\beta+1$  (or  $\Phi(x)\equiv 0$ ), then the origin is either a focus, or a center, respectively (index +1).

## REFERENCES

- 1. A.F. Andreev, Investigation of the behavior of the integral curves of a system of two differential equations in the neighborhood of a singular point, Trans. Amer. Math. Soc. 8 (1958), 183–207.
- 2. A.A. Andronov, E.A. Leontovich, I.I. Gordon and A.L. Maier, *Qualitative theory of second-order dynamic systems*, Wiley, New York, 1973.
- 3. V.I. Arnold and Y. S. Ilyashenko, *Dynamical systems I, Ordinary differential equations*, Encyclopaedia Math. Sci., Vols. 1–2, Springer, Heidelberg, 1988.
- **4.** L. Cairó, M. R. Feix and J. Llibre, *Integrability and algebraic solutions for planar polynomial differential systems with emphasis on the quadratic systems*, Resenhas da Universidade de São Paulo **4** (1999), 127–161.
- **5.** L. Cairó and J. Llibre, Darboux first integrals and invariants for real quadratic systems having an invariant conic, J. Phys. Math. Gen. **35** (2002), 589–608.
- **6.** J. Chavarriga, J. Llibre and J. Sotomayor, Algebraic solutions for polynomial vector fields with emphasis in the quadratic case, Exposition. Math. **15** (1997), 161–173.
- 7. C. Christopher, Invariant algebraic curves and conditions for a center, Proc. Roy. Soc. Edinburgh 124 Sect. A (1994), 1209–1229.
- 8. C. Christopher and J. Llibre, Integrability via invariant algebraic curves for planar polynomial differential systems, Ann. Differential Equations 16 (2000), 5–19.
- 9. ———, Algebraic aspects of integrability for polynomial systems, Qual. Theory Dynam. Syst. 1 (1999), 71–95.
- 10. C. Christopher, J. Llibre and J.V. Pereira, Multiplicity of invariant algebraic curves in polynomial vector fields, to appear.
- 11. G. Darboux, Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré (Mélanges), Bull. Sci. Math. 2ème série 2 (1878), 60–96; 123–144; 151–200.
- 12. E.A.V. Gonzales, Generic properties of polynomial vector fields at infinity, Trans. Amer. Math. Soc. 143 (1969), 201–222.
- 13. C. Gutierrez and J. Llibre, Darboux integrability for polynomial vector fields on the 2-dimensional sphere, Extracta Math. 17 (2002), 289–301.
- ${\bf 14.}$  K. Jänich, Topology, Undergrad. Texts Math., Springer-Verlag, New York, 1984.
- 15. Qibao Jiang and J. Llibre, Qualitative classification of singular points, preprint 319, Centre de Recerca Matemàtica, 1996.
- 16. J.P. Jouanolou, Equations de Pfaff algébriques, Lectures Notes in Math. 708, Springer-Verlag, New York, 1979.
- 17. J. Llibre and G. Rodríguez, Invariant hyperplanes and Darbox integrability for d-dimensional polynomial differential systems, Bull. Sci. Math. 124 (2000), 1–21.
- 18. ——, Darboux integrability of polynomial vector fields on 2-dimensional surfaces, Inter. J. Bifurcations Chaos 12 (2002), 2821–2833.
- 19. J. Llibre and X. Zhang, Polynomial first integrals of quadratic systems, Rocky Mountain J. Math. 31 (2002), 1317–1371.

- 20. L. Markus, Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc. 76 (1954), 127–148.
- 21. J.C.R. Medrado and M.A. Teixeira, Symmetric singularities of reversible vector fields in dimension three, Physica 112 (1998), 122–131.
- **22.** ———, Codimension-two singularities of reversible vector fields in 3 D, Qual. Theory Dynam. Sys. **2** (2001), 399–428.
- 23. D. Neumann, Classification of continuous flows on 2-manifolds, Proc. Amer. Math. Soc. 48 (1975), 73–81.
- **24.** H. Poincaré, Sur l'intégration des équations différentielles du premier ordre et du premier degré I and II, Rendiconti del Circolo Matematico di Palermo **5** (1891), 161–191; **11** (1897), 193–239.
- 25. J.W. Reyn, A bibliography of the qualitative theory of quadratic systems of differential equations in the plane, 3rd ed., Delft Univ. of Technology, Faculty of Tech. Math. and Informatics, Report, 1994; see also http://ta.twi.tudelft.nl/DV/Staff/J.W.Reyn.html.
- **26.** R. Roussarie, Bifurcation of planar vector fields and Hilbert's sixteenth problem, Progr. Math., vol. 164, Birkhäuser Verlag, Basel, 1998.
- 27. D. Schlomiuk, Algebraic particular integrals, integrability and the problem of the center, Trans. Amer. Math. Soc. 338 (1993), 799–841.
- ${\bf 28.}$  M.A. Teixeira, Singularities of reversible vector fields, Physica D  ${\bf 100}$  (1997), 101–118.
- **29.** J.A. Weil, Constant et polynómes de Darboux en algèbre différentielle: applications aux systèmes différentiels linéaires, Ph.D. Thesis, École Polytechnique, 1995, 673–688.
- **30.** Ye Yanqian, Qualitative theory of polynomial differential systems, Shanghai Scientific & Technical Publ., Shanghai, 1995, in Chinese.
- 31. Ye Yanqian et al., Theory of limit cycles, Amer. Math. Soc., Providence, RI, 1984.
- **32.** Zhang Zhifen, Ding Tongren, Huang Wenzao and Dong Zhenxi, *Qualitative theory of differential equations*, Transl. Math. Monogr., vol. 101, Amer. Math. Soc., Providence, RI, 1992.

DEPARTAMENT DE MATEMÀTIQUES, UNIVERSITAT AUTÒNOMA DE BARCELONA, 08193 — BELLATERRA, BARCELONA, SPAIN E-mail address: jllibre@mat.uab.es

Instituto de Matemática e Estatística, Universidade Federal de Goiás, 74011-970 — Goiânia, Goiás, Brazil E-mail address: medrado@mat.ufg.br