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ON THE GOLDBACH CONJECTURE
IN ARITHMETIC PROGRESSIONS

CLAUS BAUER AND WANG YONGHUI

ABSTRACT. It is proved that for a given integer N and for
all but � (log N)B prime numbers k ≤ N5/48−ε the following
is true: For any positive integers bi, i ∈ {1, 2, 3}, (bi, k) = 1
that satisfy N ≡ b1 + b2 + b3 (mod k), N can be written as
N = p1+p2+p3, where the pi, i ∈ {1, 2, 3} are prime numbers
that satisfy pi ≡ bi (mod k).

1. Introduction. Vinogradov [17] has proved that every sufficiently
large odd positive integer can be written as the sum of three primes.
This theorem has been generalized in many ways. In 1953, Ayoub [1]
proved the following result: If k is a fixed positive integer, bi, i = 1, 2, 3,
are integers with (bi, k) = 1 and J(N ; k, b1, b2, b3) is the number of
solutions of the equation

{
N = p1 + p2 + p3,

pj ≡ bj (mod k),

then

J(N ; k, b1, b2, b3) = (N ; k)
N2

2 log3 N
(1 + o(1)) ,

where for odd integer N ≡ b1 + b2 + b3 (mod k),

σ(N, k) =
C(k)
k2

∏
p|k

p3

(p − 1)3 + 1

∏
p|N
p�k

(p − 1)((p − 1)2 − 1)
(p − 1)3 + 1

×
∏
p>2

(
1 +

1
(p − 1)3

)
,
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36 C. BAUER AND WANG Y.

where all p > 2, C(k) = 2 for odd k and C(k) = 8 for even k.

Using Ayoub’s method, one can prove this result for all k ≤ logA N
for an arbitrary A > 0 for all sufficiently large odd integers N . Liu and
Zhan [11] as well as the first author [2] improved upon Ayoub’s result
by proving the following theorem:

For N ≡ b1 + b2 + b3 (mod k) and an odd N sufficiently large, there
holds

(1.1) J(N ; k, b1, b2, b3) > 0

for all k ≤ Nδ, where δ is a very small, positive constant.

In [10], it was shown that (1.1) holds for all k ≤ R = N (1/8)−ε with
at most � R(log N)−A exceptions for any A > 0. Liu proved in [7]
that if k is restricted to be a prime number, R can be chosen as large as
N3/20(log N)−A for any A > 0. Here we give a result that improves on
the result in [7] by obtaining a significantly smaller set of exceptional
modules k at the cost of a smaller upper bound R:

Theorem 1. Let R = N5/48−ε. Then the inequality (1.1) holds for
all prime numbers k ≤ R with at most O((log N)B) exceptions for a
certain B > 0.

The improvement in this paper compared to previous work is due to
two innovations. First, we apply a technique previously used in [9] to
our problem. Second, as a main contribution of our paper, we exactly
calculate the contribution of N -exceptional zeros that we define in the
following. We set

L = log N, L2 = log log N, L(s, χ) =
∑
n≥1

χ(n)
ns

,

where χ is a Dirichlet character. For a prime number k, k ≤ N , and a
fixed positive integer V , we define

Pk = {m ∈ N : m ≡ 0 (mod k)}, IV =
[
k, kLV

]⋃[
k2, k2LV

]
,

Ak = Pk ∩ IV .
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We call a Dirichlet character χ to a module q, q ≤ N , an N -exceptional
character if there exists at least one complex number s = σ + it such
that

(1.2) σ > 1 − EL2

L
, |t| ≤ N, L(s, χ) = 0,

where E is a fixed, positive number to be defined later. We call s an
N -exceptional zero and we call an integer q an N -exceptional integer if
there exists an N -exceptional character χ modulo q.

We note that the concept of N -exceptional zeros has earlier been
applied to other problems in additive prime number theory in [18] and
[3]. However, the exact definitions of the N -exceptional zeros in both
papers differ from the definition given here and, indeed, the sets of
N -exceptional zeros defined here and in [18] and [3] have no common
elements.

Theorem 1 is a direct consequence of Theorems 2 and 3.

Theorem 2. For a given prime number k ≤ N5/48−ε, if none of the
integers q ∈ Ak is N-exceptional, then (1.1) is true for this k.

Theorem 3. There are at most O
(
(log N)B

)
prime numbers k,

1 ≤ k ≤ N , such that at least one of the integers q ∈ Ak is N-
exceptional. Here, B is a fixed positive constant.

2. Outline of the proof of Theorem 2 and treatment of the
minor arcs. In the sequel, [a1, . . . , an] denotes the least common
multiple of the integers a1, . . . , an. c is an effective positive constant
and ε will denote an arbitrarily small positive number; both of them
may take different values at different occasions. For example, we may
write

LcLc � Lc, NεLc � Nε.

We use the familiar notations

r ∼ R ⇐⇒ R < r ≤ 2R,∑
χ modq

∗ :=
∑

χ modq
χ primitive

,
∑

1≤a≤q

∗ :=
∑

1≤a≤q
(a,q)=1

.
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We know from [1] that Theorem 2 holds true for k ≤ LH for any H > 0.
Therefore, we assume throughout the document that

(2.1) k > LH

for a fixed H > 0 to be determined later. χq denotes a character modulo
q and χq,0 is the principal character modulo q. We write e(α) = e2πiα

and the variables p and k always denote prime numbers. We keep k
fixed throughout this paper. If pm|q, but pm+1 � q, we write pm||q. We
define for any three positive integers ri, i ∈ {1, 2, 3} that satisfy k3 � ri,

(2.2) si =

⎧⎨
⎩

ri if k � ri,
ri/k if k||ri,
ri/k2 if k2||ri.

Setting [r1, r2, r3] = r and [s1, s2, s3] = s, this implies for km||r, m ≤ 2:

(2.3) r = skm.

For a positive integer q and a character χ modulo q, let

kq = (k, q), R(N) =
∑

N/4≤ni<N
n≡bi (mod k)
n1+n2+n3=N

Λ(n1)Λ(n2)Λ(n3),

C(χ, q, h, b, a) =
q∑

m=1
m≡b (mod h)

χ(m) e

(
ma

q

)
,

Z(N, q, kq, χ1, χ2, χ3) :=
1

φ3(q)

q∑
a=1

(a,q)=1

C(χ1, q, kq, b1, a) C(χ2, q, kq, b2, a)

× C(χ3, q, kq, b3, a)e
(−aN

q

)
,

A(N, q, kq) = Z
(
N, q, kq, χ(q/kq),0, χ(q/kq),0, χ(q/kq),0

)
,

T (λ) =
∑

N/4<n≤N

e(λn).



ON THE GOLDBACH CONJECTURE 39

As we always argue for fixed variables N and k, denote by
(2.4)

S(λ, bi) =
∑

N/4<n≤N
n≡bi (mod k)

Λ(n)e(nλ), S(λ, χ) =
∑

N/4<n≤N

Λ(n)e(nλ)χ(n),

W (λ, χ) = S(λ, χ) − E0(χ)T (λ), E0(χ) =
{ 1 if χ = χ0,

0 otherwise,

P1 = k4/3L3G, P2 = k2L3G, Q = Nk−2L−4G,

where the constant G ≥ 8 will be specified later. Using the circle
method, we define the major arcs M = E1(k) ∪ E2(k) as in [7]:

E1(k) =
⋃

q≤P1
k�q

q⋃
a=1

(a,q)=1

[
a

q
− 1

qQ
,
a

q
+

1
qQ

]
,

E2(k) =
⋃

q≤P2
k|q

q⋃
a=1

(a,q)=1

[
a

q
− 1

qQ
,
a

q
+

1
qQ

]
,

We define the minor arcs m as m = [(1/Q), 1 + (1/Q)] \ M . Writing
α = (a/q) + λ, we use Dirichlet’s theorem on rational approximation
and find that m ⊂ E3(k) ∪ E4(k), where

E3(k) =
{

α =
a

q
+ λ : P1 < q < Q, k � q, |λ| ≤ 1

qQ

}
,

E4(k) =
{

α =
a

q
+ λ : P2 < q < Q, k|q, |λ| ≤ 1

qQ

}
.

We see

(2.5)

R(N) =
∫ 1+(1/Q)

1/Q

e (−Nα)
3∏

i=1

S(α, bi) dα

=
( 2∑

i=1

∫
Ei(k)

)
e (−Nα)

3∏
i=1

S(α, bi) dα

+ O

( 4∑
i=3

∫
Ei(k)

∣∣∣∣
3∏

i=1

S(α, bi)
∣∣∣∣ dα

)

=: R1(N) + R2(N) + O (R3(N) + R4(N)) .
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To estimate the contribution of the integral over m, we quote the
following lemma from [7]:

Lemma 2.1. Let A > 0 be arbitrary and α ∈ E3(k) ∪ E4(k). If in
(2.4) G = G(A) is chosen sufficiently large, then

S(α, b) � N

kLA+1
.

We derive from Lemma 2.1 and Dirichlet’s lemma on rational approx-
imation the following estimate:

(2.6)
∫

E3(k)∪Ek(4)

|S(α, b1)S(α, b2)S(α, b3)| dα

� max
α∈E3(k)∪E4(k)

|S(α, b1)|
(∫ 1

0

|S(α, b2)|2 dα

)1/2

×
(∫ 1

0

|S(α, b3)|2 dα

)1/2

� N2

k2LA
.

In the following sections, we shall show that, under the condition of
Theorem 2,

(2.7) R1(N) + R2(N) = σ(N, k)
N2

32
+ O

(
N2k−2L−A

)
,

for any A > 0 and where σ(N, k) is defined as in (1.2). Using

k

φ3(k)

 σ(N, k) 
 k

φ3(k)
,

Theorem 2 follows from (2.5), (2.6) and (2.7).

3. Preliminary lemmas.

Lemma 3.1. Let f(x), g(x) and f ′(x) be three real differentiable and
monotonic functions in the interval [a, b] and |g(x)| � M.
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(i) If |f ′(x)| 
 m > 0, then

∫ b

a

g(x) e (f(x)) dx � M/m.

(ii) If |f ′′(x)| 
 r > 0, then

∫ b

a

g(x) e (f(x)) dx � M/r1/2.

Proof. See [13, Chapter 21].

Lemma 3.2. For any natural number q = q1q2, (q1, q2) = 1 and
characters χa (mod q) = χa1 (mod q1), χa2 (mod q2), χb (mod q) =
χb1 (mod q1)χb2 (mod q2), χc (mod q)= χc1 (mod q1), χc2 (mod q2)
and f = f1q2 + f2q1, there is:

a) C (χa, q, kq, b, f) = C (χa1 , q1, kq1 , b, f1) C (χa2 , q2, kq2 , b, f2),

b) Z (N, q, kq, χa, χb, χc) = Z (N, q1, kq1 , χa1 , χb1 , χc1) Z (N, q2, kq2 ,
χa2 , χb2 , χc2).

c) If χ modulo pβ is a both nonprimitive and nonprincipal character,
i.e., χ is induced by χ∗ modulo pα, 1 ≤ α < β, then for (b, p) = 1,
(a, p) = 1 and 0 ≤ γ < β, we have

C (χ, pβ, pγ , b, a) = 0.

Proof. Parts a) and b) are shown in the same way as Lemma 4.4 a
and b in [2]. Part c) is Lemma 4.3 in [2].

Lemma 3.3. Set (a, q) = 1 and (b, q) = 1 throughout the lemmata
a) and b).

a) Let χ be a character modulo q. Then

C (χ, q, 1, b, a) � q1/2.
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b)

C (χq,0, q, kq, b, a)

=
{

μ(q/kq)e(tba/kq) if (q/kq, kq) = 1, tq/kq ≡ 1 (mod kq),

0 otherwise.

c) Let there be given any three characters χ1, χ2, χ3, modulo k2.
Then

Z (N, k2, k, χ1, χ2, χ3) �= 0 =⇒ χ1, χ2, χ3

are primitive characters modulo k2.

d) For any three primitive characters χi modulo ri, 1 ≤ i ≤ 3 with
k2||r where [r1, r2, r3] = r, r|q, and the principal character χ0 modulo q
we have:

Z (N, q, k, χ1χ0, χ2χ0, χ3χ0) �= 0 =⇒ k2||ri, 1 ≤ i ≤ 3.

e) For any χ1, χ2, χ3 modulo k2

Z (N, k2, k, χ1, χ2, χ3) � k−2.

Proof. Part a) is contained in Lemmas 5.1 and 5.2 in [12]. Part b) is
shown in [16].

c) If any χi = χ0 (mod k2), 1 ≤ i ≤ 3, then the lemma follows from
Lemma 3.3 b). If any of χi is a nonprimitive character modulo k2 that
is induced by a primitive character modulo k, then the lemma follows
from Lemma 3.2 c).

d) Applying Lemma 3.2 b), we can write Z(N, q, k, . . . ) = Z(N, r′, k,
. . . )A(N, l, 1), where (r′, l) = 1, r|r′, and every prime factor that di-
vides r′ also divides r. From Lemma 3.2 c), we see that Z(N, r′, k, . . . ) =
0, if r′ �= r. Using the notation introduced in (2.3) and again
Lemma 3.2 b), we find Z(N, r, k, . . . ) = Z(N, s, 1, . . . )Z(N, k2, k, . . . ).
Thus, the proof can focus on terms Z(N, q, . . . ) that can be writ-
ten as Z(N, q, k, . . . ) = Z(N, s, 1, . . . )Z(N, k2, k, . . . )A(N, l, 1), where
(r, l) = 1 and (s, k) = 1. Now the statement of this lemma follows from
Lemma 3.3 c).



ON THE GOLDBACH CONJECTURE 43

e) We know from Lemma 3.3 c) that we only have to consider
characters χi, 1 ≤ i ≤ 3, that are primitive modulo k2. We know
from [3, Lemma 5.1 c], that for a primitive character χi modulo k2, we
have χi(1 + b̄sk) = e(cib̄s/k), where (k, ci) = 1 and b̄b ≡ 1 (mod k2).
By definition,

(3.1)

C (χi, k
2, k, bi, a) =

k∑
s=1

χi(bi + sk) e

(
abi + aks

k2

)

= χi(bi)
k∑

s=1

χi(1 + b̄isk) e

(
abi + aks

k2

)

= χi(bi)
k∑

s=1

e

(
scib̄i

k2

)
e

(
abi + aks

k2

)
.

Inserting (3.1) in the definition of Z(. . . ), we find

(3.2) Z (N, k2, k, χ1, χ2, χ3)

=
∏3

i=1
χi(bi)

φ3(k2)

k2∑
a=1

∗
3∏

i=1

( k∑
si=1

e

(
sicib̄i

k2

)
e

(
abi + aksi

k2

))
e

(−aN

k2

)

=
∏3

i=1
χi(bi)

φ3(k2)

k∑
s1

k∑
s2

k∑
s3

e

(
s1c1b̄1 + s2c2b̄2 + s3c3b̄3

k2

)

×
k2∑

a=1

∗
e

(
a(b1 + b2 + b3 − N + s1k + s2k + s3k)

k2

)
.

Using that b1 + b2 + b3 −N = Mk, M ∈ Z, we can write the inner sum
in (3.2) as:

k2∑
a=1

∗
e

(
ak(M + s1 + s2 + s3)

k2

)

= k

k−1∑
a=1

e

(
a(M + s1 + s2 + s3)

k

)

=
{

k(k − 1) if M + s1 + s2 + s3 ≡ 0 (mod k),

−k else.
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Obviously,
(3.3)

� {s1, s2, s3 : 1 ≤ s1, s2, s3 ≤ k, M + s1+ s2+ s3 ≡ 0 (mod k)} = k2.

Thus, noting that k/φ(k) ≤ 2, we obtain from (3.2) and (3.3):

Z (N, k2, k, χ1, χ2, χ3) � k−6k4 = k−2.

Lemma 3.4. Let there be given primitive characters χi mod ri,
i = 1, 2, 3, the principal character χ0 mod q and r = [r1, r2, r3].

a) If (r, k) = 1, then∑
q≤P
r|q

|Z (N, q, kq, χ1χ0, χ2χ0, χ3χ0)| � r−1/2L.

b) If km||r, m ∈ {1, 2}, then∑
q≤P
r|q

|Z (N, q, kq, χ1χ0, χ2χ0, χ3χ0)| � s−1/2k−2L.

c) If (r, k) = 1, then∑
q≤P
kr|q

|Z (N, q, kq, χ1χ0, χ2χ0, χ3χ0)| � r−1/2k−2L.

Proof. a) Let J denote the left-hand side in Lemma 3.4 a). Arguing
as in the proof of Lemma 3.3 d), we see that we can focus on terms
Z(N, q, . . . ) which can be written as follows

Z (N, q, kq, . . . ) = Z (N, r, 1, . . . ) A (N, l, kl),

where (l, r) = 1. Thus

(3.4) J � |Z (N, r, 1, . . . )|
∑

l≤P/r

|A (N, l, kl)|.
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From Lemma 3.3 a), we derive

(3.5) |Z (N, r, 1, . . . )| � r−3rr3/2L3
2 = r−1/2L3

2.

Lemma 3.3 b) implies that |A(N, l, kl)| ≤ lφ−3(l). Thus

(3.6)
∑

l≤P/r

A (N, l, kl) � 1.

Part a) follows from (3.4) (3.6). For the proof of part b), we use the
definition (2.3) and Lemma 3.2 b) to write

(3.7) Z (N, r, k, . . . ) = Z (N, s, 1, . . . )Z (N, km, k, . . . ).

As in (3.5), we use Lemma 3.3 a) to estimate Z(N, s, 1, . . . ). In order to
estimate Z(N, km, k, . . . ), for m = 1, we use the fact that by definition
|C(χ, k, k, b, a)| ≤ 1 whereas for m = 2 we use Lemma 3.3 e). Thus,

(3.8) Z (N, s, 1, . . . )Z (N, km, k, . . . ) � s−1/2k−2L3
2.

The lemma then follows from (3.4), (3.6), (3.7) and (3.8). For the proof
of part c), we argue as in (3.4):

(3.9) J � |Z (N, r, 1, . . . )|
∑

l≤P/r
k|l

|A (N, l, k)|.

We see from Lemma 3.3 b) that

(3.10)
∑

l≤P/r
k|l

|A (N, l, k)| ≤
∑

l≤P/r
k|l

l

l3
L3

2 ≤ k−2L3
2

∑
l≤P/rk

l−2 � k−2L3
2.

Part c) now follows from (3.5), (3.9) and (3.10).

Lemma 3.5. There exists a positive number J such that:

a)
∞∑

q=1

1
φ (k/kq)

3 A (N, q, kq) = σ(N, k).
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b) ∑
q≥P

1
φ (k/kq)

3 |A (N, q, kq)| � (Pk)−1LJ .

Proof. The proof is nearly identical to the proof of Lemma 4.6 in [2].
Whereas in [2] the estimate k/φ(k) � kε is used, here the estimate
k/φ(k) � log log k is applied.

4. Treatment of the major arcs. We first consider the set E1(k).
If k � q, we find

S

(
a

q
+ λ, bi

)
=

q∑
g=1

∗
e

(
ga

q

) ∑
N/4<n≤N

n≡bi (mod k)
n≡g (mod q)

Λ(n) e(nλ) + O(L2).

We shall introduce the Dirichlet characters ξ mod k and χ mod q and
obtain

S

(
a

q
+ λ, bi

)
=

1
φ(k)φ(q)

C (χ0, q, 1, bi, a)T (λ) +
1

φ(k)φ(q)

+
∑

ξmodk

ξ̄(bi)
∑

χmodq

C (χ, q, 1, bi, a)W (λ, ξχ) + O(L2).

In the sequel, we will neglect the error term O(L2). We will see that its
contribution will be dominated by other, larger error terms. We obtain
from (2.5):

(4.1) R1(N) = Rm
1 (N) + Re

1(N),

where

Rm
1 (N) =

∑
q≤P1
k�q

1
φ3(k)φ3(q)

q∑
a=1

∗
3∏

i=1

C (χ0, q, 1, bi, a) e

(
−a

q
N

)

×
∫ 1/qQ

−1/qQ

T 3(λ) e (−Nλ) dλ,
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Re
1(N) =

∑
q≤P1
k�q

1
φ3(k)φ3(q)

q∑
a=1

∗
e

(
−a

q
N

)(4.2)

×
∫ 1/qQ

−1/qQ

3∏
i=1

( ∑
ξmodk

ξ̄(bi)
∑

χmodq

C (χ, q, 1, bi, a)W (λ, ξχ)
)

× e (−λN) dλ

+
3∑

i=1

∑
q≤P1
k�q

1
φ3(k)φ3(q)

q∑
a=1

∗
e

(
− a

q
N

)

×
∫ 1/qQ

−1/qQ

3∏
j=1
j 
=i

( ∑
ξmodk

ξ̄(bj)
∑

χmodq

C (χ, q, 1, bj , a)W (λ, ξχ)
)

× C (χ0, q, 1, bi, a)T (λ) e (−λN) dλ

+
3∑

i=1

∑
q≤P1
k�q

1
φ3(k)φ3(q)

q∑
a=1

∗
e

(
−a

q
N

)

×
∫ 1/qQ

−1/qQ

( ∑
ξmodk

ξ̄(bi)
∑

χmodq

C (χ, q, 1, bi, a)W (λ, ξχ)
)

×
3∏

j=1
j 
=i

C (χ0, q, 1, bj , a) T 2(λ) e (−λN) dλ

=:
∑
1

+
∑
2

+
∑
3

.

We first evaluate the main term Rm
1 (N) using (3.6) with r = 1,

Rm
1 (N) =

1
φ3(k)

∑
q≤P1
k�q

A (N, q, 1)
∫ 1/2

−1/2

T (λ)3 e (−Nλ) dλ

+ O

(
1

φ3(k)

∑
q≤P1
k�q

|A (N, q, 1)|
∫ 1/2

1/qQ

1
|λ|3 dλ

)
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=
1

φ3(k)

∑
q≤P1
k�q

A (N, q, 1)
N2

32
+ O

(
(P1Q)2

φ3(k)

)
(4.3)

=
1

φ3(k)

∑
q≤P1
k�q

A(N, q, 1)
N2

32
+ O

(
N2k−4L−A

)
,

where we have used T (λ) � 1/|λ| and

(4.4)∫ 1/2

−1/2

T (λ)3 e(−Nλ) dλ =
∑

N/4<n1<N/2

∑
N/4<n2<3N/4−n1

1 =
N2

32
+O(N).

In the sequel we will without further mention use the fact that, for any
character χ induced by a primitive character χ∗, we have W (χ, χξ) =
W (λ, χ∗ξ) + O(L2). Using Lemma 3.4 a), we estimate

∑
1:∣∣∣∣∑

1

∣∣∣∣ ≤ 1
φ3(k)

∑
q≤P1
k�q

∑
χ1modq

∑
χ2modq

∑
χ3modq

∑
ξ1modk

∑
ξ2modk

∑
ξ3modk

× |Z (N, q, 1, χ1, χ2, χ3)|
∫ 1/qQ

−1/qQ

3∏
j=1

|W (λ, χjξj)| d λ

≤ 1
φ3(k)

∑
r1≤P1
k�r1

∑
r2≤P1
k�r2

∑
r3≤P1
k�r3

∑
χ1modr1

∗ ∑
χ2modr2

∗ ∑
χ3modr3

∗

×
∑

ξ1modk

∑
ξ2modk

∑
ξ3modk

×
∫ 1/[r1,r2,r3]Q

−1/[r1,r2,r3]Q

3∏
j=1

(|W (λ, χjξj)| + L2
)
dλ(4.5)

×
∑

q≤P1
[r1,r2,r3]|q

|Z (N, q, 1, χ1χ0, χ2χ0, χ3χ0)|

� L

φ3(k)

∑
r1≤P1
k�r1

∑
r2≤P1
k�r2

∑
r3≤P1
k�r3

[r1, r2, r3]−1/2
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×
∑

χ1modr1

∗ ∑
χ2modr2

∗ ∑
χ3modr3

∗ ∑
ξ1modk

∑
ξ2modk

∑
ξ3modk

×
∫ 1/[r1,r2,r3]Q

−1/[r1,r2,r3]Q

3∏
j=1

(|W (λ, χjξj)| + L2
)
d λ,

In the following, we will neglect the error terms L2 in the last integral
in (4.5) as their contribution will be dominated by other terms. As
a character ξ modulo k is either primitive or the principal character
modulo k, the following relation holds for all characters χi and ξi,
i ∈ {1, 2, 3}, over which is summed in (4.5):

(4.6) (χξ)∗ =
{

χ∗ if ξ = ξ0,
χ∗ξ otherwise.

Thus we see from (4.5) and (4.6) and by the notation for si introduced
in (2.2),

(4.7)∑
1

� k−3L2

( ∑
r1≤P1k

k||r1

∑
r2≤P1k

k||r2

∑
r3≤P1k

k||r3

+
∑

r1≤P1k
k||r1

∑
r2≤P1k

k||r2

∑
r3≤P1
k�r3

+
∑

r1≤P1k
k||r1

∑
r2≤P1
k�r2

∑
r3≤P1
k�r3

+
∑

r1≤P1
k�r1

∑
r2≤P1
k�r2

∑
r3≤P1
k�r3

)
[s1, s2, s3]−1/2

×
∑

χ1modr1

∗ ∑
χ2modr2

∗ ∑
χ3modr3

∗
∫ 1/[s1,s2,s3]Q

−1/[s1,s2,s3]Q

3∏
j=1

|W (λ, χj)| dλ

=:
4∑

i=1

∑
1,i

,

where each
∑

1,i stands for one of the multiple sums in (4.7). Using
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[s1, s2, s3]1/2 ≥ s
1/4
2 s

1/4
3 , we obtain

(4.8)

∑
1,1

� k−3L2
∑

r1≤P1k
k|r1

∑
χ1modr1

∗
max

|λ|≤1/s1Q
|W (λ, χ1)|

×
∑

r2≤P1k
k|r2

s
−1/4
2

∑
χ2modr2

∗
(∫ 1/s2Q

−1/s2Q

|W (λ, χ2)|2 dλ

)1/2

+
∑

r3≤P1k
k|r3

s
−1/4
3

∑
χ3modr3

∗
(∫ 1/s3Q

−1/s3Q

|W (λ, χ3)|2 d λ

)1/2

=: k−2L2IAW 2
A,

where

IA = k−1/3
∑

r≤P1k
k|r

∑
χ (mod r)

∗
max

|λ|≤k/rQ
|W (λ, χ)|,

WA = k−1/3
∑

r≤P1k
k|r

(
r

k

)−1/4 ∑
χ (mod r)

∗
(∫ k/rQ

−k/rQ

|W (λ, χ)|2 d λ

)1/2

.

Arguing similarly, we obtain

(4.9)
4∑

i=2

∑
1,i

� k−2L2
(
IAWAWB + IAW 2

B + IBW 2
B

)
,

where

IB = k−1/3
∑

r≤P1
k�r

∑
χ (mod r)

∗
max

|λ|≤1/rQ
|W (λ, χ)|,

WB = k−1/3
∑

r≤P1
k�r

r−1/4
∑

χ (mod r)

∗
(∫ 1/rQ

−1/rQ

|W (λ, χ)|2 d l

)1/2

.
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In the same way we find
(4.10)∑

2

+
∑
3

� k−2L2 max
|λ|≤1/Q

|T (λ)| (W 2
B + WBWA + W 2

A

)

+ k−2L2 max
|λ|≤1/Q

|T (λ)|
(∫ 1/Q

−1/Q

|T (λ)|2 dl

)1/2

(WB + WA) .

We have

(4.11) max
|λ|≤1/Q

|T (λ)| � N.

Using T (λ) ≤ min (N, (1/λ)), we see that

(4.12)
(∫ 1/Q

−1/Q

|T (λ)|2 dl

)1/2

� N1/2.

Therefore, we see from (4.2) and (4.7) (4.12):

(4.13)
Re

1(N) � k−2L2

(
N
(
W 2

B+ WBWA+ W 2
A

)
+ N3/2(WB+ WA)

+ IAW 2
A+ IAWAWB + IAW 2

B+ IBW 2
B

)
.

For q ∈ E2(k), we see

S

(
a

q
+ λ, bi

)
=

q∑
g=1

g≡bi (mod k)

∗
e

(
ga

q

) ∑
N/4<n≤N

n≡bi (mod k)
n≡g (mod q)

Λ(n) e (nλ)

=
q∑

g=1
g≡bi (mod k)

∗
e

(
ga

q

) ∑
N/4<n≤N

n≡g (mod q)

Λ(n) e (nλ)

=
1

φ(q)
C (χ0, q, k, bi, a) T (λ)

+
1

φ(q)

∑
χmodq

C (χ, q, k, bi, a)W (λ, χ).
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Arguing as in (4.1) (4.3), we obtain by applying (3.6) in the same way
as in (4.3) and using (4.4):

(4.14) R2(N) = Rm
2 (N) + Re

2(N),

where

(4.15) Rm
2 (N) =

∑
q≤P2
k|q

A (N, q, k)
N2

32
+ O

(
N2k−3L−A

)
,

Re
2(N) =

∑
q≤P2
k|q

1
φ3(q)

q∑
a=1

∗
∫ 1/qQ

−1/qQ

×
3∏

i=1

( ∑
χmodq

C (χ, q, k, bi, a)W (λ, χ)
)

e

(
− a

q
N − λN

)
dλ

+
3∑

i=1

∑
q≤P2
k|q

1
φ3(q)

q∑
a=1

∗
∫ 1/qQ

−1/qQ

×
3∏

j=1
j 
=i

( ∑
χmodq

C (χ, q, k, bj , a)W (λ, χ)
)

× C (χ0, q, k, bi, a) T (λ) e

(
− a

q
N − λN

)
dλ

+
3∑

i=1

∑
q≤P2
k|q

1
φ3(q)

q∑
a=1

∗
∫ 1/qQ

−1/qQ

∑
χmodq

C (χ, q, k, bi, a)W (λ, χ)

(4.16)

×
3∏

j=1
j 
=i

C (χ0, q, k, bj , a) T 2(λ) e

(
− a

q
N − λN

)
dλ

=:
∑
4

+
∑
5

+
∑
6

.
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Arguing similarly as in (4.5) and using Lemma 3.3 d), we see
∑
4

=
∑

q≤P2
k|q

∑
χ1modq

∑
χ2modq

∑
χ3modq

|Z (N, q, k, χ1, χ2, χ3)|

×
∫ 1/qQ

−1/qQ

3∏
j=1

|W (λ, χj)| d λ

�
( ∑

r1≤P2
k||r1

∑
r2≤P2
k||r2

∑
r3≤P2
k||r3

+
∑

r1≤P2
k||r1

∑
r2≤P2
k||r2

∑
r3≤P2/k

k�r3

(4.17)

+
∑

r1≤P2
k||r1

∑
r2≤P2/k

k�r2

∑
r3≤P2/k

k�r3

+
∑

r1≤P2/k
k�r1

∑
r2≤P2/k

k�r2

∑
r3≤P2/k

k�r3

+
∑

r1≤P2

k2||r1

∑
r2≤P2

k2||r2

∑
r3≤P2

k2||r3

) ∑
χ1modr1

∗ ∑
χ2modr2

∗ ∑
χ3modr3

∗

×
∫ 1/[r1,r2,r3]Q

−1/[r1,r2,r3]Q

3∏
j=1

(|W (λ, χj)| + L2) dλ

×
∑

q≤P2
[r1,r2,r3]|q

k|q

|Z (N, q, kq, χ1χ0, χ2χ0, χ3χ0)|

=:
5∑

i=1

∑
4,i

,

(4.18)

where each
∑

4,i stands for one of the multiple sums in (4.17). The
condition k|q in the index of the sum

∑
q≤P2

[r1,r2,r3]|q
k|q

|Z(N, q, kq, χ1χ0,

χ2χ0, χ3χ0) is only necessary for the sum
∑

4,4. In the other cases,
k|[r1, r2, r3] which implies k|q. Thus, we will only make use of the
condition when we estimate the sum

∑
4,4. Again, we neglect the error

terms L2 in the last expression as they will be dominated in the sequel
by other error terms. In order to estimate the

∑
4,1, we use the fact

that for all q considered in (4.17), there holds k3 � q because of q ≤ P2.
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This allows us to apply Lemma 3.4 b). Using (2.2), Lemma 3.4 b) and
the relation [s1, s2, s3]1/2 ≥ s

1/6
1 s

1/6
2 s

1/6
3 , we argue as in (4.8):

(4.19)∑
4,1

� k−2L
∑

r1≤P2
k||r1

∑
r2≤P2
k||r2

∑
r3≤P2
k ||r3

[s1, s2, s3]−1/2

+
∑

χ1modr1

∗ ∑
χ2modr2

∗ ∑
χ3modr3

∗
∫ 1/[r1,r2,r3]Q

−1/[r1,r2,r3]Q

3∏
j=1

|W (λ, χj)| d λ

� k−2LICW 2
C ,

where

IC =
∑

r≤P2
k|r

(
r

k

)−1/6 ∑
χ (mod r)

∗
max

|λ|≤1/rQ
|W (λ, χ)|,

WC =
∑

r≤P2
k|r

(
r

k

)−1/6 ∑
χ (mod r)

∗
(∫ 1/rQ

−1/rQ

|W (λ, χ)|2 d λ

)1/2

.

Arguing as in (4.10), using Lemma 3.4 b) and the relation [s1, s2, s3]1/2

≥ s
1/6
1 s

1/6
2 s

1/6
3 , we obtain

(4.20)
∑
4,2

+
∑
4,3

≤ k−2L
(
IDW 2

C + IDWDWC

)
,

where

ID =
∑

r≤P2/k
k �r

∑
χ (mod r)

∗
max

|λ|≤1/rQ
|W (λ, χ)|,

WD =
∑

r≤P2/k
k �r

r−1/4
∑

χ (mod r)

∗
(∫ 1/rQ

−1/rQ

|W (λ, χ)|2 d λ

)1/2

.
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For the estimate of
∑

4,4, we argue as in (4.19) and apply Lemma 3.4 c):

(4.21)∑
4,4

� k−2L
∑

r1≤P2/k
k�r1

∑
r2≤P2/k

k�r2

∑
r3≤P2/k

k �r3

[r1, r2, r3]−1/2

+
∑

χ1modr1

∗ ∑
χ2modr2

∗ ∑
χ3modr3

∗
∫ 1/[r1,r2,r3]Q

−1/[r1,r2,r3]Q

3∏
j=1

|W (λ, χj)| d λ

≤ k−2LIDW 2
D.

As k3 � q for all considered q, we use Lemma 3.4 b) to estimate the sum∑
4,5:

(4.22)∑
4,5

� k−2L
∑

r1≤P2

k2||r1

∑
r2≤P2

k2||r2

∑
r3≤P2

k2 ||r3

[s1, s2, s3]−1/2

+
∑

χ1modr1

∗ ∑
χ2modr2

∗ ∑
χ3modr3

∗
∫ 1/[r1,r2,r3]Q

−1/[r1,r2,r3]Q

3∏
j=1

|W (λ, χj)| d λ

≤ k−2LIEW 2
E ,

where

IE =
∑

r≤P2

k2|r

(
r

k2

)−1/6 ∑
χ (mod r)

∗
max

|λ|≤1/rQ
|W (λ, χ)|,

WE =
∑

r≤P2

k2|r

(
r

k2

)−1/6 ∑
χ (mod r)

∗
(∫ 1/rQ

−1/rQ

|W (λ, χ)|2 d λ

)1/2

.

Arguing as in (4.9), we obtain

(4.23)

∑
5

+
∑
6

� k−2L

(
max

|l|≤1/Q
|T (λ)| (W 2

C + WCWD + W 2
D + W 2

E

)

+ max
|λ|≤1/Q

|T (λ)|
(∫ 1/Q

−1/Q

|T (λ)|2 dl

)1/2

(WC + WD+ WE)
)

.



56 C. BAUER AND WANG Y.

Therefore, we see from (4.11), (4.12), and (4.16) (4.23):

(4.24)

Re
2(N) � k−2L

(
N
(
W 2

C + WDWC + W 2
D + W 2

E

)
+ N3/2(WC + WD + WE)

+ ICW 2
C + IDW 2

C + IDWDWC + IDW 2
D + IEW 2

E

)
.

Using Lemma 3.5, we see from (4.3) and (4.15) that for a sufficiently
large G = G(A)

(4.25) Rm
1 (N) + Rm

2 (N) = σ(N, k)
N2

32
+ O

(
N2k−2L−A

)
.

Thus we see from (4.1), (4.13), (4.14), (4.24) and (4.25) that the proof
of (2.7) reduces to the proof of the following two lemmas:

Lemma 4.1. If k ≤ N (2/15)−ε, then for F ∈ {A, B, D}

WF � N1/2L−A

for any A > 0.

For k ≤ N (5/48)−ε and if none of the integers q ∈ Ak is N-
exceptional, then for F ∈ {C, E}

WF � N1/2L−A

for any A > 0.

Lemma 4.2. If k ≤ N (2/15)−ε, then for F ∈ {A, B, C, D, E}

IF � NLM

for a certain M > 0.

In the sequel, we will also use the following lemma, which is the
estimate (1.1) in [6]:
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Lemma 4.3. Let N∗(α, T, q) denote the number of zeros σ + it of all
L−functions to primitive characters modulo q within the region σ ≥ α,
|t| ≤ T . Then, for a positive integer m,

∑
q≤P
m|q

N∗(α, T, q) �
(

P 2T

m

)((12/5)+ε)(1−α)

.

5. Proof of Lemma 4.1 for WA. In order to prove the lemma it
is enough to show that

WA,R � N1/2

(
R

k

)1/4

k1/3L−A,(5.1)

where

WA,R =
∑
r∼R
k|r

∑
χ (mod r)

∗
(∫ k/rQ

−k/rQ

|W (λ, χ)|2 d λ

)1/2

for R ≤ P1k/2. Applying Lemma 1, [4], we see

(5.2)
∫ k/rQ

−k/rQ

|W (λ, χ)|2 d λ

� (QR/k)−2

∫ N

N/8

∣∣∣∣∣
∑

t<m≤t+Qr/k
N/4<m≤N

Λ(m) χ(m)−E0(χ)
∑

t<m≤t+Qr/k
N/4<m≤N

1

∣∣∣∣∣
2

dt.

We note that E0(χ) = 0 because of R ≥ k and the primitivity of the
characters. We set X = max(N/4, t) and X + Y = min(N, t + Qr/k).
We apply a slight modification of Heath-Brown’s identity [5]

−ζ ′

ζ
(s) =

K∑
j=1

(
K

j

)
(−1)j−1ζ ′(s)ζj−1(s)M j(s)−ζ ′

ζ
(s) (1 − ζ(s)M(s))K ,

with K = 5 and
M(s) =

∑
n≤N1/5

μ(n)n−s
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to the sum ∑
X<m≤X+Y

Λ(m) χ(m).

Arguing exactly as in part III, [19] we find by applying Heath-Brown’s
identity and Perron’s summation formula that the inner sum of (5.2)
is a linear combination of O(Lc) terms of the form

SIa1 ,... ,Ia10

=
1

2πi

∫ T

−T

F

(
1
2

+ iu, χ

)
(X+Y )((1/2)+iu)− X((1/2)+iu)

(1/2) + iu
du

+ O(T−1NL2),

where 2 ≤ T ≤ N ,

F (s, χ) =
10∏

j=1

fj(s, χ), fj(s, χ) =
∑
n∈Ij

aj(n) χ(n)n−s,

aj(n) =

⎧⎪⎨
⎪⎩

log n or 1 j = 1,

1 1 < j ≤ 5,

μ(n) 6 ≤ j ≤ 10.

Ij = (Nj , 2Nj ], 1 ≤ j ≤ 10,

(5.3) N �
10∏

j=1

Nj � N, Nj ≤ N1/5, 6 ≤ j ≤ 10.

Since

(X+Y )((1/2)+iu)−X((1/2)+iu)

(1/2) + iu
� min

(
QRk−1N−1/2, N1/2 (|u|+1)−1

)

by taking T = N and T0 = N(QR/k)−1, we conclude that, for a
sufficiently large G = G(M), SIa1 ,... ,Ia10

is bounded by

� QRk−1N−1/2

∫ T0

−T0

∣∣∣∣F
(

1
2

+ iu, χ

)∣∣∣∣ d u

+ N1/2

∫
T0≤|u|≤T

∣∣∣∣F
(

1
2

+ iu, χ

)∣∣∣∣ d u

|u| + L2,
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Thus we derive from (5.2) that, in order to prove (5.1), it is enough to
show that, for R ≤ P1k/2,

(5.4)
∑
r∼R
k|r

∑
χ

∗
∫ T0

0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2R1/4k1/12L−A,

(5.5)∑
r∼R
k|r

∑
χ

∗
∫ 2T1

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N−1/2QR5/4k−1/12T1L
−A,

T0 < |T1| ≤ T.

The inequalities (5.4) and (5.5) are both derived from the following
lemma which is shown for m = 1 in Lemma 5.2, [10] and for the
general case m ≥ 1 in Lemma 2.1 in [8].

Lemma 5.1. Let F (s, χ) be defined as above. Then, for any R ≥ 1
and T2 > 0,

(5.6)
∑
r∼R
m|r

∑
χ

∗
∫ 2T2

T2

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt

�
(

R2

m
T2 +

R

m1/2
T

1/2
2 N3/10 + N1/2

)
Lc.

Using (2.1) and (2.4), the estimates (5.4) and (5.5) follow from
Lemma 5.1 by setting T2 = T0 and T2 = T1, respectively, provided
that k ≤ N2/15−ε and H is chosen sufficiently large in (2.1).

6. Proof of Lemma 4.2 for IA. To prove the lemma it is enough
to show that

max
R≤P1k/2

∑
r∼R
k|r

∑
χ (mod r)

∗
max

|λ|≤k/rQ
|W (λ, χ) | � Nk1/3Lc.
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Arguing as in the section before (we do not have to apply Gallagher’s
lemma here) we find

W (λ, χ)

� Lc max
Ia1 ,... ,Ia10

∣∣∣∣
∫ T

−T

F

(
1
2

+ it, χ

)
d t

∫ N

N/4

u−1/2e

(
t

2π
log u+λu

)
d u

∣∣∣∣
+ L2k3.

Here, we have set T = N and used that |λ| ≤ k/Q. Estimating the
inner integral by Lemma 3.1 we obtain∣∣∣∣
∫ N

N/4

u−1/2e

(
t

2π
log u + lu

)
du

∣∣∣∣
� N−1/2 min

(
N√|t| + 1

,
N

minN/2<u≤N |t + 2πλu|
)

.

Taking T0 = 4πN(QR/k)−1 we conclude that in order to prove the
lemma it is enough to prove that∑

r∼R
k|r

∑
χ

∗
∫ T0

0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2T
1/2
0 k1/3Lc,

∑
r∼R
k|r

∑
χ

∗
∫ 2T1

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2k1/3T1L
c, T0 < |T1| ≤ T.

These estimates follow from Lemma 5.1 for k ≤ N2/15−ε.

7. Proof of Lemma 4.1 for WB, WC , WD and WE. Arguing
analogously to Section 5, we find that the proof of Lemma 4.1 for
F = B reduces to the proof of the following two estimates: For T = N ,
T0 = N(QR)−1, R ≤ P1/2 and k ≤ N3/16−ε, there must hold

∑
r∼R

∑
χ

∗
∫ T0

0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2R1/4k1/3L−A,(7.1)

∑
r∼R

∑
χ

∗
∫ 2T1

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N−1/2QR5/4k1/3T1L
−A,

(7.2)

T0 < |T1| ≤ T.
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The estimates (7.1) and (7.2) follow from (2.1) and Lemma 5.1. For the
case F = C, we treat separately the cases R/k ≤ LV and R/k ≥ LV

for a sufficiently large V to be determined later. In the second case, it
is enough to show, using Lemma 5.1, that for T = N , T0 = N(QR)−1,
R ≤ P2/2, and k ≤ N3/20−ε, we have

∑
r∼R
k|r

∑
χ

∗
T0∫
0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2

(
R

k

)1/6

L−A,(7.3)

∑
r∼R
k|r

∑
χ

∗
∫ 2T1

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N−1/2QR7/6k−1/6T1L
−A,

(7.4)

T0 < |T1| ≤ T.

In the case R/k ≤ LV , we can estimate the sum on the righthand side
of (5.2) by using the zero expansion of the von Mangoldt-function:

(7.5)

∑
t<m≤t+Qr
N/4<m≤N

Λ(m) χ(m) − E0(χ)
∑

t<m≤t+Qr
N/4<m≤N

1

=
∑

X<m≤X+Y

Λ(m) χ(m) − E0(χ)
∑

X<m≤X+Y

1

�
∑

|Im ρ|≤T3

∣∣∣∣ (X + Y )ρ

ρ
− Xρ

ρ

∣∣∣∣+ O

(
N

T3
L2

)

� QR
∑

|Im ρ|≤T3

Nβ−1 + O

(
N

T3
L2

)
,

where ρ runs over the nontrivial zeros of the L-function corresponding
to χ mod r with |Im ρ| ≤ T3 and β = Re ρ. Arguing as in (5.2), we see
from (7.5) for T3 = k2L2V that
∫ 1/rQ

1/rQ

|W (λ, χ)|2 dλ

� N

( ∑
|Im ρ|≤k2L2V

Nβ−1

)2

+ O
(
(Qr)−2N3k−4L4−4V

)
.
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Using (1.2) and defining WC,R analogously to (5.1), we use the assump-
tions of Theorem 2 and Lemma 4.3 and obtain for k ≤ N5/36−ε

(7.6)

WC,R � N1/2
∑

r≤kLV

k|r

∑
χmodr

∗ ∑
|Im ρ|≤k2L2V

Nβ−1 + N1/2L−A

� N1/2LC max
1/2≤β≤1−EL2/L

(
N ((5/12)−2ε)((12/5)+ε)(1−β)Nβ−1

)
+ N1/2L−A

� N1/2L−A,

for a sufficiently large E = E(A, ε). In the case F = D, we distinguish
between the cases R > LW for a sufficiently large W to be determined
later and R ≤ LW . In the first case, we argue as in Section 4 and see
that it is enough to show, using Lemma 5.1, the following. If T = N
and T0 = N(QR)−1, r ≤ P2/2k and k ≤ N4/25−ε, then:

∑
r∼R

∑
χ

∗
∫ T0

0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2R1/4L−A,

∑
r∼R

∑
χ

∗
∫ 2T1

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N−1/2QR5/4T1L
−A,

T0 < |T1| ≤ T.

If R ≤ LW , we apply Lemma 4.3 and the fact that L(σ + it, χ) with
χ mod r and r ≤ LD has no zeros in the region, see [15, VIII Satz 6.2)

σ ≥ 1 − δ(T ) := 1 − c0

log r + (log(T + 2))4/5
, |t| ≤ T,

where c0 is an absolute constant. Taking T = N1/3 and k ≤ N3/20−ε,
we obtain from Lemma 4.3 from (7.5)∫ 1/Qr

−1/Qr

|W (λ, χ)|2 dλ � N

( ∑
|Im ρ|≤N1/3

Nβ−1

)2

+ (Qr)−2N1+(4/3)L4

� NLc

(
max

(1/2)≤β≤1−δ(T )
N ((4/5)+ε)(1−β)N (β−1)

)2

+ N1/3k4L2W+4

� N exp(−cL1/5).
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This proves the lemma for R ≤ LW . For the case F = E, we treat
separately the cases R/k2 ≤ LV and R/k2 ≥ LV for a sufficiently large
V to be determined later. In the second case, it is enough to show,
using Lemma 5.1, that for T = N , T0 = N(QR)−1, R ≤ P2/2 and
k ≤ N5/48−ε, we have

∑
r∼R
k2|r

∑
χ

∗
∫ T0

0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2

(
R

k2

)1/6

L−A,

∑
r∼R
k2|r

∑
χ

∗
∫ 2T1

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N−1/2QR7/6k−1/3T1L
−A,

T0 < |T1| ≤ T.

For R/k2 ≤ LV , we argue as in (7.6).

8. Proof of Lemma 4.2 for IB, IC , ID, and IE. Throughout this
section we set T = N and T0 = N(QR)−1. Arguing as in Section 6, we
see that to estimate IB it is enough to show that for k ≤ N3/16−ε and
R ≤ P1/2, we have

∑
r∼R

∑
χ

∗
∫ T0

0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2(T0 + 1)1/2k1/3Lc,

∑
r∼R

∑
χ

∗
∫ 2T1

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2k1/3T1L
c,

T0 < |T1| ≤ T.

For the estimate of IC it is enough to show that, for k ≤ N3/20−ε and
R ≤ P2/2, we have:

∑
r∼R
k|r

∑
χ

∗
∫ T0

0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2(T0 + 1)1/2

(
R

k

)1/6

Lc,

∑
r∼R
k|r

∑
χ

∗
∫ 2T1

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2

(
R

k

)1/6

T1L
c,

T0 < |T1| ≤ T.
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These estimates follow from Lemma 5.1.

For the estimate of ID it is enough to show that if k ≤ N1/5−ε and
R ≤ P2/2k, then

∑
r∼R

∑
χ

∗
∫ T0

0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2(T0 + 1)1/2Lc,

∑
r∼R

∑
χ

∗
∫ 2T1

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2T1L
c,

T0 < |T1| ≤ T.

These estimates follow from Lemma 5.1.

Likewise, for the proof of the estimate for IE , we use Lemma 5.1
to show that for the estimate of IC it is enough to show that for
k ≤ N3/20−ε and R ≤ P2/2, we have:

∑
r∼R
k2|r

∑
χ

∗
∫ T0

0

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2

(
R

k2

)1/6

(T0 + 1)1/2Lc,

∑
r∼R
k2|r

∑
χ

∗
∫ 2T1

T1

∣∣∣∣F
(

1
2

+ it, χ

)∣∣∣∣ dt � N1/2

(
R

k2

)1/6

T1L
c,

T0 < |T1| ≤ T.

9. Proof of Theorem 3. Using (1.2) and Lemma 4.3, we derive an
estimate for the number of the N-exceptional zeros. We find

∑
q≤N

N∗
(

1 − EL2

L
, q

)
� N ((36/5)+ε)(EL2/L) � L36E/5+ε.

Thus, there do not exist more than � L36E/5+ε N-exceptional integers.
Each integer ≤ N has at most O(log N) different prime factors. Thus,
each N-exceptional integer does belong to at most O(log N) different
sets Ak. Therefore, there are no more than O(L36E/5+1+ε) prime
numbers k, 1 ≤ k ≤ N , such that at least one of the integers q ∈ Ak is
N -exceptional.
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