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APPROXIMATION OF INVARIANT MEASURES
FOR RANDOM ITERATIONS

ANDERS ÖBERG

ABSTRACT. In this paper iterated function systems are
investigated from the point of view of their invariant measures.
Different ideas of how to approximate invariant measures
are investigated, but we also discuss necessary and sufficient
conditions for uniqueness of an invariant measure. We also
consider sufficient conditions for the measure separated open
set condition under weak assumptions.

1. Introduction. In this paper we generalize some results ob-
tained in Strichartz et al. [33] from the interval to compact subsets
of Euclidean spaces. In [33], they managed to approximate invariant
measures associated to iterated function systems with finitely many
maps Sj , that is measures which satisfy an identity of the form

(1.1) μ =
m∑

j=1

pjμ ◦ S−1
j , m ≥ 2.

In the part of [33] we are presently interested in, one has one-to-one
maps Sj : [0, 1] → [0, 1] with strictly positive continuous probability
weight functions pj . In [33] a non-overlapping condition was also
imposed, which was the key to their successful approximation algorithm
and was also sufficient to establish uniqueness of an invariant measure
of the form (1.1). If the state space is X, this non-overlapping condition
means that the interiors of the images SjX are disjoint and if X = K,
a compact subset of a Euclidean space, the so-called open set condition,
see Hutchinson [15], is satisfied with the interior of K as the open set.

A simple condition for uniqueness of an invariant measure is strict
contraction of the maps, see for instance [15, Theorem 1, p. 733]. There
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are weaker conditions, such as the average contraction conditions of [3,
Theorem 1, p. 20]. The non-overlapping condition applies in some
situations when average contraction, even in a geometric mean sense,
is difficult to verify or not even present, for instance, if one map on the
unit interval is S1(x) =

√
x/2 and the other map is S2(x) = 1 −√

x/2.
For further examples, see [33, p. 112]. There they treat inverse branches
of polynomial maps P (z) = z2 − a, for a real and a ≥ 2. In this range
the Julia sets lies in the real axis and is the attractor for the IFS given
by the two maps ±√

x + a. The attractor is included in the interval
[−b, b], where b is the larger root of the equation b2 = a + b.

Our goal in this paper was to investigate what could be done in a
higher dimensional context using the non-overlapping condition, which
is a natural condition when one is interested in iterating the inverse
branches of a map.

In a one-dimensional context, the non-overlapping condition was
treated also in Dubins and Freedman (1966) in [10]; see in particular
Theorem 5.4 and its corollary.

Here we also investigate in some detail why, in the context of con-
tinuous one-to-one maps, the non-overlapping condition works as a
uniqueness condition in the one-dimensional case (Theorem 2, Remark
8, Subsection 4.3), and why it is not sufficient in higher dimensions
(Subsection 4.1). In Subsection 4.3 we consider a condition for unique-
ness which is weaker than the non-overlapping condition, and which
can be used in higher dimensions. This is done in connection with
estimates in probability metrics. The Wasserstein metric estimate is
known, but in this paper we also consider an approximation in the L1-
metric as a generalization from one to two (and higher) dimensions. In
one dimension the Wasserstein metric on probability measures and the
L1-metric for the corresponding distribution functions are equal (not
only equivalent), but in two (and higher) dimensions we have complica-
tions concerning the definition of an L1-metric (Subsection 4.2) and we
also obtain a different type of estimate (Theorem 3), once a reasonable
definition has been made.
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We also discuss the case when the weights in (1.1) are not constants,
or even probabilities. This means that we have to replace (1.1) with
the following identity, for all Borel sets A:

(1.2) λμ(A) =
m∑

j=1

∫
S−1

j
A

qj(x) dμ(x), λ > 0,

which we write shorter as

(1.3) λμ =
m∑

j=1

(qjμ) ◦ S−1
j ,

where we write pj instead of qj , whenever
∑m

j=1 pj(x) = 1 for all x (then
we also have λ = 1). In such a probabilistic case we prove (Theorem 1)
that the support of all μ satisfying (1.2) is uniquely defined by the IFS
parameters (by Stenflo [29, Theorem 1], there can be more than one
μ), if the maps Sj are continuous and one-to-one on [0, 1]. We also
give a necessary condition for uniqueness (Proposition 1). The reader
is referred to Johansson and Öberg [18] and, in the case of probabilistic
weights, Stenflo [31], for some recent contributions to uniqueness of μ
of the form (1.2).

Our main objective is to suggest how to obtain a ‘local’ approximation
of a unique invariant measure (Theorem 2 and Proposition 2) in two and
higher dimensions. This can be regarded as an extension of the local
approximation in Strichartz et al. [33, in particular Algorithm 2.2 and
Theorem 2.5, pp. 106 107], where the supremum (Kolmogorov) metric
on the distribution functions was used. The supremum metric cannot
be used in higher dimensions in this context, for reasons explained
in Subsection 4.2. Instead, we estimate μ in (1.1) or (1.2) on small
sets (the diameter tends to zero). When the weights are constant
probabilities we prove, following either Lemmas 4, 5 or 6, that μn(A) =
μ(A), where A is a set of the form Sin

◦ · · · ◦Si1K, K a compact subset
of R2, and μn the uniform distribution on A of mass pi1 · · · pin

. (This
immediately gives the supremum metric estimate in one dimension.) In
Lemma 5, which depends on Lemma 4, and Lemma 6, which does not
depend on Lemma 4, we prove the measure separated open set condition,
i.e., μ(SjK∩SkK) = ∅, for j �= k, see Strichartz [32]. Lemmas 3 5 are
extensions/elaborations of results of Lau and Wang [20], in particular
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of Theorem 2.3. Lemma 6 is our own and it relies on the Jordan curve
theorem and is therefore two-dimensional in its nature; it requires that
∂K is a Jordan curve and that the maps do not have common points
of prime period 1 or 2.

We extend this local approximation idea to the case of variable
weights (Proposition 2) giving a sufficient condition for this approx-
imation to work. This condition, ‘asymptotic matching of set partition
data,’ is quite indirect and it would require further research to obtain
predictable criteria.

We end this paper (Subsection 4.3) by comparing with other unique-
ness conditions. In Example 3 we give an example where we have a
unique invariant measure without having diam(Sin

◦ · · · ◦Si1 [0, 1]) → 0
for any sequence of maps.

This paper was the first half of the author’s thesis [23] and has been
referred to under this title (in S�lomczyński et al. [27], Öberg et al.
[24]) and also under its preprint coordinates: “U.U.D.M. Rep. 6, Dept.
of Mathematics, Uppsala University, 1997” (in Fan and Lau [13], Lau
[19], Stenflo [28], Stenflo [30]).

2. Notation and preliminaries. Throughout this paper X will
denote a compact metric space, and if nothing else is stated we are
considering a compact metric space X as the ambient space. K denotes
a compact subset of R2. For a set A, A◦ is the interior of A, ∂A the
boundary of A, A the closure of A and Ac the complement of A. The
underlying metric on X and K will be denoted by d and on K it is
assumed that d is the Euclidean metric if nothing else is mentioned. For
a set A we will by diam (A) mean supx,y∈A d(x, y). We will assume that
the probability weight functions are strictly positive and continuous;
they are not assumed to be constants unless explicitly stated, but
sometimes we have emphasized that the weight functions may be place-
dependent by writing (pjμ) instead of pjμ in the measure-invariance
identity. Also, the non-overlapping condition is never assumed without
so saying. The maps Sj are always assumed to be continuous and it is
tacitly assumed that there are at least two of them (often we denote the
number of maps with the letter m). On Euclidean spaces, Fμ denotes
the distribution function of the probability measure μ.
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We have borrowed the formalism presented below from Barnsley et
al. [2]. Invariant measures of IFS’s can be interpreted as stationary
measures to a discrete time Markov process, which is a sequence of
random variables {Zn} on a probability space (Ω,F , P ) with values in
(X,B) (where B are the Borel subsets of the state space X) satisfying

P (Zn+1 ∈ A | Zn, . . . , Z0) = P (Zn+1 ∈ A | Zn) a.s.,

for all n ≥ 0 and all A ∈ B.

A transition probability function p(x, B), or a stochastic kernel, is a
version of P (Zn+1 ∈ B | Zn = x) for all Borel sets B (we are just
considering cases when p(x, B) is independent of n), and is defined for
a given x and a given Borel subset B ⊆ K by

p(x, B) =
m∑

j=1

pj(x)δSj(x)(B) =
m∑

j=1

pj(x)1B(Sj(x))

where δx denotes the Dirac measure concentrated at x and 1B denotes
the indicator function of B.

We will make use of an operator T � : P(X) → P(X). This operator
is the restriction to P(X) of the operator T � taking M(X), the space
of finite signed Borel measures on X, into itself, and this is the adjoint
operator to the Markov operator T defined by

(Tf)(x) =
∫

f(y)p(x, dy) =
m∑

j=1

pj(x)f(Sj(x))

for f ∈ C(X).

Let ν ∈ P(X), and let {Zν
n, n = 0, 1, 2, . . . } be the Markov process

having initial distribution ν. The operator T � describes how the
probability distribution ν on X is transformed in one step of the Markov
process {Zν

n, n = 0, 1, 2, . . . }, i.e., (T �ν)(B) = P (Zν
1 ∈ B), where

B is a Borel subset of X. It is also easy to see that our operator
T � : P(X) → P(X) is given by

(T �μ)(B) =
∫

p(x, B) μ(dx) =
m∑

j=1

(pjμ)(S−1
j (B)).
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From this it is easy to see that an invariant measure is a fixed point to
the T �-operator. Also,

(T �nμ)(B) =
∫

p(n)(x, B) μ(dx),

where p(n)(x, B) is the n-step transition probability, the probability
after n iterations of landing in B when starting at x.

The space of invariant probability measures, Pinv(X), to an IFS is
non-empty (as follows by applying the Schauder-Tychonoff theorem to
the operator T �, since the maps are continuous.

Let Ω = [m]N = {i = (i1, i2, . . . ) : 1 ≤ ik ≤ m} and let Px, for a fixed
x, be the probability measure on Ω defined by

Px{i : jth coordinate of i is ij , j = 1, . . . , n}
= pi1(x)pi2(Si1x) · · · pin

(Sin−1 ◦ · · · ◦ Si1x).

The process {Zδx
n } can be realized on (Ω, Px) as

Zδx
n (i) = Sin

◦ · · · ◦ Si1x.

We will also use the concept of mathematical expectation, which will
be denoted by the symbol E.

3. Approximation in one dimension and uniqueness.

3.1 The general construction. We will now present an algorithm
by which, in the non-overlapping case with one-to-one maps, we will
be able to construct approximating measures to a unique invariant
measure. We will require for this construction of measures that either
K is the closure of a bounded open subset of R2, or that K = [0, 1].

First we construct set partition data, (which we call interval partition
data when dealing with [0, 1]), (Sn, νn), successively by defining a
family of subsets with disjoint interiors in the following manner:

S0 = {K},
S1 = {SjK : j = 1, . . . , m},
S2 = {SiSjK : i, j = 1, . . . , m}, etc.
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Sometimes we refer to the sets in Sn, for a fixed n, as a generation of
images.

From Brouwer’s domain theorem (Vick [35, p. 38]) it follows that
the interior of K is mapped onto the interior of SjK for all j and that
the boundary of K is mapped onto the boundary of SjK. Since this
argument holds also for the next generation of images, we will have
non-overlapping sets also in that generation and these will be included
in the sets of the former generation. Also, the sets SjK will be the
closures of bounded open sets.

When the weight functions are all constants, we define set functions
as follows

ν0(K) = 1,

ν1(SjK) = pj , for all j,

ν2(SiSjK) = pipj , for all i, j, etc.

Then we construct a unique sequence of probability measures {μn} by
letting

μn(A) = νn(A) for all A ∈ Sn

with μn uniformly distributed in the interior of every set in every set
partition Sn.

3.2 The one-dimensional case. From the construction in Subsec-
tion 3.1 above, we see that in the one-dimensional case we get piece-
wise linear continuous distribution functions corresponding to the con-
structed measures. In Strichartz et al. [33, p. 105] it turned out that
in the one-dimensional case, given the non-overlapping condition for
one-to-one maps (monotonicity is sufficient), every invariant measure
is atom-free and this implies that the distribution function of any in-
variant measure is continuous, which of course is necessary if we want
to approximate such a function uniformly by continuous functions.

Definition 1. Let (S, ν) denote set partition data in the sense that S
is a finite collection of subsets A of K and ν is a set function satisfying
the probability conditions 0 ≤ ν(A) ≤ 1 and

∑
A∈S ν(A) = 1. A

measure μ ∈ P(K) matches the set partition data (S, ν) exactly if
μ(A) = ν(A) for all A ∈ S.
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In the one-dimensional case Strichartz et al. observed the following
approximation in the uniform metric when the maps are continuous,
one-to-one and non-overlapping and the weight functions are all con-
stants:

sup
x∈[0,1]

|Fn(x) − F (x)| = sup
x∈[0,1]

|μn[0, x] − μ[0, x]|

= sup
x∈[a,b]
[a,b]∈Sn

|μn[a, x] − μ[a, x]|

≤ sup
[a,b]∈Sn

νn([a, b]) ≤ pn
max → 0, n → ∞,

where pmax denotes the largest weight. The error in each step n cannot
exceed the value the set function assigns to the interval where the
error stays, in a particular partition, and this is due to the exact
matching of the interval partition data (Sn, νn), for all n, of the
invariant measure. This follows since the non-overlapping condition
gives, see [33], μ(Sin

◦ · · · ◦ Si1A) = pi1 · · · pin
μ(A), for all n ≥ 1, all

sequences i1, . . . in and all Borel subsets A of [0, 1].

They also proved the following related result (Strichartz et al. [33,
Theorem 2.5]):

dsup(T �μ1, T
�μ2) ≤ pmax dsup(μ1, μ2),

where μ1 and μ2 are arbitrary members of P([0, 1]) and dsup denotes the
uniform metric with respect to the distribution functions corresponding
to these probability measures.

The same result was obtained already in Dubins and Freedman [10,
Theorem 5.4 and its corollary] for iteration of monotone i.i.d. maps.
They considered a more general hypothesis, allowing all maps but
two to be overlapping (‘splitting with positive probability’ was their
terminology). They also got the same result when requiring at least
two maps to be non-overlapping after a finite number of steps. However,
the error in each step will, with their hypothesis, of course be larger
than with the non-overlapping condition used by Strichartz et al. If we
have the general non-overlapping after one iteration step, we get the
error (1 − pmin)n in the nth step, since there is one probability weight
to exclude, and a priori we may only exclude the one with least weight
in each step.
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It should also be mentioned that a broad extension of the theory of
Dubins and Freedman for iteration of monotone maps were later given
in Bhattacharya and Lee [5].

3.3 Ergodic decompositions. We now discuss ergodic decomposi-
tions of a compact metric state space. Here the theory diverges some-
what from the orthodox theory of Markov chains on a general state
space, since in that theory one generally does not take topological con-
cepts into consideration, which is natural in our context.

Definition 2. A Borel set A �= ∅ is stochastically closed if p(x, A) =
1 for all x ∈ A.

Remark 1. In our case this means that ∪m
j=1SjA ⊆ A.

Definition 3. A non-empty subset F of X is an ergodic kernel if it
is stochastically and topologically closed, and if it has no stochastically
and topologically closed proper subsets.

Remark 2. It is an easy consequence of Zorn’s lemma, see, e.g.,
Norman [22, p. 52], that every stochastically and topologically closed
set contains a minimal stochastically and topologically closed set, i.e.,
an ergodic kernel. In some texts an ergodic kernel is referred to as a
minimal set. From the minimality it follows that if E is an ergodic
kernel, then ∪m

j=1SjE = E.

Remark 3. There always exists an invariant measure on any topo-
logically and stochastically closed subset of X (as is easily seen by
considering the iterates of a point in such a set).

It is also easy to see that the support supp μ of an invariant mea-
sure μ, i.e., the smallest topologically closed set A which satisfies
μ(A) = 1) is stochastically closed. If U :=X \ supp μ, then 0=μ(U)=∑

j(pjμ)(S−1
j U), which implies that μ(S−1

j U) = 0, for all j, and we
have S−1

j U ⊆ U , for all j. We conclude that for all j, Sj(supp μ) ⊆
supp μ. Hence supp μ contains an ergodic kernel. In particular, if F is
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an ergodic kernel and μ is an invariant measure such that supp μ ⊆ F ,
then supp μ = F .

Lemma 1. There exists a unique invariant measure only if there are
no two distinct ergodic kernels. Any two distinct ergodic kernels are
disjoint.

Proof. Suppose we have two distinct ergodic kernels F1 and F2 and
suppose that F1 ∩ F2 �= ∅. Let F = F1 ∩ F2. Then F is both
topologically and stochastically closed, implying that F = F1 = F2.
That is, distinct ergodic kernels are disjoint.

It is now rather trivial to show that if we have two disjoint ergodic
kernels, then we cannot have a unique invariant measure and this was
also observed in Jamison [16, Theorem 2.4].

Proposition 1. A necessary and sufficient condition for uniqueness
of an ergodic kernel is that for all x and y and all δ > 0 there exist
integers n and m and sequences {ik}n

k=1 and {jl}r
l=1 such that

d(Sin
◦ · · · ◦ Si1x, Sjr

◦ · · · ◦ Sj1y) < δ.

So this is also, by Lemma 1, a necessary condition for the existence of
a unique invariant measure.

Proof. Suppose we have two distinct ergodic kernels, K1 and K2.
Then we know from Lemma 1 that there exists a δ > 0 such that
δ = min{d(x, y) : x ∈ K1, y ∈ K2}. So, if for all x and y in X and
all δ>0, there exist sequences i1, i2, . . . , in and j1, j2, . . . , jr such that
d(Sin

◦· · ·◦Si1x, Sjr
◦· · ·◦Sj1y) < δ, then there can be only one ergodic

kernel.

For the converse part we observe that if it is not true that for all x
and y and all δ > 0 there exist sequences {ik}n

k=1 and {jl}r
l=1 such that

d(Sin
◦ · · · ◦ Si1x, Sjr

◦ · · · ◦ Sj1y) < δ, then there are points x, y ∈ X
and a δ > 0 such that d(Sin

◦ · · · ◦Si1x, Sjr
◦ · · · ◦Sj1y) ≥ δ > 0, for all

sequences {ik}n
k=1 and {jl}r

l=1, all r, n ≥ 1. Let Ix be the union of all
iterates of x. Let A be the (topological) closure of Ix and B the closure
of Iy. Then A ∩B = ∅, and p(x, A) = 1 for all x in A and p(y, B) = 1
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for all y in B, by continuous extension. Thus by Lemma 1 there exist
at least two invariant measures.

Remark 4. This condition, as sufficient for a unique ergodic kernel,
appeared in Jamison [17, p. 464], but no indication was given there
that this is necessary for uniqueness of an invariant measure, a fact we
here prove.

One would of course like to know when uniqueness of an ergodic
kernel gives uniqueness of an invariant measure. One such situation, see
Jamison [17, pp. 452 455, 463 464] is that the family {1/n

∑n
k=1 T kf}

is equicontinuous, which for instance happens when d(Sjx, Sjy) ≤
d(x, y) for all x, y ∈ X, for all j, and the weight functions are constants,
since then {Tnf} is an equicontinuous family. But in general this is
a difficult problem if not all maps are non-expanding or the weight
functions are not all constants. If the non-overlapping condition is
satisfied we can in the one-dimensional case prove a somewhat weaker
result, Theorem 1, but first we will prove a useful lemma.

Lemma 2. Let Sj : X → X and suppose μ is an invariant measure
and that for a non-empty Borel set A we have SjA ⊆ A for all j. Then
the measures 1Aμ and 1X\Aμ (1Aμ(B) := μ(A ∩ B)) are invariant.

Proof. Let μA := 1Aμ. For all Borel sets B we have, since
A ∩ S−1

j (B) ⊆ S−1
j (A ∩ B), that

μA(B) = μ(A ∩ B) =
∑

j

(pjμ)(S−1
j (A ∩ B))

≥
∑

j

(pjμ)(A ∩ S−1
j (B))

=
∑

j

(pjμA)(S−1
j (B)) = T �μA(B).

In the same way we get μA(X \ B) ≥ T �μA(X \ B). But

μA(B) + μA(X \ B) = μA(X) =
∑

j

(pjμA)(X)

= T �μA(X) = T �μA(B) + T �μA(X \ B),

so we have in fact equality.
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Theorem 1. If Sj : [0, 1] → [0, 1] are non-overlapping one-to-one
maps, then all invariant measures of the IFS have the same support.

Proof. The necessary and sufficient condition in Proposition 1 for a
unique ergodic kernel is satisfied, since the total length of all intervals
in each set partition is less than or equal to one. Since there exists a
unique ergodic kernel E, the supports of all invariant measures must
intersect, with E as their common intersection. There exists at least
one invariant measure μ which has E as its support. We will prove
that all invariant measures have E as their support. Suppose now that
there exists an extremal, see Section 2, invariant measure μ′ which does
not have E as its support. Then it follows that μ′(E) = 0, since by
Lemma 2 all extremal invariant measures assigns measure 0 or 1 to a
set A with SjA ⊆ A for all j.

Then U := Ec satisfies μ′(U) = 1. We will now prove that there exist
an r ≥ 1 and a sequence j1, . . . , ir, such that Sjr

◦ · · · ◦ Sj1 [0, 1] ⊂ U ,
which contradicts the fact that E is stochastically closed.

There exists a finite union of disjoint closed intervals ∪N
i=1Ii ⊂ U

such that μ′(∪N
i=1Ii) > 1/2. It is sufficient that some image in some

generation is included in the interior of one of these intervals. By
the non-overlapping condition it is sufficient that at least one of the
intervals Ii is hit by at least five images in some generation. Suppose
this is not true. Then, for every fixed generation n, we have that
μ′(∪N

i=1Ii) ≤ 4N · pn
max, where pmax := maxj maxx pj(x) < 1, which

contradicts μ′(∪N
i=1Ii) > 1/2, as n becomes sufficiently large.

Thus E is the support of all invariant measures.

Remark 5. The conclusion of Theorem 1 does not mean that we
have a unique invariant measure, since of course two measures can be
mutually singular and yet have the same support. In fact it was proved
in Stenflo [29, Theorem 1], following the construction in Bramson and
Kalikow [8], that this situation may arise if we have an IFS with finitely
many non-overlapping strict contractions together with strictly positive
continuous probability weight functions.
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4. Approximation in two dimensions.

4.1 One-to-one maps. To ensure uniqueness of an invariant
measure in higher dimensions we cannot use only the non-overlapping
condition together with injectivity and continuity of the maps, not
even in the place-independent case, unless we make some additional
assumptions. It is easy to find a counterexample: consider a triangle
with vertices at (0, 0), (0, 1) and (1, 0) and let the IFS be the affine
maps

S1

(
x
y

)
=
(

1/2 0
1/2 1

)(
x
y

)

and

S2

(
x
y

)
=
(

1 1/2
0 1/2

)(
x
y

)

with probability weights p1 = p2 = 1/2. Then there is an invariant
unit point mass at (0, 0). There are, however, infinitely many invariant
measures to this IFS, as is easily seen by studying lines parallel with
the hypotenuse.

It is not even possible to generalize Algorithm 2.2 in Strichartz et
al. [33, p. 106] to generate approximating measures of some invariant
measure, because this algorithm depends on the assumption that there
is no mass on the common boundaries of intersecting images in each
generation Sn, and this assumption is not automatically satisfied in two
dimensions; this can also be seen from the counterexample above.

We will now generalize the ideas in Strichartz et al. [33, pp. 106 107]
which we discussed in Subsection 3.2. We will use the same ‘matching
idea,’ but as already mentioned, Strichartz et al. took advantage of the
simplifications that are special to one dimension. So we have to face
some higher dimensional problems on the way. We have already dealt
with one such generalization in Subsection 3.1, when using Brouwer’s
domain theorem to get new set partitions containing non-overlapping
sets.

As in the one-dimensional case we will be able to determine the
local value of a unique invariant measure if we assume a very weak
additional hypothesis. However, we will not be able to approximate
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the invariant measure using a probability metric; the uniform metric
falls short for reasons explained in Subsection 4.2. In Subsection 4.3 we
will approximate a unique invariant measure in the Wasserstein metric
and in a generalized L1-metric, but these are just ‘average metrics,’
which do not take the local behavior into consideration.

Lemma 3. Suppose μ is any invariant measure to an IFS consisting
of one-to-one maps Sj : K → K. Then if μ satisfies μ(K◦) > 0
and μ(∂K) > 0, we can decompose it into invariant components
concentrated on ∂K and K◦, respectively. Also, if the maps are non-
overlapping and K is the closure of a bounded open set, we always have
that

μ

( m⋃
j=1

Sj∂K \ ∂K

)
= 0.

Proof. From Brouwer’s domain theorem we have that ∪m
j=1SjK

◦ ⊆
K◦. By Lemma 2 any invariant measure can be decomposed into an
invariant part on the boundary of K and an invariant part in the
interior of K. To prove the second assertion, we first show that

∂K ∩ supp μ ⊆
m⋃

j=1

Sj∂K.

Let x be a member of the set ∂K ∩ supp μ. Then x ∈ supp μ implies
that x ∈ SjK for some j. But Brouwer’s domain theorem applies and
we get x ∈ Sj∂K for some j. From the non-overlapping condition and
the assumption that K is the closure of a bounded open set it follows (by
applying the measure invariance formula) that μ(∪m

j=1SjK
◦) = μ(K◦)

and μ(∪m
j=1Sj∂K) = μ(∂K), and thus we have

0 = μ

( m⋃
j=1

Sj∂K

)
− μ(∂K) = μ

( m⋃
j=1

Sj∂K \ ∂K

)
.

The observation to make at this point is that if we move (with some
map Sj) some part of the boundary of K from the boundary into the
interior of K, then this part will not carry μ-mass.
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Lemma 4. Suppose we have an IFS with one-to-one maps Sj : K →
K and that there exist n and a sequence i1, . . . , in such that

Sin
◦ · · · ◦ Si1K ⊆ K◦

Then, for every invariant measure μ, we have μ(K◦) = 1.

Proof. If there exist an n and a sequence i1, . . . , in such that

Sin
◦ · · · ◦ Si1K ⊆ K◦,

then, since SjK
◦ ⊆ K◦ for all j, and since there exists a δ > 0

such that infx∈K pj(x) ≥ δ for all j, we have for all x ∈ K that
Px(Zδx

mn ∈ K◦) ≥ 1 − (1 − δn)m → 1, as m → ∞. Take any invariant
measure μ. Then we have for all m ≥ 1

μ(K◦) = (T �(mn)μ)(K◦) =
∫

p(mn)(x, K◦) μ(dx),

which tends to one, as m tends to infinity, and thus μ(K◦) = 1.

Remark 6. The hypothesis of Lemma 4 is satisfied if K = [0, 1] and
the maps Sj are non-overlapping, continuous and one-to-one. It is
enough to take n = 2, since by the non-overlapping condition it is then
impossible that Si2 ◦ Si1 [0, 1] ∩ {0, 1} �= ∅ for all i1, i2, since there are
at least four intervals Si2 ◦ Si1 [0, 1].

Lemma 5. Suppose we have a non-overlapping IFS consisting of
one-to-one maps Sj : K → K, where K is the closure of a bounded
open set and suppose that the hypothesis of Lemma 4 is satisfied. Then
for every invariant measure μ we have no μ-mass on the overlaps
of the images in each generation of the iteration process. And if the
associated weight functions are all constants, we will, for all n ≥ 1 and
all sequences i1, . . . , in, have that μ(Sin

◦ · · · ◦Si1K) = pi1 · · · pin
, i.e.,

μ matches the set partition data (Sn, νn) exactly for all n.

Proof. The non-overlapping condition, the assumption that K is the
closure of a bounded open set and Brouwer’s domain theorem imply
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that, with j �= k,

μ(SjK ∩ SkK) = μ(∂SjK ∩ (SkK)◦) + μ(∂SkK ∩ (SjK)◦)
+ μ(∂SjK ∩ ∂SkK)

= μ(∂SjK ∩ ∂SkK)
= μ(Sj∂K ∩ Sk∂K).

The second part of Lemma 3 gives

μ(Sj∂K ∩ Sk∂K) = μ(∂K ∩ Sj∂K ∩ Sk∂K).

Lemma 4 implies μ(∂K) = 0, which means that μ(SjK ∩ SkK) = 0.

In the case of constant weights we use this to prove that μ(Sin
◦ · · ·

◦ Si1K) = pi1 · · · pin
, for all n ≥ 1 and all sequences i1, . . . , in. Since

μ(Sin
◦ · · · ◦ Si1K)

=
m∑

j=1

pjμ(S−1
j (Sin

◦ · · · ◦ Si1K))

= pin
μ(Sin−1 ◦ · · · ◦ Si1K) +

∑
j �=in

pjμ(S−1
j (Sin

◦ · · · ◦ Si1K)),

this is equivalent to showing that μ(S−1
j (Sik

◦ · · · ◦ Si1K)) = 0 for
j �= ik, k = 1, . . . , n. But μ(S−1

j (Sik
◦ · · · ◦ Si1K)) = (μ ◦ S−1

j )(SjK ∩
Sik

◦ · · · ◦ Si1K), and this means that it is sufficient to show that
μ(SjK∩Sik

K) = 0 for j �= ik, because μ◦S−1
j is absolutely continuous

with respect to μ for all j, and Sik
◦ · · · ◦ Si1K ⊆ Sik

K.

Thus, if the weight functions are all constants, we have for all n and
all sequences i1, . . . , in that μ(Sin

◦ · · · ◦ Si1K) = pi1 · · · pin
.

Lemma 6. Suppose the maps Sj are one-to-one and non-overlapping.
Suppose that ∂K is a Jordan curve, i.e., it is homeomorphic to a circle.
Then if there are no common periodic points to all maps Sj with prime
period one or two (the common periodic points do not necessarily have
the same prime period for every map), we can draw the same conclusion
as in Lemma 5 without assuming the hypothesis of Lemma 4.
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Proof. We know that if ∂K is a Jordan curve, then, since the maps Sj

are continuous and one-to-one, ∂SjK = Sj∂K are Jordan curves. From
the non-overlapping condition and the Jordan curve theorem, see, e.g.,
Apostol [1], it follows that SjK

◦ ⊂ R2 \ SkK and SkK◦ ⊂ R2 \ SjK.
This implies that SjK

◦ ∩SkK = ∅ and SkK◦ ∩ SjK = ∅. So we have
that, with j �= k, SjK ∩ SkK = ∂SjK ∩ ∂SkK = Sj∂K ∩ Sk∂K (the
last equality again by Brouwer’s domain theorem).

As in the proof of the first assertion of Lemma 5, Lemma 3 now
gives that μ(SjK ∩ SkK) = μ(∂K ∩ ∂SjK ∩ ∂SkK). Every discrete
extremal invariant measure is uniformly distributed on a finite set of
points (Dubins and Freedman [10, p. 840]), which is permuted by every
map Sj . If we can prove that the set ∂K ∩ ∂SjK ∩ ∂SkK contains at
most two points, then by hypothesis μ(∂K ∩ ∂SjK ∩ ∂SkK) = 0, for
any invariant measure μ.

Suppose that there exist at least three points a, b and c in the
intersection ∂K ∩ ∂SjK ∩ ∂SkK and that ∂K is a circle, which is
possible by a topological conjugation argument. From a corollary of
the Jordan curve theorem (Apostol [1, p. 184]) it now follows that we
can join an arbitrary point in SjK

◦ with a, b and c on the circle with
arcs which, except for the endpoints, lie entirely in SjK

◦. It follows
from the observation that K is topologically conjugated to a disc that
these arcs can be chosen to be Jordan arcs, i.e., simple arcs arcs which
do not intersect themselves.

But then we have three connected disjoint open domains, by the
Jordan curve theorem. The domains are bounded by ∂K and the three
Jordan arcs joining a, b and c with the arbitrary point. SkK◦ cannot
meet the Jordan arcs and thus has to be contained in one of the disjoint
open domains. But then it is not possible to join an arbitrary point
in SkK◦ with all three points a, b and c, with arcs lying in SkK◦

except for the endpoints. Thus, we can have at most two points in
∂K ∩ ∂SjK ∩ ∂SkK and the conclusion follows.

Remark 7. In Lemma 6 we used a typically two-dimensional charac-
terization, a Jordan curve. It is not known to the author if it is possible
to state a similar result in three (and higher) dimensions.
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We are now prepared to give our first uniqueness result. The method
of proof is preparing for future attempts in two dimensions to deal with
non-constant weight functions, possibly not even summing to one at all
points, see Proposition 2 and Remark 10 below.

Theorem 2. Suppose that we have constant weight functions and
that either the hypotheses of Lemma 5 or those of Lemma 6 are
satisfied. If diam (Sin

◦ · · · ◦ Si1K) → 0 in probability, we have a
unique invariant measure μ and μn → μ in the weak �-topology, where
μn are the approximating measures constructed in Subsection 3.1. Also,
μn(A) = μ(A) for all A ∈ Sn.

Proof. From Lemma 5 or Lemma 6 and the construction in Subsec-
tion 3.1 it follows that for any invariant measure μ, μn(A) = μ(A) for
all A ∈ Sn. We now show that when diam (Sin

◦ · · · ◦ Si1K) → 0 in
probability, we have a unique invariant measure μ with this property.

Let μ be an invariant measure. Let G be an open subset of K, and
let ε > 0 be given. By regularity of the probability measures on K,
there exists a compact subset C of G such that μ(G) − ε < μ(C). It
is easy to see that diam (Sin

◦ · · · ◦ Si1K) → 0 in probability implies
that diam (Si1 ◦ · · · ◦ Sin

K) → 0 in probability and by monotonicity
also almost surely. Then, since diam (Si1 ◦ · · · ◦ Sin

K) → 0 almost
surely, we have that for all ε′ > 0, there exists, by Egoroff’s theorem,
a measurable subset Γ of Ω (see Section 2 for the definition of Ω)
such that P (Ω \ Γ) ≤ ε′ and diam (Si1 ◦ · · · ◦ Sin

K) → 0 uniformly
on Γ. Then, on Γ, we can choose N > 0 so that n ≥ N implies
diam (Si1 ◦ · · · ◦ Sin

K) < (1/2) dist (C, Gc) :=(1/2) min{d(x, y) : x ∈ C,
y ∈ Gc}. Since, for every invariant measure μ, supp μ is covered by
the union of the sets in Sn for a fixed n, we can choose a large n and
A

(n)
i ∈ Sn, i = 1, . . . , r, where ∪i≤rA

(n)
i ⊂ G, such that (with Ẑn

denoting the process induced by reversed iterations)

μ

(⋃
i≤r

A
(n)
i

)
= P

(
Ẑμ

n (i) ∈
⋃
i≤r

A
(n)
i

)
≥ μ

( ⋃
A(n)∈Sn

A(n)∩C �=∅

A(n)

)
− ε′.
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We then have

μ(G)−ε < μ

(
C∩

⋃
A(n)∈Sn

A(n)

)
≤ μ

( ⋃
A(n)∈Sn

A(n)∩C �=∅

A(n)

)
≤ μ

(⋃
i≤r

A
(n)
i

)
+ε′.

Since, by Lemma 5 or Lemma 6, μ matches set partition data exactly,
we have μ(G)− ε < μn(∪i≤rA

(n)
i ) + ε′ ≤ μn(G) + ε′. Thus, since ε and

ε′ can be chosen arbitrarily small, we have that lim infn→∞ μn(G) ≥
μ(G), and we have convergence in the weak �-topology of the sequence
{μn} to μ, which consequently is a unique invariant measure.

Remark 8. The theorem generalizes some of the results of Strichartz
et al. [33, pp. 106 107], since their conditions (non-overlapping and
one-to-one maps) imply that diam (Sin

◦ · · · ◦ Si1 [0, 1]) → 0 almost
surely, since by the first part of Borel-Cantelli’s lemma, we have for all
ε > 0 that

∞∑
n=1

P{diam (Sin
◦ · · · ◦ Si1 [0, 1]) > ε} ≤

∞∑
n=1

1
ε

pn
max < ∞,

where pmax := maxj pj , and this implies that for all ε>0, P{diam (Sin
◦

· · · ◦ Si1 [0, 1]) > ε infinitely often} = 0.

Remark 9. It is possible to use the same method of proof as in
Theorem 2 when considering non-compact Euclidean state spaces.
Then we use the hypothesis that diam (Sin

◦ · · · ◦ Si1K) → 0 in
probability for all compact subsets K of R2.

Then if there exists a (non-empty) bounded open set U , such that
SjU ⊆ U for all j and SjU ∩SkU = ∅, j �= k, we can proceed as before,
since all invariant measures are concentrated on some subset of U ; if
μ is an invariant measure and Bk is a sequence of bounded open sets
containing U such that Bk+1 ⊂ Bk and

⋂
Bk = U , we have

μ(Bk) =
∫

E 1Bk
(Sin

◦ · · · ◦ Si1x) μ(dx),

which tends to one, as n tends to infinity. Thus μ(U) = μ(∩Bk) = 1.
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If we drop the requirement that U should be bounded, we probably
have to assume that the process {Zδx

n } is tight for some x, and then for
all x, meaning that for all ε > 0 there exists a compact set Kε, such
that with μn(A) = P (Zδx

n ∈ A) for all Borel subsets A of R2, we have
μn(Kε) > 1 − ε for all n. It is sufficient (Barnsley et al. [3, p. 380]) to
assume that there exists a finite constant M such that E d(x, Zδx

n ) ≤ M
for all n.

The following proposition adapts the situation in Theorem 2 to the
place-dependent case, as we shall see in Remark 10 below.

Proposition 2. Assume that the maps Sj : K → K are one-to-one
and non-overlapping. Suppose we have an invariant measure μ match-
ing the sequence of set partition data {(Sn, μn)}n≥1 asymptotically in
the sense that∑

A∈Sn

|μn(A) − μ(A)| ≤ εn, where εn → 0, as n → ∞.

Then if, for all index sequences diam (Sin
◦ · · · ◦ Si1K) → 0, we have a

unique invariant measure μ and μn → μ in the weak �-topology.

Proof. We modify the proof of Theorem 2 slightly by noting that
since, for all index sequences {ij} diam (Sin

◦ · · · ◦ Si1K) → 0, we can
choose N > 0 such that n ≥ N implies diam (Sin

◦ · · · ◦ Si1K) <
(1/2) dist (C, Gc). As before we can, given ε > 0, by regularity take a
compact subset C of G, such that if n is chosen large enough, we have

μ(G) − ε < μ(C) ≤ μ

( ⋃
i≤m

A
(n)
i

)
,

where A
(n)
i , i = 1, . . . , m, is some collection of sets in Sn also included

in the given open set G. Since
∑

A∈Sn
|μn(A) − μ(A)| ≤ εn, we have

μ(G) − ε < μn

( ⋃
i≤m

A
(n)
i

)
+ εn.

Since εn → 0 as n → ∞, it follows that lim infn→∞ μn(G) ≥ μ(G)
and thus μn → μ in the weak �-topology and μ is the unique invariant
measure.
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Remark 10. The notion of asymptotic matching of a sequence of
set partition data in Proposition 2 above becomes natural if one
attempts to approximate unique invariant measures associated to IFS
with place-dependent weight functions. This was what Strichartz
et al. [33, Section 3, pp. 109 112] were trying to do on [0, 1] with some
partial success. They did not have any criteria ensuring uniqueness of
an invariant measure in the place-dependent case, but they provided
a convincing approximation model of invariant measures, as follows.
Suppose we are given the general situation of

λμ =
m∑

j=1

(qjμ) ◦ S−1
j ,

where the qjs are projectivized weight functions, not necessarily satis-
fying a probability condition, and λ > 0.

Now let q+
jk(J) = supx∈J qj(x) and q−jk(J) = infx∈J qj(x), where J is

an interval belonging to the usual interval partition Sk. It is obvious
that q+

jk(J) < ∞ and that q−jk(J) > 0. By the integral mean value
theorem there exists a constant qjk(J), with q−jk(J) ≤ qjk(J) ≤ q+

jk(J),
so that every invariant measure μ satisfies

λμ(J ′) =
∑

SjJ⊆J′
qjk(J)μ(J).

Then one approximates μ(J ′) by solving the system

λ±
k μ±

k (J ′) =
∑

SjJ⊆J′
q±jk(J)μ±

k (J)

for J ∈ Sk, where the μ±
k ’s are approximating measures. It follows

(Strichartz et al. [33, Theorem 3.2]) that λ±
k → λ, which consequently

is unique.

On [0, 1], we obtain the following estimate in the uniform metric:

sup
x∈[0,1]

|μ±
k [0, x] − μ[0, x]| ≤ sup

J∈Sk

μ±
k (J) +

∑
J′∈Sk

|μ±
k (J ′) − μ(J ′)|.

This estimate can, under the same additional assumptions, be used
to give a criterium for uniqueness of an invariant measure. As in
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Proposition 2 one has to give criteria for the matching error sum to
converge to zero. In the case of strictly positive continuous probability
weight functions, we have in Lemmas 3, 4, 5 and 6 given adequate
conditions for an investigation of this sort.

Under suitable conditions there are two things one would like to
verify:

1◦
∑

A∈Sn
|μ+

n (A) − μ−
n (A)| → 0, as n → ∞, implies that

∑
A∈Sn

|μ±
n (A) − μn(A)| → 0, as n → ∞.

2◦
∑

A∈Sn
|μ+

n (A) − μ−
n (A)| → 0, as n → ∞.

The assumption that for all sequences {ij}, diam(Sin
◦ · · · ◦ Si1K)

→ 0, is natural in the case of place-dependent IFS if we do not assume
that the weight functions necessarily sum to 1.

4.2 Probability metrics. Before we continue to approximate in-
variant measures in the place-independent case, we will make ourselves
acquainted with some probability metrics.

The Wasserstein (or Monge-Kantorovich, sometimes Hutchinson)
distance is defined by

dW (μ1, μ2) = sup
Lip (f)≤1

∣∣∣∣
∫

X

f dμ1 −
∫

X

f dμ2

∣∣∣∣,
where {Lip (f) ≤ 1} = {f : X → R, |f(x) − f(y)| ≤ d(x, y)}. The
Wasserstein metric possesses very nice properties in higher Euclidean
dimensions and generalizes to complete metric spaces (on compact
metric spaces it is the same as the Lipschitz metric used by Dudley
[11]) but it is often difficult to grasp the geometrical meaning of it.
Since X is a compact metric space, convergence in the Wasserstein
metric will be equivalent to weak �-convergence, and this means that
we can approximate any probability measure μ on X with finite linear
combinations of Dirac measures. (It was shown in Gadde [14, Theorem
3.38], that such an approximation is possible in the dW -metric also if
X no longer is compact.)
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The L1-metric is usually only defined for one-dimensional distribution
functions as follows:

dL1(μ, ν) =
∫

|Fμ(x) − Fν(x)| dx.

In one dimension, the Wasserstein distance can be calculated by means
of the dL1 -metric, i.e., dW (μ, ν) = dL1(μ, ν). This was the main result
of Vallender in [34].

However, it seems difficult to obtain an L1-metric with which it is
easy to work. For instance, generalized L1-metrics are not rotationally
invariant.

The uniform metric dsup, which is sometimes called the Kolmogorov
metric, can be defined on every Euclidean space Rk as

dsup(μ, ν) = sup
x∈Rk

|Fμ(x) − Fν(x)|.

However, in our approximation context it does not work very well for
dimensions greater than one, since its lack of rotation invariance causes
more of a problem than in the case of generalized L1-metrics. It is
easy to find examples where we first have a good approximation and
then, after having rotated the plane (if we are in two dimensions) one
millionth of a degree, we have the constant error one. Also, there can be
more than one set in each partition contributing to the error, and their
‘weight sum’ does not necessarily drop off as in the one-dimensional
case.

Strichartz et al. (Lemma 2.3, Corollary 2.4 and Theorem 2.5 of [33])
used the dL1 -metric to approximate invariant measures on [0, 1], and we
will generalize some of their results to higher dimensions, but first we
will discuss how we should define a dL1-metric in higher dimensions
and see what, if any, relation such a metric could have with the
Wasserstein metric. Vallender ([34, Remark 1]) claimed that if instead
of considering the usual Euclidean distance on Rk, k ≥ 2, we use the
l1-metric in the definition of the Wasserstein metric, i.e., if the d-metric
above is the l1-metric, then we can still calculate the distance in the
Wasserstein metric with the L1-metric. This is however not true, since
if we consider the distance between two distinct Dirac measures δa and
δb in the dL1 sense on the plane, this distance will be infinite, but the
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Wasserstein distance will of course be finite (= d(a, b)). There will also
be a problem of calculating the distance in the L1-metric between two
distinct Dirac measures if we integrate over a compact subset K of R2,
if we for example have a vertical line as part of the boundary with the
interior K◦ on the left. Then the distance between δa and δb, a �= b,
both placed on this vertical line, is zero.

So in the higher dimensional case (k ≥ 2) we have to be very careful
when defining an L1-metric. For a given compact state space K ⊂ Rk

we have to integrate over some larger domain containing K in order
to define a proper L1-metric. Thus in the following we will by the
L1-metric mean

dL1(μ1, μ2) =
∫
O
|Fμ1(x) − Fμ2(x)| dx,

where O is some appropriately chosen bounded open set containing K.
Then the Wasserstein and dL1 -metrics will be equivalent, due to the
fact that O is bounded, both metrizing the weak �-topology. So there
is no general characterization of the relation between the magnitudes
of the dL1- and dW -metrics; distances in the dL1-metric depends on the
size of O and that does not affect distances in the dW -metric.

In Rachev [25, p. 74] a weight function in the integrand is used in the
defining expression of an L1-metric and one is integrating over all of
Rk. This is analogous to our definition, but instead of integrating over
a somewhat arbitrary space, Rachev places an arbitrary function in
the integrand. He then obtains equality between his L1-metric and the
Wasserstein metric when some additional assumptions are made. These
additional assumptions are very difficult to check; one has to verify
properties of the derivatives of the distribution functions involved.

4.3 Mean approximation and uniqueness. It is well known, see
for instance Bhattacharya and Majumdar [6, especially p. 5, condition
(a)], that the existence of a unique invariant probability measure follows
for continuous i.i.d. maps Sj on a compact metric space X, if

E diam (Sin
◦ · · · ◦ Si1X) → 0.

This is due to the fact that

dW (T �nν, μ) ≤ E diam (Sin
◦ · · · ◦ Si1X),
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for every invariant probability measure μ and any probability measure
ν. This can be seen by iterating Dirac measures and then approximate
with finite linear combinations of such measures.

The same method applies if we consider the L1-metric we defined in
Subsection 4.2:

dL1(T �nδa, T �nδb) =
∫
O
|EFδSin

◦···◦Si1
a
(x) − EFδSin

◦···◦Si1
b
(x)| dx

≤ E
{∫

O
|FδSin

◦···◦Si1
a
(x) − FδSin

◦···◦Si1
b
(x)| dx

}

and integrating over the ‘cross’ bounded by the vertical and horizontal
lines through a and b and by O. The last quantity is dominated by

E{2 diam (O) diam (Sin
◦ · · · ◦ Si1K)}

= 2 diam (O) E diam (Sin
◦ · · · ◦ Si1K).

Thus we have the following result:

Theorem 3. If X = K, a compact subset of R2, we will for all
ν ∈ P(K) have the estimate

dL1(T �nν, μ) ≤ 2 diam (O) E diam (Sin
◦ · · · ◦ Si1K).

Remark 11. We have a straightforward generalization to higher
dimensions, the estimate of the L1-distance being

dL1(T �nν, μ) ≤ k diam (O) E{diam (Sin
◦ · · · ◦ Si1K)}k−1,

for all ν ∈ P(K), where k is the dimension of the ambient Euclidean
space.

Remark 12. In Barnsley and Elton [3] an average contractive condi-
tion was introduced for Lipschitz continuous functions in the following
way:

m∑
j=1

pj log
d(Sjx, Sjy)

d(x, y)
< 0 uniformly in x and y.
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It can be seen by elaborating Lemma 1 of Barnsley and Elton [3] that
these kinds of average contractions imply that E diam (Sin

◦ · · ·◦Si1X)
→ 0. In fact it can be seen from Silvestrov and Stenflo [26, p. 12] that
the average contractive conditions above imply diam (Sin

◦· · ·◦Si1X) →
0 almost surely.

The condition diam (Sin
◦ · · · ◦ Si1X) → 0 in probability is strictly

weaker than diam (Sin
◦ · · · ◦ Si1X) → 0 almost surely, which can

be seen by taking the IFS S1x = (1/2)x; S2x = 2x, 0 ≤ x ≤ 1/2,
S2x = 1, x > 1/2, on [0, 1] with the weights p1 = p2 = 1/2. Then
− log diam (Sin

◦· · ·◦Si1 [0, 1]) → ∞ in probability, but visits 0 infinitely
often with probability one.

Example 1 shows that we cannot always expect convergence with
geometric rate to a unique invariant measure.

Example 1. Consider the function Sx = x/(1 + x) on [0, 1]. Clearly
Snx → 0 for all x ∈ [0, 1], so under iteration of the T �-operator, every
probability measure on [0, 1] converges to δ0 in the weak �-topology.
But if we start at x0 = 1, we get x1 = Sx0 = 1/2, x2 = S2x0 = 1/3,
xn = Snx0 = 1/(n + 1), and this does not converge to 0 with geometric
rate. It is now easy to construct an IFS with the same property. Let
S1x = Sx = x/(1 + x) and S2x = x and let p1 = p2 = 1/2.

We also see that this IFS is not average contractive, since (with the
notation as in Remark 12) for every n and for every sequence i1, . . . , in,
we have ‖Sin

◦· · ·◦Si1‖ = 1, where ‖Sj‖ = supx�=y(d(Sjx, Sjy))/(d(x, y)).
But for all ε > 0: P{diam (Sin

◦ · · · ◦Si1 [0, 1]) > ε infinitely often} = 0,
which is equivalent to diam (Sin

◦ · · · ◦ Si1 [0, 1]) → 0 almost surely.

Example 2 illustrates that we cannot expect that uniform convergence
diam→ 0 is always present if we have non-overlapping maps.

Example 2. Consider the IFS S1x = ((3/2)x)/(1 + x), S2x =
(1 + (1/2)x)/(1 + x), p1 = p2 = 1/2, on [0, 1]. This IFS is non-
overlapping, but the diameter of the iterates does not tend to zero
uniformly: if we iterate S1 always, the diameter will be bounded away
from zero. However, the results in Strichartz et al. [33, Theorem



INVARIANT MEASURES FOR RANDOM ITERATIONS 299

2.5] apply and we also know, from Remark 8, that diam (Sin
◦ · · · ◦

Si1 [0, 1]) → 0 almost surely.

Example 3 shows that it is not necessary for uniqueness of an invariant
measure that diam (Sin

◦ · · · ◦ Si1X) → 0 in probability.

Example 3. We can have a unique invariant measure, although the
expected diameter does not tend to 0, if we iterate two continuous one-
to-one maps on [0, 1]. Let one of the two maps be g1(x) = 1−x2. This
map has precisely two periodic points with prime period two at x = 0
and x = 1 and a fixed point placed at (

√
5 − 1)/2. The periodic points

with prime period two are attracting, in fact they are super-attracting,
since (g2

1)′ = 0, and the fixed point is easily seen to be repelling, just
compute |g′1|. The point is now to choose g2 to be a small perturbation
of g1, so that the fixed points are not the same, but so that the periodic
points with prime period two are identical.

We now take the function g2(x) = 1 − x2 − εx(1 − x) where we let
ε > 0 be small. (The author was led to this choice of the function g2,
by the heuristics that the logistic function f(x) = λx(1 − x) does not
have any interesting dynamics for small values of the parameter λ.) It
has precisely two attracting points with prime period two at x = 0 and
x = 1 and a repelling fixed point at (

√
ε2 − 2ε + 5 − 1 − ε)/(2(1 − ε))

which does not coincide with that of g1 for any ε > 0. In fact,
the graph of g2 always lies under the graph of g1. Consider now
g2
1 = 1 − (1 − x2)2 = 2x2 − x4. It has three fixed points, one in

the interior of [0, 1], the same as that for g1, and two at the endpoints
of [0, 1]. To the left of the fixed point (

√
5 − 1)/2, g2

1 is below f(x) = x
and to the right of (

√
5 − 1)/2, g2

1 is above f(x) = x. Of course there
are no other periodic points of g2

1 . Graphical analysis gives that, except
for the fixed point (

√
5 − 1)/2, all points in the interior of [0, 1] tend

to the boundary under iteration of g2
1 . More precisely, the points in

the interior to the left of (
√

5 − 1)/2 are iterated to 0, and those to the
right of (

√
5 − 1)/2 are iterated to 1. This shows that if we have an

IFS consisting of g1 and g2 (both chosen with positive probability) we
have, for a given δ > 0, a positive probability of leaving the subinterval
[δ, 1 − δ], when starting at some point there.
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We now consider the explicit choice ε = 1/3, so that g2(x) =
1−(2/3)x2−(1/3)x, and observe that for all δ ≤ 1/4, [0, 1]\[δ, 1−(1/2)δ]
is stochastically closed (invariant) under the two maps g1 and g2. Then
we cannot have an invariant measure except for (1/2)(δ0 + δ1).
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24. A. Öberg, R.S. Strichartz and A.Q. Yingst, Level sets of harmonic functions
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