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MULTIPLE POSITIVE SOLUTIONS FOR
ELLIPTIC BOUNDARY VALUE PROBLEMS

PAVEL DRÁBEK AND STEPHEN B. ROBINSON

ABSTRACT. We extend ODE results of Henderson and
Thompson, see [10], to a large class of boundary value prob-
lems for both ODEs and PDEs. Our method of proof combines
upper and lower solutions with degree theory.

1. Introduction. In [10] the following theorem is proved:

Theorem 1. Let 0 < a < b < (c/2), and suppose that f : [0,∞) →
[0,∞) is a continuous function satisfying

(i) f(t) < 8a, for 0 ≤ t ≤ a,

(ii) f(t) ≥ 16b, for b ≤ t ≤ 2b, and

(iii) f(t) ≤ 8c, for 0 ≤ t ≤ c.

Then the boundary value problem

(1)
u′′ + f(u) = 0 in (0, 1),

u(0) = u(1) = 0,

has at least three symmetric nonnegative solutions y1, y2, and y3
satisfying ||y1||∞ < a, b < min[(1/4),(3/4)] y2, ||y3||∞ > a, and
min[(1/4),(3/4)] y3 < b.

(It has been observed by Henderson and Thompson, and others, that
it suffices to impose condition (ii) on the interval [b, 3b/2].)

It is instructive to consider problem (1) with

f(t) =
{
k : 0 ≤ t ≤ 1,
K : t > 1.

.

2000 AMS Mathematics Subject Classification. Primary 34B18, 35J65.
Research sponsored by the Grant Agency of the Czech Republic, Project no.

201/03/0671.
Received by the editors on June 3, 2003.

Copyright c©2006 Rocky Mountain Mathematics Consortium

97
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We assume that k and K are positive constants. Solutions to this
problem can be constructed by assembling quadratic splines that satisfy
−u′′ = k when u ≤ 1 and −u′′ = K when u > 1. It follows that
there is one solution satisfying max[0,1] u(x) ≤ 1 if and only if k ≤ 8,
and there are two solutions satisfying max[0,1] u(x) > 1 if and only if
K2 − 16K + 8k > 0. Both inequalities must be satisfied in order to
have three solutions. (Allowing for the possibility that k might be any
constant in (0, 8] leads to the condition K ≥ 16.) Problem (1) serves
as an idealized example for Theorem 1 with a = b = 1. Condition (iii)
is automatically satisfied for large enough c because f is bounded. Of
course, the continuity hypothesis is not satisfied, but it is not difficult
to reach similar conclusions using continuous approximations of the
given f which are bounded above by 8 on [0, 1], and below by 16 for
t ≥ b = 1 + ε. It follows that the choice of constants, 8 and 16, in
Theorem 1 is sharp. For another discussion demonstrating that these
conditions are sharp, see [12].

The proof in [10] is an application of the Leggett-Williams fixed point
theorem, see [16]. Using similar methods Henderson and Thompson
have generalized Theorem 1 to nth order conjugate boundary value
problems, see [11]. In [12] these authors demonstrate that Theorem 1
can be proved via a combination of degree theory and upper and lower
solutions, which is the approach that we use in this paper. Other
generalizations have been proved by Baxley, et al. In [4] elementary
shooting techniques are used to prove that an appropriately generalized
sequence of inequalities leads to any desired odd number of positive
solutions. Moreover, [4] includes an interesting theorem showing that
if f is also assumed to be superlinear, then an additional solution can be
found. In [3] similar problems are considered for a class of generalized
Sturm-Liouville differential operators of order 2n. In this case the
Krasnoselskii fixed point theorem, see [15], is the primary tool used in
the proofs. In all of the work mentioned above the necessary estimates
for proof rely on ODE techniques that do not readily generalize to the
PDE case.

Theorem 1 is complementary to the many papers that investigate
boundary value problems of the form

(2)
Δu+ λf(u) = 0 in Ω,

u = 0 on ∂Ω,
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whose solutions, (λ, u(λ)), describe S-shaped bifurcation curves. For
a sampling of the literature, see [2, 5, 8, 13, 14, 17, 19, 20]. A
common prototype for f(t) is the function eat/(a+t), which is motivated
by problems in combustion theory. An important example of such
results can be found in the paper of Brown, Ibrahim, and Shivaji,
[5], where they consider a class of functions with properties similar
to the combustion example above, and prove that if the graph of f is
sufficiently convex for small t, then there is a solution curve, (λ, u(λ)),
that is essentially S-shaped. In particular, there is an interval (λ, λ),
such that problem (2) has at least three solutions for any λ ∈ (λ, λ).
For the ODE case the authors use a quadrature technique to derive
very explicit results, and for the PDE case the authors use an upper
and lower solution approach combined with degree theory that is quite
similar to what we will use in later sections. This result has been
improved and extended in several ways, but effectively demonstrates
how the literature on S-shaped bifurcation curves relies on a different
set of hypotheses than those in Theorem 1. For example, [5] imposes
the following smoothness conditions: f ∈ C2[0, r), f(t) is bounded,
f(t) satisfies a Lipschitz lower bound, i.e., there is an l > 0 such that
f(t) − f(s) ≥ −l(t − s) for all t > s, and f(t) is increasing on some
interval [0, c]. It would be interesting to explore the overlap of these
complementary theorems to see what insight each has to offer the other.

In this paper we generalize Theorem 1, and the main result in [4], to
the boundary value problem

(3)
Δu+ f(u) = 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary. It will
be clear that our results generalize to a much broader class of elliptic
operators and boundary conditions. Any criteria that provide a strong
maximum principle and a degree theoretical structure will allow similar
theorems and proofs.

Our method of proof is to establish the existence of upper and lower
solutions and then apply Leray-Schauder degree theory. In particular
we will confront the situation where we have lower solutions, {u1, u2},
and upper solutions, {u1, u2}, satisfying the ordering u1 ≤ u2 ≤ u2

and u1 ≤ u1 ≤ u2. The ordering of u2 and u1 is generally not known.
These methods have a rich history going back to the work of Amann,
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see [1], with important generalizations provided by Shivaji, [18], and
others. One technical difference between our situation and those in [1]
and [18] is that our function f does not necessarily satisfy a Lipschitz
lower bound. As a consequence we do not rely on monotone iteration
schemes to solve (3). However, the degree theoretical structure is still
present, as in the recent work of [7], and our proof provides appropriate
modifications to demonstrate that the theory applies to problem (3).

We call particular attention to the construction of lower solutions,
which depends upon an analysis of problem (5). This problem provides
an important special case for understanding Theorem 1 and its gener-
alizations, and for determining whether or not the multiple solutions
criteria are sharp. It seems clear that a better understanding of this
problem will lead to a better understanding of multiple solutions for
problem (3). In particular, it might be of interest to explore the role
that the shape of Ω plays in determining the multiplicity of solutions.

2. Constructing upper and lower solutions. We say that
u ∈W 2,p(Ω), p > N , is an upper solution for problem (3) if

Δu+ f(u) ≤ 0 in Ω,
u ≥ 0 on ∂Ω.

A lower solution satisfies the opposite inequalities. We say that u is a
strict upper solution if any solution, u, with u ≤ u in Ω must satisfy
u < u in Ω and ∂u/∂ν > ∂u/∂ν at points of ∂Ω such that u = u, where
ν represents the unit outward normal vector. For convenience in all
that follows we will denote this last type of comparison as u ≺ u. We
will typically establish that an upper or lower solution is strict via an
application of the Strong Maximum Principle (SMP), see [6].

2.1 Upper solutions. Let φ be the unique positive solution of

(4)
Δφ+ 1 = 0 in Ω,
φ = 0 on ∂Ω,

and let m := maxΩ φ(x).

Lemma 1. If a > 0 and if f : [0,∞) → [0,∞) is a continuous
function such that 0 ≤ f(t) < a/m for all t ∈ [0, a], then (a/m)φ is a
strict upper solution for problem (3).
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Proof. Observe that 0 ≤ (a/m)φ ≤ a, so f((a/m)φ) < a/m. Thus
0 = Δ((a/m)φ) + (a/m) > Δ((a/m)φ) + f((a/m)φ), so (a/m)φ is an
upper solution. If u is any solution of (3) satisfying u ≤ (a/m)φ, then
u ≤ a and we have 0 ≤ f(u) < (a/m), so −Δu = f(u) < (a/m) =
−Δ((a/m)φ), so u ≺ (a/m)φ by the SMP. Hence, (a/m)φ is a strict
upper solution.

Remark 1. In order to prove the lemma above it suffices to assume
that 0 ≤ f(t) ≤ a/m for all t ∈ [0, a] with strict inequality f(t) < a/m
at some point in the interval. Of course, by continuity, this would imply
strict inequality on a nontrivial open subset of the interval.

2.2 Lower solutions. Consider the boundary value problem

(5)
Δu+Kh(u) = 0 in Ω,

u = 0 on ∂Ω,

where

h(t) :=
{

1 for t ≥ 1
0 otherwise

Before continuing we check one fact.

Lemma 2. Suppose that ψK is a nontrivial solution of (5) and that
MK := maxΩ ψK . Then MK > 1.

Proof. If MK < 1, then ψK < 1 in Ω, so −ΔψK = Kh(ψK) ≡ 0,
and ψK must be the trivial solution, a contradiction. Hence MK ≥ 1.
Consider the open set Ω′ := {x ∈ Ω : 0 < ψK(x) < 1}. By assumption
∂Ω′ \ ∂Ω = {x ∈ Ω : ψK(x) = 1} is a nontrivial closed subset of
Ω. It is clearly possible to find a sphere Bε(x0) ⊂ Ω′ such that
∂Bε(x0)

⋂{x ∈ Ω : ψK(x) = 1} is nontrivial. Let x′ be an element
of this intersection. Since the interior sphere condition is satisfied at
this point, and since ψK is a harmonic function in Ω′ that reaches a
maximum at the boundary point x′, it must be that (∂ψK/∂ν)(x′) > 0,
where ν is the unit outward normal to ∂Bε(x0) at x′. It follows that
ψK > 1 at a point near x′, and thus MK > 1. The proof is done.
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Lemma 3. Suppose that ψK is a nontrivial solution of (5) and that
MK := maxΩ ψK . If b > 0 and if f : [0,∞) → [0,∞) is a continuous
function such that f(t) > Kb for all t ∈ [b,MKb], then bψK is a strict
lower solution for (3).

Proof. If x ∈ Ω such that ψK(x) ≥ 1, then b ≤ bψK(x) ≤ MKb, so
f(bψK(x)) > Kb = bKh(ψK(x)). If x ∈ Ω such that ψK(x) < 1, then
f(bψK(x)) ≥ 0 = Kbh(ψK(x)). Therefore 0 = Δ(bψK) + bKh(ψK) ≤
Δ(bψK) + f(bψK) in Ω, so bψK is a lower solution.

Suppose that u is any solution of (3) satisfying u ≥ bψK . Notice that
u must attain all values between 0 and MKb. On {x : 0 < u(x) < b},
we must have 0 < ψK < 1, so f(u) ≥ 0 = bKh(ψK). Moreover, since
f(u(x)) ≥ Kb > 0 when u(x) = b, we can appeal to continuity to
show that the open set {x : 0 < u(x) < b, f(u(x)) > 0 = bKh(ψK)}
is nontrivial. Since f(t) > Kb for all t ∈ [b,MKb], there must be
an ε > 0 such that f(t) ≥ Kb for all t ∈ [b,MKb + ε]. It follows
that f(u) ≥ Kbh(ψK) on {x : b ≤ u(x) ≤ MKb + ε}. Thus we have
f(u) ≥ Kbh(ψK) on Ω′ := {x : 0 < u(x) < MKb + ε} with strict
inequality on a nontrivial open subset. We also have u = bψK = 0 on
∂Ω and u = bMK +ε > bψK on ∂Ω′ \∂Ω. Hence, by the SMP, u > bψK

in {x : 0 < u(x) < MKb+ ε}, with (∂u/∂ν) < (∂(bψK)/∂ν) on ∂Ω. Of
course u > bψK on {x : u ≥ bMK + ε}. We have proved that bψK is a
strict lower solution.

Remark 2. For the ODE case, or for the PDE case over special
domains such as a sphere, it is not hard to verify that bψK is a strict
lower solution even if we assume only that f(t) ≥ bK on [b,MKb], as in
[10]. We demonstrate such an argument in greater detail in the proof
of Theorem 3.

The difficulty with the PDE case over general domains is that the
inequality f(u) ≥ bKh(ψK) may no longer be satisfied for u > bMK ,
so the application of the maximum principle is not as clear. Of course
u > bMK implies u > bψK , but the possibility remains that there could
be a point, or points, where u(x) = bMK = bψK(x). Such points would
have to be quite special, for example they would have to be maxima for
bψK . Since u ≥ bψK , they would also have to be critical points for u.
Since the maximum principle prevents interior local minima for u we see
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that these points have to be on the boundary of {x : 0 < u(x) < bMK}.
However, they cannot satisfy an interior sphere condition from within
this set or a contradiction would arise because we already know that
the two gradients have to be equal. Thus they are not maxima for u,
but rather some type of saddle points. (This observation indicates why
such points do not arise in the ODE case or in the spherically symmetric
PDE case.) We suspect that the right technical argument will show
that no such points exist in general, but we have not discovered such
an argument.

Since h is nondecreasing, problem (5) cooperates well with the
method of upper and lower solutions and monotone iteration. How-
ever, this approach is most often applied to boundary value problems
with continuous forcing terms, so a few preliminary remarks are in or-
der. Suppose that we can find upper and lower solutions, u and u,
respectively, such that u ≤ u. We set up a standard iteration scheme
using u0 = u and

Δun+1 +Kh(un) = 0 in Ω,
un+1 = 0 on ∂Ω.

It follows from the usual maximum principle arguments that {un} is
a monotonically decreasing sequence which is bounded below by u.
Hence the sequence converges pointwise to some ψK . Moreover, by
standard regularity and compactness arguments we know that, without
loss of generality, this convergence is in C1(Ω). Since tn ↘ t implies
h(tn) ↘ h(t), we see that h(un(x)) ↘ h(ψK(x)) for all x, and it follows
from dominated convergence that this convergence is actually Lp for
any 1 ≤ p < ∞. It follows that ψK is a solution of (5). If we had
initiated the monotone iteration from the lower solution, then it would
not be as clear that the limiting function is a solution of (5). The
reason consists in the fact that the function h is not left continuous at
t = 1.

Consider any K ′ ≥ K. It is straightforward to check, as in the
previous section, that u = K ′φ is a strict upper solution for (5). It
is also clear that u ≡ 0 is a lower solution. Moreover, if ψK is any
solution, then we have Δ(K ′φ)−Δ(ψK) = −K ′ +Kh(ψK) ≤ 0, which
implies that ψK < K ′φ. Hence using monotone iteration starting from
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u we can find a maximal solution of (5). All that remains is to argue
that this maximal solution is nontrivial for some choices of K, and that
there is an optimal choice of K.

Lemma 4. There is a K∗ ≥ 1/m such that (5) has a maximal
nontrivial solution for every K ≥ K∗, and (5) has only the trivial
solution for K < K∗.

Proof. First we argue that (5) has only trivial solutions for small K.
Suppose that 0 < K < 1/m, and let ψK be a nonnegative solution of
(5). By the comparison above we see that 0 ≤ ψK < Kφ ≤ (1/m)φ ≤ 1
in Ω. Thus h(ψK) ≡ 0 and Δ(ψK) ≡ 0 in Ω. Hence ψK ≡ 0.

Now we show that (5) has a positive solution for some choice of K.
Let Ω′ be an open set such that Ω′ ⊂⊂ Ω, let χΩ′ be the characteristic
function for this set, and let ψ be the solution of

Δψ + χΩ′ = 0 in Ω,
ψ = 0 on ∂Ω.

By the maximum principle it is clear that ψ is strictly positive in Ω.
Also, u = Kψ is the solution of

Δu+KχΩ′ = 0 in Ω,
u = 0 on ∂Ω.

Choose K large enough so that Kψ > 1 on Ω′. Then 0 = Δ(Kψ) +
KχΩ′ ≤ Δ(Kψ) + Kh(Kψ), so Kψ is a nontrivial lower solution for
(5). We see that Kφ is an upper solution such that Kφ > Kψ in Ω.
Thus the problem has a nontrivial solution for all K large enough.

Now suppose that (5) has a maximal nontrivial solution, ψK1 , for
some K1 > 0, and consider (5) for K = K2 > K1. As before, K2φ is an
upper solution. Also, 0 = Δ(ψK1)+K1h(ψK1) ≤ Δ(ψK1)+K2h(ψK1),
so ψK1 is a lower solution. Another simple comparison argument shows
that ψK1 ≤ K2φ, so the lower and upper solutions are well-ordered.
Hence (5) has a maximal positive solution satisfying ψK1 ≤ ψK2 .

Finally, we let K∗ := inf{K > 0 : (5) has a positive solution}, let
Kn be a decreasing sequence with limit K∗, and let ψKn

represent
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the corresponding maximal solutions of (5) for K = Kn. By previous
comparisons this is a decreasing sequence and thus converges pointwise
to some ψK∗ . As we argued before stating this lemma, h(ψKn

(x)) ↘
h(ψK∗(x)) for all x. It follows that ψK∗ is a solution of (5) for K = K∗.

3. Main theorem.

Theorem 2. Let {aj}n+1
j=1 and {bj}n+1

j=1 be sequences of nonnegative
numbers such that MK∗bj < aj for j = 1, . . . , n+ 1, and aj < bj+1 for
j = 1, . . . , n. Assume that f : [0,∞) → [0,∞) is a continuous function
such that the following inequalities are satisfied for all j:

(i) f(t) < aj/m, for 0 ≤ t ≤ aj, and

(ii) f(t) > K∗bj, for bj ≤ t ≤MK∗bj.

Then the boundary value problem

Δu+ f(u) = 0 in Ω,
u = 0 on ∂Ω,

has at least 2n+ 1 nonnegative solutions.

Proof. The sequence of n+1 functions {(aj/m)φ}n+1
j=1 is a set of strict

upper solutions, by Lemma 1. Also, {bjψK∗}n+1
j=1 is a sequence of strict

lower solutions, by Lemma 3, with the possible exception of b1ψK∗ . If
f(0) = 0, then u ≡ 0 is a solution of problem (3), so b1 = 0, and thus
the first lower solution is not strict. This does not harm the following
arguments in a significant way, but for consistency in the statements
that follow we can extend f so that f(x) ≡ 0 for x ≤ 0, and then use a
negative constant function as the first element in the list of strict lower
solutions.

Consider a pair of well-ordered upper and lower solutions from the
lists above. Call them u and u, and note that we are assuming u ≤ u.
Define

f(x, t) :=

⎧⎨
⎩
f(u(x)) if t < u(x)
f(u(x)) if u(x) ≤ t ≤ u(x)
f(u(x)) if u(x) < t.
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Consider the modified boundary value problem

(6)
Δu+ f(x, u) = 0 in Ω,

u = 0 on ∂Ω.

Note that the substitution operator N : C1
0 (Ω) → C(Ω) : N(u(x)) :=

f(x, u(x)) is bounded and continuous, and that (−Δ)−1 : C(Ω) →
C1

0 (Ω) is compact. Thus solutions of (6) correspond to a fixed point
problem for a compact operator, i.e., u = Mu for u ∈ C1

0 (Ω) and
M := (−Δ)−1N .

If u is a solution of (6), then we can show that u ≺ u ≺ u. Since
u and u are strict, it suffices to show that u ≤ u ≤ u. Suppose
Ω′ = {x ∈ Ω : u(x) > u(x)} is nonempty. On this set we have
Δu − Δu = Δu + f(x, u(x)) = Δu + f(u(x)) ≥ 0, so u − u has no
interior maximum in Ω′. But u − u = 0 on ∂Ω′, so u ≤ u in Ω′, a
contradiction. Similarly, we can prove that u ≤ u.

Since f is bounded it is clear that the solutions of (6) satisfy an
a priori bound ||u||1 < R, where || · ||1 is the standard norm on C1(Ω).
If we let (u, u) := {u ∈ C1(Ω) : ||u||1 < R and u ≺ u ≺ u}, then (u, u)
is a bounded open set in C1(Ω) that contains all solutions of problem
(6), so we can apply a standard computation of the Leray-Schauder
degree to get deg(I −M, (u, u), 0) = 1. (See [1], for example.)

Now consider a pair of lower solutions, {u1, u2}, and a pair of upper
solutions, {u1, u2}, taken from the lists above. Suppose that they
satisfy u1 ≤ u2 ≤ u2 and u1 ≤ u1 ≤ u2. We can consider the modified
problem as described above with u = u1 and u = u2, and through
similar arguments compute

deg (I −M, (u1, u1), 0) = deg (I −M, (u2, u2), 0)
= deg (I −M, (u1, u2), 0) = 1.

In particular we can conclude that there are two solutions lying in
(u1, u1) and (u2, u2), respectively. To find a third solution define the
set S := {u ∈ (u1, u2) : there exists x0, x1 ∈ Ω such that u(x0) >
u1(x0) and u(x1) < u2(x1)}. If there were a solution, u, on the
boundary of S, then it would follow that either u ≤ u1 in Ω, or u ≥ u2

in Ω. But these are strict upper and lower solutions, so this would
imply either u ≺ u1 or u � u2, which contradicts the fact that u is
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on the boundary of S. Thus there are no solutions on ∂S and we can
apply the excision property of degree to get

deg (I −M, (u1, u2), 0) = deg (I −M, (u1, u1), 0)
+ deg (I −M, (u2, u2), 0) + deg (I −M,S, 0),

which implies that deg (I −M,S, 0) = −1. Hence there is a solution in
S, which is clearly distinct from the solutions in (u1, u1) and (u2, u2).

Now consider the pair of lower solutions {bjψK∗ , bj+1ψK∗} and the
corresponding pair of upper solutions {(aj/m)φ, (aj+1)/mφ}. It is im-
plicit in our hypotheses that bjK∗ ≤ (aj/m) for all j, so a straight-
forward comparison shows that bjψK∗ ≤ (aj/m)φ for all j. Hence,
bjψK∗ ≤ bj+1ψK∗ ≤ (aj+1/m)φ and bjψK∗ ≤ (aj/m)φ ≤ (aj+1/m)φ.
(It is not clear, in general, how (aj/m)φ compares to bj+1ψK∗ .) There-
fore, we can apply the argument above to conclude that there are three
solutions in (bjψK∗ , (aj+1/m)φ).

The remainder of the proof follows easily once we observe that the
overlapping sets (bjψK∗ , (aj+1/m)φ) and (bj+1ψK∗ , (aj+2/m)φ) each
contain three solutions as described above, but can only share at most
one of the solutions, i.e., the solution in (bj+1ψK∗ , (aj+1/m)φ).

Remark 3. The assumption (aj/mK
∗) > bj , which is implicit in the

hypotheses of our theorem as mentioned in the proof above, corresponds
to the inequality b < (c/2) in Theorem 1.

Remark 4. Condition (i) can be relaxed to require a strict inequality
only for the case j = 1. For j > 1 we can still argue that the upper
solutions are strict because previous inequalities prevent f ≡ (aj/m).

4. Examples.

4.1 N = 1, Ω = (0, 1). For this case we consider the problem (1)
exactly as in [10]. It is an elementary exercise to compute the relevant
constants. First consider

u′′ + 1 = 0 in (0, 1),
u(0) = u(1) = 0,
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which has the solution u = (1/2)x(1 − x) with maximum m = 1/8.
Next consider

u′′ +Kh(u) = 0 in (0, 1),
u(0) = u(1) = 0,

whose solutions are symmetric about 1/2 and can be constructed by
using line segments to connect the boundaries of the interval to a
parabolic cap in the center of the interval. An elementary computation
shows that in [0, (1/2)] we have

u(x) =
{

(1/ρ)x in [0, ρ),
−(K/2)(x− (1/2))2 + 1 + (K/2)(ρ− (1/2))2 in [ρ, (1/2)]

where ρ = 1/4 ± 1/4
√

1 − (16/K). u has a maximum MK := 1 +
(K/2)(ρ−(1/2))2. By substituting the expression for ρ into this formula
for MK we can draw an explicit bifurcation diagram describing the
lower solutions for our problem. Moreover, it follows that the minimal
choice for K is K∗ = 16 with corresponding MK∗ = 3/2.

4.2 N ≥ 2, Ω = B1(0). For this case we consider the problem

Δu+ f(u) = 0 in B1(0),
u = 0 on ∂B1(0),

where B1(0) is the unit ball in RN . For simplicity we will work out
some details for the case N = 2, and then state conclusions for N ≥ 3
without checking details. First consider

Δu+ 1 = 0 in B1(0),
u = 0 on ∂B1(0),

whose solution is u(x, y) = 1/4−(1/4)(x2+y2) with maximumm = 1/4.
Second look at

Δu+Kh(u) = 0 in B1(0),
u = 0 on ∂B1(0),
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whose solutions can be constructed by connecting a harmonic function
in an annulus, whose outer boundary is ∂B1(0), to a paraboloid cap.
More specifically, we get

u(r) =
{

ln(r)/ln(ρ) in (ρ, 1],
1 + (K/4)ρ2 − (K/4)r2 in [0, ρ].

In order to have a smooth connection at the common boundary of
the annulus and the interior circle, we require K = (−2/ρ2 ln(ρ)). It
follows that K∗ = 4e and MK∗ = 2. Also notice that for K > K∗ we
get exactly two solutions, one large and one small.

Similar arguments for N ≥ 3 show that m = 1/2N , K∗ =
22/(N−2)NN/(N−2) and MK∗ = 1 + (N/2).

5. Generalization. As was mentioned previously, it is clear that
Theorem 2 generalizes to a large class of boundary value problems
where Δ can be replaced by any homogeneous quasilinear operator
satisfying a strong maximum principle as well as sufficient compactness
properties so that degree theory is applicable. In this section we
consider the particular case of the p-Laplacian.

As a first example we generalize Theorem 1 to a class of boundary
value problems for the one-dimensional p-Laplacian.

Theorem 3. Let 0 < a < b < (c/M), 1 < p <∞, (1/p)+ (1/q) = 1,
k = q2q, K = (p − 1)2pqp, and M = 1 + (1/p). If f : [0,∞) → [0,∞)
is a continuous function satisfying

(i) f(t) < (ka)p−1, for 0 ≤ t ≤ a,

(ii) f(t) ≥ (Kb)p−1, for b ≤ t ≤Mb, and

(iii) f(t) ≤ (kc)p−1, for 0 ≤ t ≤ c,

then the boundary value problem

(|u′|p−2u′)′ + f(u) = 0 in (0, 1),
u(0) = u(1) = 0,

has at least three symmetric nonnegative solutions y1, y2, and y3
satisfying ||y1||∞ < a, b < min[(1/2q),1−(1/2q)] y2, ||y3||∞ > a and
min[(1/2q),1−(1/2q)] y3 < b.
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Proof. It is clear that all solutions must be symmetric about 1/2.
The result will follow from an explicit computation of upper and lower
solutions.

To find upper solutions we consider

(|φ′|p−2φ′)′ + 1 = 0 in (0, 1),
φ(0) = φ(1) = 0,

and compute φ(x) = −(1/q)|(1/2) − x|q + (1/q)(1/2)q, which has a
maximum value of m = (1/q)(1/2)q. To rescale this equation we
multiply through by a constant γp−1, such as (ka)p−1, to get

(|γφ′|p−2γφ′)′ + γp−1 = 0 in (0, 1),
γφ(0) = γφ(1) = 0,

and it follows, as in Lemma 1 and the subsequent remark, that akφ =
(a/m)φ and ckφ = (c/m)φ are strict upper solutions. We refer to these
as u1 and u2, respectively.

To find lower solutions, consider the appropriate modification of (5),
i.e.,

(|ψ′|p−2ψ′)′ +Kh(ψ) = 0 in (0, 1),
ψ(0) = ψ(1) = 0,

whose solution can be constructed on [0, (1/2)] using a line segment
of slope s > 2 on the interval [0, (1/s)] attached to a cap satisfying
(|ψ′|p−2ψ′)′ = −K on [(1/s), (1/2)]. The solution on [(1/2), 1] can
then be obtained by reflection. Solving the cap ODE subject to the
conditions ψ′(1/2) = 0 and ψ(1/s) = 1 leads to

ψ′ = Kq−1

(
1
2
− x

)q−1

,

and

ψ = −K
q−1

q

(
1
2
− x

)q

+ 1 +
Kq−1

q

(
1
2
− 1
s

)q

.
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In order to have a smooth connection at x = 1/s, we require that the
equation sp−1 = K((1/2)− (1/s)) be satisfied. An elementary analysis
of this equation shows that if K∗ = (p − 1)2pqp, then there is exactly
one solution s = 2q. For K > K∗ we find two solutions for s, and for
K < K∗ we find no solutions for s. Substituting these values for K
and s yields

ψ(x) :=
{

2qx if 0 ≤ x ≤ 1/(2q)
−pq−12q((1/2) − x)q + 1 + (1/p) if 1/(2q) < x ≤ 1/2.

Notice that the maximum of this function is M = 1+(1/p). We denote
the lower solutions as u1 ≡ 0 and u2 = bψ. The argument in Lemma 3
must be modified somewhat to show that u2 is strict. By symmetry
we restrict our arguments to the interval [0, (1/2)]. As in Lemma 3 we
can show that any solution, u, satisfying u ≥ u2 must satisfy u > u2 in
{x : 0 < u(x) < bM}, and the derivatives of the two functions must be
distinct if the functions are equal at a boundary point of this open set.
In particular, u′(0) < bψ′(0). It is elementary that any solution will be
concave down and will reach its maximum at x = 1/2, so it must be
that {x : 0 < u(x) < bM} = (0, d) for some d ≤ 1/2. If d = 1/2, then
u(1/2) = Mb = bψ(1/2) and {x : 0 < u(x) < bM} = (0, (1/2)).
However the fact u′(1/2) = u′2(1/2) = 0 contradicts the SMP. If
d < 1/2, then we can conclude that u > Mb in (d, (1/2)]. Since u2

only reaches its maximum of Mb at x = 1/2, we would see that u > bψ
in (0, (1/2)] with u′(0) < bψ′(0), and so bψ is a strict lower solution.
Notice that we have u1 ≤ u2 ≤ u2 and u1 ≤ u1 ≤ u2, where u2 and
u1 are strict. Thus the standard degree argument applies to find three
solutions.

y1 represents the solution between u1 and u1, so y1 must lie strictly
below u1 and so ||y1||∞ < a. y2 represents the solution between u2

and u2, so y2 lies strictly above u2 and so b < min[(1/2q),1−(1/2q)] y2.
y3 represents a solution in the set S := {u ∈ (u1, u2) : ∃x0 and
x1 such that u(x0) < u2 and u(x1) > u1}. If y3(x) ≤ a for all
x, then y3 ≺ u1, which contradicts y3 ∈ S. Thus ||y3||∞ > a. If
y3 ≥ b in [(1/2q), 1 − (1/2q)], then there is a β ≤ 1/2 such that
b ≤ y3(x) ≤ Mb for x in [(1/2q), β] and y3(x) ≥ Mb ≥ bψ(x) for
x in [β, (1/2)]. (Recall that solutions are symmetric about x = 1/2,
so it is only necessary to do estimates on [0, (1/2)].) It follows that
−(|y′3|p−2y′3)

′ = f(y3) ≥ Kp−1bp−1h(ψ) = −(|bψ′|p−2bψ′)′ in [0, β],
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and y3 ≥ bψ at the boundaries of [0, β]. Thus y3 ≥ bψ in [0, β]. Hence,
y3 ≥ bψ on all of [0, 1], and so y3 � φ, which contradicts y3 ∈ S.
Therefore, min[(1/2q),1−(1/2q)] y3 < b.

Finally, we state the generalization of Theorem 2 to the case where Δ
is replaced by the p-Laplacian −Δp. The proofs are identical with one
small exception, which is already mentioned in the proof of Theorem 3,
and that is that Lemmas 1 and 3 must be rewritten to allow for rescaling
by a constant such as (aj/m)p−1.

Theorem 4. Let {aj}n+1
j=1 and {bj}n+1

j=1 be sequences of nonnegative
numbers such that MK∗bj < aj for j = 1, . . . , n+ 1, and aj < bj+1 for
j = 1, . . . , n. Assume that f : [0,∞) → [0,∞) is a continuous function
such that the following inequalities are satisfied for all j:

(i) f(t) < (aj/m)p−1, for 0 ≤ t ≤ aj, and

(ii) f(t) > (K∗bj)p−1, for bj ≤ t ≤MK∗bj.

Then the boundary value problem

Δpu+ f(u) = 0 in Ω,
u = 0 on ∂Ω,

has at least 2n+ 1 nonnegative solutions.
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