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REPRESENTATION RESULTS FOR OPERATORS
GENERATED BY A QUASI-DIFFERENTIAL

MULTI-INTERVAL SYSTEM IN A
HILBERT DIRECT SUM SPACE

MAKSIM SOKOLOV

ABSTRACT. We study the spectral structure of operators
generated as direct sums of self-adjoint extensions of quasi-
differential minimal operators on a multi-interval set (self-
adjoint vector-operators). Special attention is given to the
ordered spectral representation for such operators.

1. Introduction.

1.1 Problem overview. The modern theory of quasi-differential v-
operators originates from the fundamental work of Gesztesy and Kirsch
[10], where these authors considered a Schrödinger operator generated
by the Hamiltonian

(1) H = − d2

dx2
+

(
s2 − 1

4

)
1

cos2 x
, s > 0.

It is clear that the potential in (1) has a countable number of singu-
larities on R, leading to spoiling of the local integrability. In order to
overcome this difficulty, operators Ti are constructed, generated by the
same Hamiltonian (1) in the coordinate spaces

L2
(
−π

2
+ iπ,

π

2
+ iπ

)
,

i ∈ Z, and then the direct sum operator ⊕i∈ZTi is considered in the
space ⊕

i∈Z

L2
(
−π

2
+ iπ,

π

2
+ iπ

)
.
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The work [10] gave birth to various generalizations of the problem.
In 1992, Everitt and Zettl [9] studied direct sums of minimal and max-
imal operators generated by arbitrary formally self-adjoint expressions
in Hilbert spaces considered on arbitrary intervals (maximal and min-
imal v-operators). Later in 2000, v-operators were also considered in
complete locally convex spaces by Ashurov and Everitt in [2], which
was a natural generalization of their basic work [1]. Since 1992, quasi-
differential v-operators have mostly been investigated in connection
with their non-spectral properties, such as introduction of minimal and
maximal v-operators and their relationship (it was shown that adjoint
of the minimal v-operator is maximal in a Hilbert space, see [9], and the
analogous result with the modification for Frechet spaces was obtained
in [2]). Everitt and Markus have developed the theory of self-adjoint
extensions for v-operators with the employment of symplectic geome-
try. In connection with this, see their recent memoirs [7] and [8]. The
modern theory of differential v-operators has a connection with the the-
ory of differential operators on graphs. In some cases certain boundary
conditions lead to considering a differential operator on a graph as a
direct sum operator. The most modern results pertinent to the spectral
theory of differential operators on graphs were obtained in the works
of Carlson [4, 5] and Kurasov and Stenberg [11].

Since the theory of quasi-differential v-operators in a Hilbert space
is quite young and the most recent studies concerned mostly problems
connected with their common theory, a very small attention was given
to its spectral aspects. Some results, describing position of spectra of
v-operators were presented in 1985 in [10] and the most recent results
belong to Sobhy El-Sayed Ibrahim [10, 11]. Some spectral properties
of abstract self-adjoint v-operators were studied by M.S. Sokolov in [16,
17] and R.R. Ashurov, M.S. Sokolov in [3]. Nevertheless, a rigorous
structural spectral theory for such operators has not been developed
yet.

The attention of the current work is mainly focused on representation
results for an abstract and, in particular, quasi-differential self-adjoint
v-operator.

1.2 Quasi-differential operators and v-operators. Basic concepts of
quasi-differential operators are described in [7, 9]. A good reference
for operators with real coefficients is the book of Naimark [15].
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Let us have a number n ∈ N, n � 2, and an arbitrary interval
I ⊆ R. Let Zn(I) be a set of Shin-Zettl matrices. These are matrices
A = {ars}, ars : I → C of the order n × n, such that for almost all
x ∈ I: ⎧⎨⎩

(i) ars ∈ Lloc(I) r, s = 1, n;
(ii) ar,r+1(x) �= 0 r = 1, n− 1;
(iii) ars = 0 s = r + 2, n; r = 1, n− 2.

Consider a function f : I → C. Its quasi-derivatives relative to a
Shin-Zettl matrix A are defined by⎧⎪⎪⎨⎪⎪⎩

(i) f
[0]
A := f ;

(ii) f
[r]
A := 1/(ar,r+1)

[
(d/dx)f [r−1]

A − ∑r
s=1 arsf

[s−1]
A

]
, r = 1, n− 1;

(iii) f [n]
A := (d/dx)f [n−1]

A − ∑n
s=1 ansf

[s−1]
A .

Let us introduce a linear manifold D(A) ⊂ ACloc(I):

DA(I) :=
{
f : I → C | f [r−1]

A ∈ ACloc(I), r = 1, n
}
.

It is possible to see that f ∈ DA(I) implies f [n]
A ∈ Lloc(I), and it is

possible to prove that DA(I) is dense in Lloc(I).

Relative to a matrix A ∈ Zn(I), we have the quasi-differential
expression MA[f ] = inf

[n]
A , f ∈ DA(I).

A matrix A+ ∈ Zn(I) designates a Lagrange adjoint matrix to A if
A+ := −L−1

n A∗Ln, where A∗ is the adjoint matrix, and Ln = {lrs} is
an (n× n)-matrix, defined as:

lr,n+1−r =
{

(−1)r−1 r = 1, n;
0 for other r, s.

Using this notation we suppose that in this work we deal only
with Lagrange symmetric (formally self-adjoint) expressions, that is,
MA+ [f ] = MA[f ] = τ (f), where τ is an alternative notation for a
Lagrange symmetric expression.
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For a quasi-differential expression MA[f ], the Lagrange formula is
known ([α, β] ⊆ I an arbitrary compact subinterval of I):

(2)
∫ β

α

{
g(x)MA[f ](x)−f(x)MA+ [g(x)]

}
dx = [f, g]A(β)− [f, g]A(α),

where f ∈ DA, g ∈ DA+ , [f, g]A(β) and [f, g]A(α) may be derived from:

[f, g]A(x) = in
n∑

i=1

(−1)i−1f
[i−1]
A (x) g[n−i]

A+ (x), x ∈ I.

Let ω > 0 be a weight function from Lloc(I), ω : I → R. The Hilbert
space L2(I : ω) is formed as usual.

We define maximal and minimal operators as follows:

Definition 1.1. Operators Tmax and Tmin are called respectively
maximal and minimal operators if they are generated by τ (f) on the
domains D(Tmax) and D(Tmin):

D(Tmax) = {f : I → C | f ∈ DA(I); ω−1τ (f) ∈ L2(I : ω)},

Tmaxf = ω−1τ (f), (f ∈ D(Tmax));

D(Tmin) = {f | f ∈ D(Tmax); [f, g]A(b) − [f, g]A(a)
= 0 (g ∈ D(Tmax))},

Tminf = ω−1τ (f), (f ∈ D(Tmin)),

where [f, g]A(b) and [f, g]A(a) are limits, which necessarily exist, of
bilinear forms from (2), that is, limβ→b[f, g]A(β) = [f, g]A(b) and
limα→a[f, g]A(α) = [f, g]A(a).

The following general theorem is known for the operators Tmax and
Tmin:

Theorem 1.2. For the operators Tmax and Tmin and their domains
the following facts are valid:
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(a) D(Tmin) ⊆ D(Tmax). Domains D(Tmin) and D(Tmax) are dense
in L2(I : ω);

(b) The operator Tmin is closed and symmetric, the operator Tmax is
closed in L2(I : ω);

(c) T ∗
min = Tmax and T ∗

max = Tmin.

All self-adjoint extensions of Tmin appear to be the contractions of
Tmax.

Let Ω be a finite or a countable set of indices. On Ω, we have
an Everitt-Markus-Zettl multi-interval quasi-differential system {Ii, τi;
ωi}i∈Ω. This EMZ system generates a family of the weighted Hilbert
spaces {L2(Ii : ωi) = L2

i }i∈Ω and families of minimal {Tmin,i}i∈Ω and
maximal {Tmax,i}i∈Ω operators. Consider a respective family {Ti}i∈Ω

of self-adjoint extensions.

We introduce the system Hilbert space L2 = ⊕i∈ΩL
2
i consisting of

vectors f = ⊕i∈Ωfi, such that fi ∈ L2
i and

‖f‖2 =
∑
i∈Ω

‖fi‖2
i =

∑
i∈Ω

∫
Ii

|fi|2ωi dx <∞,

where ‖ · ‖2
i are the norms in L2

i . In the space L2 consider the operator
T : D(T ) ⊆ L2 → L2, defined on the domain

D(T ) =
{

f ∈
⊕
i∈Ω

D(Ti) ⊆ L2 :
∑
i∈Ω

‖Tifi‖2
i <∞

}

by T f = ⊕i∈ΩTifi.

Definition 1.3. The operator T = ⊕i∈ΩTi is called a quasi-
differential v-operator generated by the self-adjoint extensions Ti, or
simply a vector-operator (or shortly a v-operator). If Ω is infinite, the
v-operator T is called infinite. The operators Ti are called coordinate
operators. For Ω′ ⊂ Ω, the operator ⊕k∈Ω′Tk is called a sub-v-operator
of the v-operator ⊕i∈ΩTi.

The following abstract preliminaries may be found, for instance, in
the books [6, 13].
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Fix i ∈ Ω. For each Ti there exists a unique resolution of the identity
Ei

λ and a unitary operator Ui, making the isometrically isomorphic
mapping of the Hilbert space L2

i onto the space L2(Mi, μi), where the
operator Ti is represented as a multiplication operator. Below, we
remind the structure of the mapping Ui.

We call φ ∈ L2
i a cyclic vector if for each z ∈ L2

i there exists
a Borel function f such that z = f(Ti)φ. Generally, there is no a
cyclic vector in L2

i but there is a collection {φk} of them in L2
i , such

that L2
i = ⊕kL

2
i (φ

k), where L2
i (φ

k) are Ti-invariant subspaces in L2
i

generated by the cyclic vectors φk. That is, L2
i (φ

k) = {f(Ti)φk},
varying the Borel function f , such that φk ∈ D(f(Ti)). There exist
unitary operators

Uk : L2
i (φ

k) −→ L2(R, μk),

where μk(Δ) = ‖Ei(Δ)φk‖2
i for any Borel set Δ. In L2(R, μk), the

operator Ti has the form of multiplication by λ, i.e.,(
UkTi |L2

i
(φk)U

k−1
z
)

(λ) = λz(λ).

Then the operator

Ui =
⊕

k

Uk :
⊕

k

L2
i (φ

k) −→
⊕

k

L2(R, μk)

makes the spectral representation of the space L2
i onto the space

L2(Mi, μi), whereMi is a union of nonintersecting copies of the real line
(a sliced union) and μi =

∑
k μ

k. That is, (UiTiU
−1
i z)(λ) = f(λ)z(λ),

where z ∈ U [D(Ti)] and f is a Borel function defined almost everywhere
according to the measure μi.

A vector φ ∈ L2
i is called maximal relative to the operator Ti, if each

measure (Ei(·)x, x)i, x ∈ L2
i , is absolutely continuous relative to the

measure (Ei(·)φ, φ)i.

For each Hilbert space L2
i , there exist a unique (up to unitary

equivalence) decomposition L2
i = ⊕kL

2
i (ϕ

k
i ), where ϕ1

i is maximal in
L2

i relative to Ti, and a decreasing set of multiplicity sets ei
k, where ei

1

is the whole line, such that ⊕kL
2
i (ϕ

k
i ) is equivalent with ⊕kL

2(ei
k, μi),

where the measure of the ordered representation is defined as μi(·) =
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(Ei(·)ϕ1
i , ϕ

1
i )i. A spectral representation of Ti in ⊕kL

2(ei
k, μi) is called

the ordered representation and it is unique, up to a unitary equivalence.
Two operators are called equivalent, if they create the same ordered
representation of their spaces.

2. Spectral properties of the vector-operator T .

2.1 The spectral representation for the operator T . In this section
we show how the ordinary spectral representation of the v-operator
depends on the ordinary spectral representations of its coordinate
operators.

Definition 2.1. For i ∈ Ω, we introduce a sliced union of sets
Mi (see also preliminaries) as a set M , containing all Mi on different
copies of ∪i∈ΩMi. The sets Mi do not intersect in M but they can
superpose, i.e., two sets Mi and Mj superpose, if their projections in
the set ∪i∈ΩMi intersect.

Separate arguments show that the following auxiliary proposition is
true.

Proposition 2.2. Let us have a set of measures μi, i ∈ Ω, defined
on nonintersecting supports. If∑

i∈Ω

∫ ∞

−∞
f(λ) dμi(λ) <∞,

for any Borel function f(λ), then the following equality is true:∑
i∈Ω

∫ ∞

−∞
f(λ) dμi(λ) =

∫ ∞

−∞
f(λ) d

∑
i∈Ω

μi(λ).

Lemma 2.3. The identity resolution Eλ of the v-operator T equals
the direct sum of the coordinate identity resolutions Ei

λ, that is,

Eλ =
⊕
i∈Ω

Ei
λ.
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Proof. Consider x ∈ D(T ). This holds, if and only if

‖Tx‖2 =
∑
i∈Ω

‖Tixi‖2
i =

∑
i∈Ω

∫ ∞

−∞
λ2 d ‖Ei

λxi‖2
i <∞.

Then, using Proposition 2.2 we find out that:∑
i∈Ω

∫ ∞

−∞
λ2 d ‖Ei

λxi‖2
i =

∫ ∞

−∞
λ2

∑
i∈Ω

‖Ei
λxi‖2

i .

This means that x ∈ D(T ), if and only if∫ ∞

−∞
λ2

∑
i∈Ω

‖Ei
λxi‖2

i <∞

and
‖Tx‖2 =

∫ ∞

−∞
λ2

∑
i∈Ω

‖Ei
λxi‖2

i .

Using the uniqueness property of an identity resolution, the last two
equations show that the operator ⊕i∈ΩE

i
λ is the identity resolution of

the v-operator T . That is, according to our notations Eλ = ⊕i∈ΩE
i
λ.

The lemma is proved.

Lemma 2.4. For any Borel function f and any vector x ∈ D(f(T )),
the following equality holds: f(T )x = [⊕i∈Ωf(Ti)]x.

Proof. Let x ∈ D(f(T )). Then, paying attention to Proposition 2.2
and Lemma 2.3, for any y ∈ L2, we obtain:

(f(T )x,y) =
∫ ∞

−∞
f(λ) d (Eλx,y)

=
∫ ∞

−∞
f(λ) d

∑
i∈Ω

(Ei
λxi, yi)i

=
∑
i∈Ω

∫ ∞

−∞
f(λ) d (Ei

λxi, yi)i

=
∑
i∈Ω

(f(Ti)xi, yi)i

= ([⊕i∈Ωf(T )]x,y) .
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Since y is arbitrary, we have f(T )x = [⊕i∈Ωf(Ti)]x. This completes
the proof of the lemma.

For zi ∈ L2
i , i ∈ Ω, define z̃i = {0, . . . , 0, zi, 0, . . . , 0} ∈ L2, where zi

is on the ith place.

For each i ∈ Ω, let ε(Ti) denote the subspectrum of the operator Ti,
i.e., the set where all spectral measures of Ti are concentrated. Note
that ε(Ti) = σ(Ti).

Consider a projecting mapping P : M → ∪i∈ΩMi, see Definition 2.1,
such that P (ε(Ti)) = ε(Ti).

Definition 2.5. Let Ω = ∪K
k=1Ak, Ak ∩As = ∅ for k �= s and

Ak = {s ∈ Ω : ∀ s, l ∈ Ak, s �= l, P (ε(Ts)) ∩ P (ε(Tl)) = Bsl,

where ‖Et(Bsl)ϕt‖2
t = 0 for any cyclic ϕt ∈ L2

t , t = s, l}.
From all the possible divisions of this type we choose and fix the one
which contains the minimal number of Ak. If all the coordinate spectra
σ(Ti) are simple, we call the number Λ = min{K} as the spectral index
of the v-operator T .

Theorem 2.6. Let each Ti have a cyclic vector ai in L2
i . Then

the v-operator T has Λ cyclic vectors {ak}Λ
k=1, having the form ak =∑

i∈Ak
ãi.

Proof. First we consider the case of two coordinate operators. Let
s, l ∈ Ω. Then, in order to obtain one cyclic vector in L2

s ⊕ L2
l having

the form as ⊕ al, for any x = xs ⊕xl ∈ L2
s ⊕L2

l we have to find a Borel
function f such that

x = f(Ts ⊕ Tl)[as ⊕ al].

From Lemma 2.4 it follows that

x = [f(Ts) ⊕ f(Tl)][as ⊕ al].

On the other hand, we must obtain each space L2
p, p = s, l, by closing

the set {fp(Tp)ap}, letting fp vary over all the Borel functions such
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that ap ∈ D(fp(Tp)). If s, l ∈ Ak, then supposing that f = fp on
P (ε(Tp)), we obtain the required function f , since any functions in the
isomorphic space L2 are considered equal on the set of measure zero.
Hence, it is clear that, for all i ∈ Ak, we may build a single cyclic vector
of the form

ak = ⊕i∈Ak
ai =

∑
i∈Ak

ãi,

using the process described above, each time operating with a pair of
operators.

We remind that we have the minimal number of Ak. Consider the
Hilbert space

(3) [⊕i∈Ak
L2

i ] ⊕ [⊕j∈Aq
L2

j ], k �= q.

We know that then

[∪i∈Ak
P (ε(Ti))] ∩ [∪j∈Aq

P (ε(Tj))] = Bkq

has a non-zero spectral measure. From the reasonings described in
the beginning of this proof, we see that for joining the cyclic vectors
ak = ⊕i∈Ak

ai and aq = ⊕j∈Aq
aj into the one

ak + aq =
∑
i∈Ak

ãi +
∑
j∈Aq

ãj,

we would have to derive the Hilbert space (3) by closing the set

{fk(⊕i∈Ak
Ti) ak} ⊕ {fq(⊕j∈Aq

Tj) aq},

with varying the Borel functions fk and fq, which coincide on Bkq.
This is not possible, since the set of such functions is not dense in the
isomorphic space L2 (the isomorphism is understood as in the spectral
representation of the space (3)). Hence, we have obtained Λ cyclic
vectors

ak =
∑
i∈Ak

ãi ∈ L2, k = 1,Λ

and have proven the theorem.
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Corollary 2.7. Let each Ti have a single cyclic vector. Then

1. Λ = 1 if and only if the coordinate operators Ti, i ∈ Ω, have almost
everywhere, relative to the spectral measure, pairwise non-superposing
subspectra.

2 a) card (Ω) < ℵ0. Λ = card (Ω), if and only if all the coordinate
operators Ti have pairwise superposing subspectra;

b) card (Ω) = ℵ0. Λ = ∞, if and only if T has an infinite sub-v-
operator, the coordinate operators of which have pairwise superposing
subspectra.

Proof. The proof directly follows from the reasonings of the proof of
Theorem 2.6.

In the next section we will rigorously show what a spectral multiplic-
ity of a v-operator is. Nevertheless, this notation is intuitively clear.
Running ahead, let us present here two examples, which will show the
difference between the spectral index and the spectral multiplicity of
the v-operator T .

Example 1. Let us have a three-interval EMZ differential system
{Ii, τi, 1}3

i=1 (an impulse, an impulse and a kinetic energy):

I1 = (−∞,+∞), τ1 =
1
i

d

dt
, D(T1) = D(Tmax,1);

I2 = [0, 1], τ2 =
1
i

d

dt
, D(T2) = {f ∈ D(Tmax,2) :

f(0) = eiαf(1),
α ∈ [0, 2π]};

I3 = [0, 1], τ3 = −
(
d

dt

)2

, D(T3) = {f ∈ D(Tmax,3) :

f(0) = 0, f(1) = 0}.
If α /∈ ∪∞

n=1(2πn−π2n2), it may be shown that the spectra σ(Ti) are
simple and

ε(T1) = R, ε(T2) =
∞⋃

n=−∞
(2πn− α), ε(T3) =

∞⋃
n=1

(πn)2.
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Thus, in this example A1 = {1}, A2 = {2, 3}, which means that Λ = 2.
From the reasonings, presented below in the process of building of
the ordered representation (next section) it follows that the operator
⊕3

i=1Ti has a simple spectrum. So, the spectral index does not equal
the spectral multiplicity.

Example 2. We have a three-interval EMZ system {Ii, τi, 1}3
i=1 (a

kinetic energy, a mirror kinetic energy, an impulse):

I1 =[0,+∞), τ1 = −
(
d

dt

)2

,

D(T1) = {f ∈ D(Tmax,1) : f(0) + kf ′(0) = 0, −∞ < k � ∞};

I2 =[0,+∞), τ2 =
(
d

dt

)2

,

D(T2) = {f ∈ D(Tmax,2) : f(0) + sf ′(0) = 0, −∞ < s � ∞};

I3 =[0, 1], τ3 =
1
i

d

dt
,

D(T3) = {f ∈ D(Tmax,3) : f(0) = eiαf(1), α ∈ [0, 2π]}.

a) If k, s ∈ (−∞, 0] ∪ {+∞}, then

ε(T1) = (0,+∞), ε(T2) = (−∞, 0), ε(T3) =
∞⋃

n=−∞
(2πn− α).

For this system we have: {1, 2, 3} = ∪2
k=1Ak and A1 = {1, 2}, A2 =

{3}. Thus, here the spectral index also does not coincide with the
spectral multiplicity (which is 1) and equals 2.

b) The case 0 < k, s < +∞ leads to the following

ε(T1) =
{
− 1
k2

}
∪ (0,+∞), ε(T2) = (−∞, 0) ∪

{
1
s2

}
,

ε(T3) =
∞⋃

n=−∞
(2πn− α).
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If

α /∈
[ ∞⋃

n=−∞

(
2πn+

1
k2

)] ⋃ [ ∞⋃
n=−∞

(
2πn− 1

s2

)]
,

we have A1 = {1}, A2 = {2}, A3 = {3}. That is, Λ = 3 but ⊕3
i=1Ti

has a simple spectrum.

Example 3. Let us have a vector-operator ⊕3
i=1Ti with

ε(T1) =
⋃

n∈Z,n�0

πn, ε(T2) =
⋃

n∈Z,n�0

πn, ε(T3) =
⋃

n∈Z,n�=0

πn.

Spectral index equals 3 but spectral multiplicity equals 2.

Definition 2.8. A v-operator T = ⊕i∈ΩTi with the simple coordi-
nate spectra σ(Ti) is called distorted if its spectral index does not equal
its spectral multiplicity.

With some loss of technical value but more clearly for applications,
Theorem 2.6 may be reformulated as

Corollary 2.9. Let each Ti have a simple spectrum. Then undis-
torted v-operator T has Λ-multiple spectrum.

Let us pass to the general case when each operator Ti has mi cyclic
vectors. There exists a decomposition

T =
⊕
i∈Ω

Ti =
⊕
i∈Ω

mi⊕
k=i

T k
i =

⊕
s

Ts,

where each Ts has a single cyclic vector. For the v-operator T decom-
posed as above, we apply Theorem 2.6 and find the spectral index Λ. It
is clear that in this case for the spectral index there exists the estimate

(4) Λ � max{mi}.
As it has been stated in the preliminaries, for each operator Ti, there
exists the unitary operator Ui such that Ui : L2

i → L2(Mi, μi). Hence⊕
i∈Ω

Ui :
⊕
i∈Ω

L2
i −→

⊕
i∈Ω

L2(Mi, μi).
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Or, in the general case, i.e., when there are Ti with more then one cyclic
vector, ⊕

i∈Ω

Ui :
⊕
i∈Ω

mi⊕
k=1

L2
i,k −→

⊕
i∈Ω

mi⊕
k=1

L2(R, μk
i ).

From Theorem 2.6 it follows that there exists a unitary operator

(5) V :
⊕
i∈Ω

mi⊕
k=1

L2(R, μk
i ) =

⊕
s

L2(R, μs) −→
Λ⊕

q=1

L2

(
R,

∑
j∈Aq

μj

)
.

This means that for any v-operator T there exists the unitary operator
V ⊕i∈Ω Ui, which represents the space L2 on the space L2(N,μ):

V
⊕
i∈Ω

Ui : L2 −→ L2(N,μ),

where N is the sliced union of Λ copies of R and

μ =
Λ∑

q=1

∑
j∈Aq

μj ,

according to the symbols in (5). We finally obtain

Theorem 2.10. Let the v-operator T = ⊕i∈ΩTi be undistorted.
The unitary operator V is defined as in (5). If unitary operators Ui

make spectral representations of the Hilbert spaces L2
i on the spaces

L2(Mi, μi), then the unitary operator

W = V
⊕
i∈Ω

Ui

makes the spectral representation of the space L2 on the space L2(N,μ).

We formulated this theorem for undistorted v-operators, since only
for them the operator V will reduce the quantity of spectral measures
to the minimal possible. For arbitrary v-operators (distorted and
undistorted) we shall present the method of constructing an ordered
representation.
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2.2 The ordered spectral representation. Here we present the process
of building the ordered representation for a v-operator. For conve-
nience, we separate this process into units.

Let there be a v-operator T = ⊕i∈ΩTi.

(A) Let ai be maximal vectors relative to the operators Ti in L2
i .

We want to find a maximal vector relative to the v-operator T . We
know that the vector ⊕i∈Ωai does not give a single measure, if a set
P (ε(Ti))∩P (ε(Tj)) has a non-zero spectral measure for i �= j. Consider
restrictions Ti|L2

i
(ai) = T ′

i . Since all the operators T ′
i have single cyclic

vectors ai, we can divide Ω into Ak, k = 1,Λ, see Definition 2.5, and
apply Theorem 2.6 for the operator ⊕i∈ΩT

′
i . Thus, we have derived

Λ vectors ak = ⊕j∈Ak
aj , which are maximal in the respective spaces

L2(ak) = ⊕j∈Ak
L2

j (aj). Indeed, this is obvious for the case card (Ak) <
ℵ0. For the infinite case, if arbitrary y = ⊕j∈Ak

yj ∈ L2(ak) and if

(6)
(
[⊕j∈Ak

Ej ](·)ak, ak
)

=
∑

j∈Ak

(
Ej(·)aj , aj

)
j

= 0,

then from the maximality of the vectors aj for all j ∈ Ak, and since
P (ε(T ′

j)) ∩ P (ε(T ′
k)) has zero spectral measures for j �= k, we obtain

∑
j∈Ak

(
Ej(·)yj , yj

)
j

=
(
[⊕j∈Ak

Ej ](·)y,y)
= 0,

which follows from the convergence to zero of the series with the positive
maximal elements (6). Thus, in particular, we have constructed a
maximal vector in L2 for the case Λ = 1.

(B) Let now 1 < Λ < ∞. Designate T k = ⊕j∈Ak
T ′

j . For any two
operators T k and T s, k �= s, let us introduce the sets εk,s = P (ε(T k))∩
P (ε(T s)) and εk = P (ε(T k))\εk,s. There exist unitary representations
Uk : L2(ak) → L2(R, μak), see formula (5) supposing there Λ = 1.
Consider measures μk and μk,s, defined as μk,s(e) = μak(e ∩ εk,s) and
μk(e) = μak(e ∩ εk), for any measurable set e. For any operator T k,
with respect to T s, measures μk and μk,s are mutually singular and
μk + μk,s = μak ; therefore,

L2(R, μak) = L2(R, μk) ⊕ L2(R, μk,s).
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It means that (according to our designations):

Uk−1
: L2(R, μak) −→ L2(ak

k) ⊕ L2(ak
k,s)

and ak = ak
k ⊕ ak

k,s, where ak
k and ak

k,s form the measures μk and μk,s

respectively. Designate also as max{w,ψ} the vector, which is maximal
of the two vectors in the brackets (Note that this designation is valid
only for vectors, considered on the same set. In order not to complicate
the investigation we assume here that any two vectors are comparable
in this sense. In order to achieve this, it is enough to decompose each
coordinate operator Ti into the direct sum T pp

i ⊕ T cont
i , where the

operators have respectively pure point and continuous spectra. Then
after redesignation we obtain the equivalent v-operator to the initial
v-operator ⊕Ti).

Consider first two operators T 1 and T 2. It is clear that the vector

a1⊕2 = a1
1 ⊕ a2

2 ⊕ max
{
a1

1,2, a
2
2,1

}
is maximal in L2(a1) ⊕ L2(a2). Note that a1

1 and a2
2 and they both

may equal zero. A maximal vector in L2(a1) ⊕ L2(a2) ⊕ L2(a3) will
have the form:

a1⊕2⊕3 = a1⊕2
1⊕2 ⊕ a3

3 ⊕ max
{
a1⊕2

1⊕2,3, a
3
3,1⊕2

}
.

Continuing this process, we obtain a maximal vector in the main space
L2:

(7) a1⊕···⊕Λ = a1⊕···⊕Λ−1
1⊕···⊕Λ−1 ⊕ aΛ

Λ ⊕ max
{
a1⊕···⊕Λ−1

1⊕···⊕Λ−1,Λ, a
Λ
Λ,1⊕···⊕Λ−1

}
.

Formula (7) may be simplified, if we divide the measures μak into
continuous and pure point, that is, μak = μcont

ak + μpp
ak . Then ak =

ak,cont ⊕ ak,pp. Relative to any operator T s, k �= s, we have

ak,cont = ak,cont
k ⊕ ak,cont

k,s and ak,pp = ak,pp
k ⊕ ak,pp

k,s .

Now we can repeat the process described above in (B), separately for
the continuous and the pure point parts. Since measures with the same
null set may be considered equivalent, we have

max{wcont, ψcont} = either wcont or ψcont,

max{wpp, ψpp} = either wpp or ψpp,
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for any two vectors w and ψ. We obtain

a1⊕···⊕Λ,cont = a1,cont ⊕
[
⊕Λ

j=2a
j,cont
j

]
.

Similarly,
a1⊕···⊕Λ,pp = a1,pp ⊕

[
⊕Λ

j=2a
j,pp
j

]
.

Since max{wcont, ψpp} = ψpp, we finally derive

a1⊕···⊕Λ = a1⊕···⊕Λ,pp ⊕ a1⊕···⊕Λ,cont
1⊕···⊕Λ .

Let Λ = ∞. We define a1⊕···⊕Λ as a vector which satisfies the
following equality:∥∥∥∥[⊕

i∈Ω

Ei(·)
]
a1⊕···⊕Λ

∥∥∥∥2

= lim
L→∞

∥∥∥∥[ L⊕
j=1

Ej(·)
]
a1⊕···⊕L

∥∥∥∥2

,

since the limit on the right side exists.

(C) The next step is to build the measure of the ordered representa-
tion for the v-operator. From Lemma 2.3 and the reasonings above, it
follows that such a measure will be

θ(·) =
([⊕

i∈Ω

Ei(·)
]
a1⊕···⊕Λ, a1⊕···⊕Λ

)
.

(D) The final step is to construct the canonical multiplicity sets sn of
the v-operator. s1 is the whole line. s2 must contain all the spectrum,
multiplicity of which exceeds or equals 2. For this purpose, we are
primarily to unite all ei

2. But, nevertheless, ∪ie
i
2 will not include all

the sets of multiplicity � 2 since we know that if P (ei
1 \ ei

2)∩P (ej
1 \ ej

2)
has a non-zero spectral measure, all the intersections of this sort will
represent the multiplicity 2 and should be included into s2 (since
then it is not possible to construct a single cyclic vector). That is,
s2 =

(∪iP (ei
2)

)∪ (∪ ∩ (P (ei
1\ei

2)
)
. Using this idea and the fact that an

infinite intersection of measurable sets is a measurable set, by induction
we may finally build sn:

(8) sn =

[⋃
i

P (ei
n)

] ⋃[ ⋃∑
mi�n

⋂
P

(
ei
mi

\ei
mi+1

) ]
.
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Eventually, we are ready to formulate the theorem:

Theorem 2.11. The measure θ defined in (2.2) is the measure of
the ordered representation of the v-operator T . The sets sn defined in
(8) are the canonical multiplicity sets of the ordered representation of
the v-operator T . Thus, the spectral representation of the space L2 on
the space ⊕nL

2(sn, θ) is the ordered representation.

Let us return to Examples 1 and 2. For each distorted v-operator
T1 ⊕ T2 ⊕ T3, a spectral measure will be constructed on the vector
a1⊕2⊕3. For the v-operator from Example 3 two spectral measures are
constructed on a1⊕2⊕3 and

min{a1
1,2, a

2
2,1} ⊕ min{a2

2,3, a
3
3,2} ⊕ min{a3

3,1, a
1
1,3},

where the sense of the minimums is clear.

Now the term ‘distorted v-operator’ is clearly explained by the form
of the cyclic vectors for such an operator. The multiplicity set e2 will
be

[P (ε(T1)) ∩ P (ε(T2))] ∪ [P (ε(T2)) ∩ P (ε(T3))]
∪ [P (ε(T3)) ∩ P (ε(T1))].

Using the obtained spectral representation we can construct equiva-
lence classes in families of self-adjoint operators:

Definition 2.12. Two families of self-adjoint operators {Ti}N
i=1 and

{Sj}L
j=1 are called equivalent , if the respective v-operators ⊕N

i=1Ti and
⊕L

j=1Sj are equivalent.

Note that if two families {Ti}N
i=1 and {Sj}L

j=1 are equivalent, it is not
necessarily that N = L and Ti is equivalent with Si.
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