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EXISTENCE OF SOLUTIONS FOR THE
BAROTROPIC-VORTICITY EQUATION

IN AN UNBOUNDED DOMAIN

B. EMAMIZADEH AND F. BAHRAMI

ABSTRACT. In this paper we consider the two-dimensional
barotropic-vorticity equation in the first quadrant, and using
a rearrangement variational principle, prove it has a solution.
The solution represents a steady localized topographic ideal
flow. The data given are the behavior of the flow at infinity,
the rearrangement class of the vorticity field and the height
of the localized seamount.

1. Introduction. In this paper we prove existence of solutions for
the following barotropic-vorticity equation

(1.1) [ψ, ω + h] = 0,

satisfying

(1.2) −Δψ ∈ F + h,

where [·, ·] denotes the Jacobian. Here F denotes a class of rearrange-
ments of a given function, and h is some fixed non-negative function,
see the next section for precise definitions. Equation (1.1) is the gov-
erning equation describing the flow of an ideal fluid with ψ representing
the stream function, ω the vorticity and h the height of the bottom to-
pography. In the present work we are assuming (1.1) to hold in a non-
symmetric planar domain, the first quadrant Π+. Since the domain
is unbounded, we require some asymptotic condition to be satisfied;
namely, we assume ψ → λx1x2 at infinity (λx1x2 represents the stream
function of an irrotational flow). We also assume that ω belongs to
the class of rearrangements of a given function. Similar problems in
symmetric domains have been considered but the methods are not ap-
plicable in our situation. We derive new estimates in order to overcome
this lack of symmetry.
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A weak formulation of (1.1), in Π+, is given by

(1.3)
∫

Π+

(ω + h)[ψ, u] = 0,

for all u ∈ C∞
0 (Π+), where the functions ψ, ω and h are related by the

inclusion (1.2), see for example [11, 12]. By a weak solution of (1.1)
we mean a pair (ψ, ω) that satisfies (1.3) for every u ∈ C∞

0 (Π+), and
(1.2). To prove existence of solutions to (1.1) we employ the variational
principle developed extensively by Burton [4] suitable for optimization
problems where the admissible set is either the set of rearrangements of
a given integrable function (the unconstrained case) or the intersection
of that with an affine subspace of finite codimension (the constrained
case). The main results of this paper are Theorems 1 and 2 which are
stated in the next section.

Similar existence results for the Euler’s equation (when h = 0) have
recently been the focus of many authors, the reader could refer to [5 8,
13].

2. Notation, definitions and the statement of the main
results. Throughout the paper p is a real number in (2,+∞). For any
number q ≥ 1, q∗ denotes the conjugate of q; that is, 1/q+1/q∗ = 1. If
A ⊆ R2 is measurable, then |A| denotes the two-dimensional Lebesgue
measure of A. The upper and the right half planes are designated by
Πu and Πr, respectively, and the first quadrant by Π+. We write points
in R2 as x = (x1, x2), y = (y1, y2), etc. For ξ > 0 we define

Π+(ξ) = {x ∈ Π+ | x1 < ξ , x2 < ξ} .
The ball centered at x with radius R is denoted BR(x); in case the
center is the origin we simply write BR. In this paper we denote
the Green’s functions for −Δ with homogeneous Dirichlet boundary
conditions on Πu, Πr and Π+ by Gu, Gr and G+, respectively, and
these functions are given as follows

Gu(x, y) =
1
2π

log
|x− ȳ|
|x− y| , x, y ∈ Πu, x �= y,

Gr(x, y) =
1
2π

log
|x− y|
|x− y| , x, y ∈ Πr, x �= y,

G+(x, y) =
1
2π

log
|x− ȳ||x− y|
|x− y||x− ȳ| , x, y ∈ Π+, x �= y,
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where x̄ and x denote the reflections with respect to x1-axis and x2-
axis, respectively. Note that Green’s functions are non-negative. For
measurable functions f on R2, we define

Tuf(x) =
∫

Πu

Gu(x, y)f(y) dy,

Trf(x) =
∫

Πr

Gr(x, y)f(y) dy,

T+f(x) =
∫

Π+

G+(x, y)f(y) dy,

when the integrals exist. The strong support of a measurable function
f , denoted supp (f), is defined by

supp (f) = {x | f(x) > 0} .

Let us fix f0 ∈ Lp(Π+) which is a non-negative, non-trivial function
with compact support and assume |supp (f0)| = πa2, for some a > 0.
Moreover, we suppose that ‖f0‖1 = 1. The measurable function f is
called a rearrangement of f0 whenever

|{x ∈ Π+ | f(x) > α}| = |{x ∈ Π+ | f0(x) > α}| ,

for every α ∈ R. It is known that if f is a rearrangement of f0, then
‖f‖q = ‖f0‖q, q ≥ 1. By F we denote the set of rearrangements of
f0 on Π+ which have compact support. By F(ξ) we denote the subset
of F comprising functions vanishing outside Π+(ξ). For a measurable
function f on Π+, we define the energy functional

(2.1) Eλ(f) =
1
2

∫
Π+

fT+f +
∫

Π+

ηf − λ

∫
Π+

x1x2f,

whenever the integrals exist, where λ is a positive fixed number and η =
T+h, for a fixed function h ∈ Lp(Π+) which is a non-negative function
and has compact support. We consider the following maximization
problem

(2.2) Pλ : sup
f∈F

Eλ(f),
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whose set of solutions is denoted Σλ. Similarly, for ξ ≥ √
π a we define

Pλ,ξ as follows

(2.3) Pλ,ξ : sup
f∈F(ξ)

Eλ(f),

and Σλ,ξ is defined similarly to Σλ.

We are now ready to state the main results of this paper.

Theorem 1. There exists λ0 > 0 such that for λ ∈ (0, λ0), Pλ has
a solution. Moreover if fλ ∈ Σλ and ψλ = T+fλ + η − λx1x2, then ψλ

satisfies the following semi-linear elliptic partial differential equation

(2.4) −Δψλ = ϕλ ◦ ψλ + h,

almost everywhere in Π+, where ϕλ is an increasing function unknown
a priori. Here “◦” denotes composition of functions.

Theorem 2. Let λ0 be as in Theorem 1. Let λ ∈ (0, λ0) and suppose
fλ ∈ Σλ. Set ψ = T+fλ and ω = fλ, then (ψ, ω) is a weak solution of
(1.1) in Π+.

The proofs of Theorems 1 and 2 will be presented in the next section,
but since a number of preliminaries are required, we digress at this
stage to explain the strategy, which is proposed by Benjamin [3]. The
first step is to prove the existence of a maximizer for Eλ relative to the
rearrangements of f0 defined on Π+(ξ). We then use the variational
principle developed by Burton, which is particularly suitable to show
solvability of Pλ,ξ. The second step is to show that increasing the size
of the box Π+(ξ) indefinitely does not affect the maximizer; that is,
the support of the maximizer does not touch the boundary of the box
if it is large enough.

3. Properties of the operator T+. In this section we present
some lemmas which are crucial in our analysis.
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Lemma 1. Let f ∈ Lp(Π+) be a function with compact support.
Then T+f ∈ C1(Π+) and

−ΔT+f = f,

almost everywhere in Π+.

Proof. From Lemma 3 in [3] we have

(3.1) −ΔTuf = f in D′(Πu),

in the sense of distributions. Since T+f(x) = Tuf(x) − Tuf(x) for all
x ∈ R2, by [2] we deduce that T+f ∈ W 2,p

loc (R2). By the Sobolev
embedding theorem [1], we infer T+f ∈ C1(Π+).

Lemma 2. Let f ∈ Lp(Π+) be a function with compact support.
Then

(i) |∇T+f(x)| ≤ C‖f‖p,

(ii) |T+f(x)| ≤ Cmin {x1, x2}‖f‖p,

for every x ∈ Π+, where C depends on | supp(f)| and p.

Proof. (i) follows from [4]. To prove (ii) we fix x ∈ Π+ and apply the
mean value theorem to obtain

|T+f(x)| = |T+f(x) − T+f(x1, 0)| ≤ x2|∇T+f(x̂)|,

where x̂ is a point on the segment joining x to (x1, 0). Whence from
(i) we deduce that |T+f(x)| ≤ Cx2‖f‖p. Similarly, one can show
|T+f(x)| ≤ Cx1‖f‖p. From these two inequalities we readily infer
(ii).

Lemma 3. Let U be an open and bounded subset of Π+. Then, for
any q ≥ 1, T+ : Lp(U) → Lq(U) is a linear compact operator, in the
sense that if {fn} is a sequence of functions, bounded in Lp(Π+) and
vanishing outside U , then the sequence {T+fn|U} has a subsequence
converging in the q-norm.
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Proof. From Lemma 2, it follows that T+ : Lp(U) → W 1,2(U) is
bounded. Now by applying the Sobolev embedding theorem we derive
the compactness of T+.

Lemma 4. Let f ∈ Lp(Π+) be a function with compact support.
Then

(i) ∇T+f(x) = O(|x|−2), T+f(x) = O(|x|−1) as |x| → +∞.

(ii)
∫
Π+

fT+f > 0.

Proof. Let us observe that, for every x ∈ R2, T+f(x) = Tuf(x) −
Tuf(x). Thus, (i) is an immediate consequence of Lemma 7 in [5]. To
prove (ii), let us first recall from Lemma 1 that −ΔT+f = f , almost
everywhere in Π+. We let Ω(R) = BR ∩ Π+, so the boundary of Ω(R)
is Lipschitz. On the other hand we have T+f ∈ C1(Π+), hence we can
apply the weak divergence theorem, see, for example [9], to obtain

(3.2) −
∫

Ω(R)

f T+f +
∫

Ω(R)

|∇T+f |2 =
∫

∂Ω(R)

(T+f) (∂�nT+f) dσ,

where �n denotes the unit outward normal vector to ∂Ω(R). Now from
(i) we have limR→∞

∫
∂Ω(R)

(T+f)(∂�nT+f) dσ = 0. Moreover, since∫
Π+

f T+f is finite and |∇T+f |2 is bounded in Π+ we can apply the
Lebesgue dominated convergence theorem to conclude

lim
R→∞

∫
Ω(R)

f T+f =
∫

Π+

f T+f

lim
R→∞

∫
Ω(R)

|∇T+f |2 =
∫

Π+

|∇T+f |2.

Then, from (3.2) we derive∫
Π+

f T+f =
∫

Π+

|∇T+f |2.

Lemma 5. We have

lim
ξ→∞

sup
f∈F(ξ)

∫
Π+

f T+f = ∞.
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Proof. Let us fix (t, t) ∈ R2 and denote the Schwarz-rearrangement
of f0, about (t, t), by ft

∗ which is spherically decreasing and vanishes
outside Ba(t), the ball centered at (t, t) with radius a. There exist
β > 0 and 0 < b < a such that for all x with |x| < b we have f0∗ ≥ β.
Clearly we can assume t ≥ 3a. Now consider x ∈ Ba(t), y ∈ Bb(t).
Thus

|x− ȳ| ≥ 2t− 2a, |x− y| ≥ 2t− 2a,

|x− y| ≤ 2a, |x− ȳ| ≤ 2
√

2 t+ 2a.

Therefore

T+f
∗
t (x) ≥ β

2π

∫
Bb(t)

log
(2t− 2a)2

2a(2
√

2 t+ 2a)
dy =

βb2

2
log

(t− a)2

a(
√

2 t+ a)
.

Hence ∫
Π+

f∗t T+f
∗
t ≥ πβ2b4

2
log

(t− a)2

a(
√

2 t+ a)
,

from which the conclusion follows.

4. Main results. In this section we prove Theorems 1 and 2.
However we need some more lemmas that are given below. We begin by
proving existence of a maximizer for the energy functional Eλ relative
to F(ξ). To do this we need the following result from Burton’s theory
[4].

Lemma 6. Let q ≥ 1 and q∗ its conjugate. Let g ∈ Lq∗
(Π+(ξ)) and

T : Lq(Π+(ξ)) → Lq∗
(Π+(ξ)), ξ ≥ √

π a, be a compact strictly positive
symmetric linear operator. Define

Φ(f) =
1
2

∫
Π+

f Tf −
∫

Π+

gf,

for f ∈ Lq(Π+(ξ)). Then Φ attains its supremum on F(ξ), and if f̂

is a maximizer then f̂ = ϕ ◦ (T f̂ − g) almost everywhere in Π+(ξ) for
some increasing function ϕ.

The following lemma is a straightforward result from the symmetry
of G+ and Lemmas 3, 4 and 6.
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Lemma 7. Suppose λ > 0 and ξ ≥ √
π a. Then problem Pλ,ξ is

solvable. Moreover, if fλ,ξ ∈ Σλ,ξ, then

(4.1) fλ,ξ = ϕλ,ξ ◦ (T+fλ,ξ + η − λx1x2),

almost everywhere in Π+(ξ) for some increasing function ϕλ,ξ.

Lemma 8. Let λ > 0. Then there exists R(λ) > 0 such that

T+f(x) + η(x) − λx1x2 ≤ 0, |x| ≥ R(λ), f ∈ F .

Proof. Let us fix x ∈ Π+ and f ∈ F . According to Lemma 2 there
exists M > 0, independent of f , such that

T+f(x) + η(x) ≤M min{x1, x2}.

Thus,

T+f(x) + η(x) − λx1x2 ≤ min{x1, x2}(M − λmax{x1, x2}).

Hence if we assume |x| ≥M/λ, then

T+f(x) + η(x) − λx1x2 ≤ 0.

Therefore the result follows for R(λ) = M/λ.

Lemma 9. There exist λ0 > 0 and ξ0 ≥ √
π a such that when

0 < λ < λ0, ξ ≥ ξ0 and fλ,ξ is a maximizer of Eλ relative to F(ξ),
then

|supp(ψλ,ξ) ∩ Π+(ξ)| ≥ πa2,

where ψλ,ξ(x) = T+fλ,ξ(x) + η(x) − λx1x2.

Proof. Let us fix α > 0. From Lemma 5 there are λ0 > 0, ξ0 ≥ √
πa

such that

(4.2) sup
f∈F(ξ)

Eλ(f) ≥ α, 0 < λ < λ0, ξ ≥ ξ0.
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Next we set α = 3aC(‖f0‖p + 2‖h‖p), where C is the constant in
Lemma 2. Notice that C is independent of λ and ξ; it merely depends
on |supp (h)|, a and p. From (4.2) we have

(4.3) Eλ(fλ,ξ) ≥ 3aC(‖f0‖p + 2‖h‖p), 0 < λ < λ0, ξ ≥ ξ0,

where fλ,ξ denotes a maximizer of Eλ relative to F(ξ). Also note that

(4.4) Eλ(fλ,ξ) ≤ sup
Π+(ξ)

(
1
2
T+fλ,ξ + η − λx1x2

)
,

for 0 < λ ≤ λ0 and ξ ≥ ξ0. Hence, from (4.3), we have

(4.5) sup
Π+(ξ)

(
1
2
T+fλ,ξ(x) + η(x) − λx1x2

)
≥ 3aC(‖f0‖p + 2‖h‖p).

Since the function (1/2)T+fλ,ξ(x) + η(x) − λx1x2 is continuous on
Π+(ξ), it attains its maximum at (r1(λ, ξ), r2(λ, ξ)) ≡ (r1, r2). Whence,
by Lemma 2,

1
2
T+fλ,ξ(r1, r2) + η(r1, r2) ≤ 1

2
C(‖f0‖p + 2‖h‖p) min{r1, r2}.

Therefore from (4.5) we infer min{r1, r2} > 2a. Now fix 0 < λ < λ0,
ξ ≥ ξ0 and set

S = {x ∈ Π+| x1 < r1, x2 < r2} ∩B2a(r1, r2).

Observe that S ⊆ Π+(ξ). Consider x ∈ S, hence

(4.6) T+fλ,ξ(x) + η(x) − λx1x2 ≥ 1
2
T+fλ,ξ(x) + η(x) − λ r1r2.

By an application of the mean value theorem in conjunction with
Lemma 2,

|T+fλ,ξ(x) − T+fλ,ξ(r1, r2)| ≤ 2aC(‖f0‖p).
|η(x) − η(r1, r2)| ≤ 2aC‖h‖p.
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Thus from (4.5) and (4.6)

(4.7) T+fλ,ξ(x) + η(x) − λx1x2

≥ 1
2
T+fλ,ξ(r1, r2) + η(r1, r2) − λ r1r2 − aC(‖f0‖p + 2‖h‖p)

≥ 3aC(‖f0‖p + 2‖h‖p) − aC(‖f0‖p + 2‖h‖p)
= 2aC(‖f0)‖p + 2‖h‖p).

Therefore S ⊆ supp (ψλ,ξ) apart from a set of zero measure. Hence

| supp (ψλ,ξ) ∩ Π+(ξ)| ≥ |S| ≥ πa2, 0 < λ ≤ λ0, ξ ≥ ξ0.

This completes the proof of the lemma.

Proof of Theorem 1. Let λ0, ξ0 be as in Lemma 9 and fix λ < λ0. So
by Lemma 8 there exists positive R(λ) such that

(4.8) T+f(x) + η(x) − λx1x2 ≤ 0, x ∈ Π+ \ Π+(R(λ)), f ∈ F .

Let us set ξ(λ) = max {ξ0, R(λ)}. Fix ξ ≥ ξ(λ); hence, from Lemma 7
it follows that Σλ,ξ is non-empty. Consider fλ,ξ ∈ Σλ,ξ, and apply
Lemma 7 to find an increasing function ϕλ,ξ such that

(4.9) fλ,ξ = ϕλ,ξ ◦ (T+fλ,ξ + η − λx1x2),

for almost every x ∈ Π+(ξ(λ)). Notice that we can assume ϕλ is non-
negative. Since fλ,ξ is an increasing function of T+fλ.ξ + η− λx1x2 on
Π+(ξ), there exists a constant γλ such that

(4.10) supp (fλ,ξ) = (T+fλ,ξ + η − λx1x2)−1(γλ,∞),

apart from a set of measure zero. Note that ξ ≥ ξ0, hence by Lemma
9 we have

(4.11) |(T+fλ,ξ + η − λx1x2)−1(0,∞)| ≥ πa2.

Whence γλ≥0 and this implies supp(fλ,ξ) ⊆ supp (T+fλ,ξ +η−λx1x2),
apart from a set of measure zero in Π+(ξ). Thus by (4.8) and (4.10)

(4.12) supp (fλ,ξ) ⊆ Π+(ξ(λ)), ξ ≥ ξ0.
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It now follows that fλ,ξ(λ) ∈ Σλ; hence, Pλ is solvable for 0 < λ < λ0.
To derive (2.4) consider fλ ∈ Σλ. From (4.12), supp (fλ) ⊆ Π+(ξ(λ)),
except for a set of measure zero. Hence by Lemma 7 there exists an
increasing function ϕλ such that

(4.13) fλ = ϕλ ◦ (T+fλ + η − λx1x2),

for almost every x ∈ Π(ξ(λ)). Now define

ϕ(t) =
{
ϕλ(t) t ∈ domϕλ, t ≥ 0,
0 t < 0.

Clearly ϕ is increasing and

fλ = ϕ ◦ (T+fλ + η − λx1x2),

almost everywhere in Π+. Thus by applying Lemma 1, we obtain (2.4).
This completes the proof.

Proof of Theorem 2. We must show

(4.14)
∫

Π+

(fλ + h) [T+fλ − λx1x2, u] = 0,

for every u ∈ C∞
0 (Π+). Since fλ + h has compact support we infer

existence of an open set Ω ⊆ Π+ such that supp (fλ+h) ⊆ Ω. Therefore
it suffices to prove (4.14) only for test functions u ∈ C∞

0 (Ω). So let us
fix u ∈ C∞

0 (Ω), and denote by gt(x) the unique solution of the following
Hamiltonian system

dz

dt
= ∇⊥u(z),

satisfying the initial condition z(0) = x ∈ Ω; where ∇⊥ = ((∂/∂x2),
−(∂/∂x1)). It is well known that the mapping x → ft(x), t ∈
[−τ, τ ], τ small, defines a one-parameter family of measure preserving
diffeomorphisms of Ω, see for example [10]. Now following [11, 12] we
obtain

(4.15)
Eλ(fλ ◦ g−1

t )

= Eλ(fλ) + t

∫
Π

(fλ + h)[T+fλ − λx1x2, u] + o(t),
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as t→ 0+. Hence, if we set

α(t) = Eλ(fλ ◦ g−1
t ),

for t ∈ [−τ, τ ], we infer from (4.15) that

α′(0) =
∫

Π

(fλ + h)[T+fλ − λx1x2, u].

Moreover, since fλ ∈ Σλ and fλ ◦ g−1
t ∈ F , it follows that α has a

global minimum at zero, whence α′(0) = 0, from which (4.14) follows.
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