
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 36, Number 2, 2006

GENERALIZED VERSION OF
THE CHARACTERISTIC NUMBER OF

TWO SIMULTANEOUS PELL’S EQUATIONS

A.M.S. RAMASAMY

ABSTRACT. Let D be a given square-free natural number
and N a given non-zero integer. Extending the earlier work of
Mohanty and Ramasamy, we present in this paper a general-
ized version of the characteristic number of the simultaneous
Pell’s equations U2 − DV 2 = N and Z2 − gV 2 = h where g
and h are given integers. A numerical example is provided at
the end explaining the application of the method developed
in this paper. It is shown that the only positive integral solu-
tions common to the two Pell’s equations U2 − 11V 2 = 5 and
Z2 − 17V 2 = −32 are U = 7, V = 2 and Z = 6.

1. Introduction. Quite recently, Pell’s equation with restriction has
been studied by several authors like Anglin, Baker, Davenport, Cohn,
Mohanty, Ramasamy, Pinch, Ponnudurai, Tzanakis, etc. An elaborate
list of references on this subject has been furnished by Tzanakis [10,
11]. Baker and Davenport [3] determined the common solutions of the
equations 3x2 − 2 = y2 and 8x2 − 7 = z2 by the method of linear forms
in logarithms of algebraic numbers. Anglin [1] presented a method
for solving a system of Pell’s equations with the parameters absolutely
less than 1000 and, in [2], he considered the system x2 − Ry2 = 1
and z2 − Sy2 = 1 with R < S ≤ 200. For the system in the
general case, Tzanakis [11] gave a method using elliptic curves and
linear forms in elliptic logarithms. Ponnudurai [9] dealt with the Pell’s
equation U2 − 11V 2 = −2 with the restrictions Y 2 = 5 + 4U and
X2 = 5 + 4V . In [6], the system consisting of the Pell’s equations
5y2 − 20 = x2 and 2y2 + 1 = z2 was considered. In [7], the concept
of the characteristic number of two simultaneous Pell’s equations was
introduced by Mohanty and Ramasamy. A method for a set of Pell’s
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equations involving any square-free natural number D was given by the
authors. The utility of this method in solving a class of quartic Thue
equations has been demonstrated by Tzanakis [10].

One would like to have generalization in two directions, viz. results
concerning

1. a general D which governs the Pell’s equation on hand and

2. a general prime number or a product of primes employed in the
residue classes leading to the determination of quadratic characters.

The work of Mohanty and Ramasamy [7] was concerned with the
generalization in the first direction and specific cases involving the
primes 3 and 5, and their products were considered in that paper as
regards the second direction. Extending the earlier work of Mohanty
and Ramasamy [7], a completely general result, involving a general odd
prime or a product of a finite number of odd primes, not necessarily
distinct, is presented here. The main result of this study is contained
in Theorem 13.

Part I. The Pell’s equation A2 − DB2 = 1.

2. Preliminaries. Let D be a given square-free natural number. It
is well known that the Pell’s equation

(1) A2 − DB2 = 1

always has an infinite number of integral solutions, see, e.g., Nagell
[8]. All the solutions of (1) with positive A and B are obtained by the
formula

Ar + Br

√
D = (a + b

√
D)r

where r = 1, 2, 3, . . . , and a + b
√

D is the fundamental solution of (1),
i.e., A1 = a and B1 = b. Copley [4] has given the following relations
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for the solutions Ar + Br

√
D of (1).

Ar+s = ArAs + DBrBs(2)
Br+s = ArBs + BrAs(3)
Ar+1 = A1Ar + DB1Br(4)
Br+1 = A1Br + B1Ar(5)
A2r = 2A2

r − 1(6)
B2r = 2ArBr(7)

Emerson [5] gave the relations

Ar+2 = 2aAr+1 − Ar(8)
Br+2 = 2aBr+1 − Br.(9)

3. Notations and recurrence relations. Let αn,k, respectively
βn,k, denote the absolute value of the coefficient of ak, respectively
ak−1b, in the expression for An, respectively Bn, arising from (1). Then
we have the expressions

An = αn,nan − αn,n−2a
n−2 + αn,n−4a

n−4 − · · ·(10)

and

Bn = βn,nan−1b − βn,n−2a
n−3b + βn,n−4a

n−5b − · · · .(11)

One may check that α0,0 = 1, α1,1 = 1, α1,0 = 0, α2,2 = 2, α2,1 = 0,
α2,0 = 1, etc., and β0,0 = 0, β1,1 = 1, β1,0 = 0, β2,2 = 2, β2,1 = 0,
β2,0 = 0, etc.

Using induction, one may establish the following relations.

Theorem 1. 1. α0,0 = 1, β0,0 = 0.

2. For n > 0, k ≥ 0, k < n,

αn,k

{
> 0 if k ≡ n (mod 2)
= 0 otherwise

.
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3. For all n > 0, βn,0 = 0 and, for n > 0, k > 0, k < n,

βn,k

{
> 0 if k ≡ n (mod 2)
= 0 otherwise

.

Theorem 2.

αn+1,n+1 = 2αn,n for all n > 0(12)
αn,k = 2αn−1,k−1 + αn−2,k for all n ≥ 3 and 0 < k < n.(13)

Theorem 3.

βn+1,n+1 = 2βn,n for all n > 0(14)
βn,k = 2βn−1,k−1 + βn−2,k for all n ≥ 3 and 0 < k < n.(15)

The relations between the α’s and β’s of (10) and (11) are given in
the sequel.

Theorem 4.

(16) αn,n = βn,n for all n > 0.

Theorem 5.

αn,n = αn−1,n−1 + βn−1,n−1, n > 0,(17)
βn,n = αn−1,n−1 + βn−1,n−1, n > 0.(18)

Theorem 6. Let n and k be integers such that 0 < k < n.

βn,k = αn−1,k−1 + βn−1,k−1, n ≥ 2(19)
αn,k + αn−1,k+1 = βn,k+2 + βn,k, n ≥ 2(20)
αn,k − αn−2,k = βn,k + βn−2,k, n ≥ 3(21)
αn,k = βn−1,k+1 + βn,k, n ≥ 2.(22)
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Corollary 1.

αn,k = αn−2,k + 2αn−2,k−2 + 2βn−2,k + 2βn−2,k−2(23)
βn,k = 2αn−2,k−2 + 2βn−2,k−2 + βn−2,k.(24)

Theorem 7.

αn,0 = 1 when n is even,

αn,1 = n when n is odd,

αn,2 =
n2

2
when n is even,

βn,1 = 1 when n is odd,

βn,2 = n when n is even,

βn,3 =
(n2− 1)

2
when n is odd ≥ 3.

Corollary 2. When n is odd,

αn,1 + 2βn,1 = αn+2,1.

4. Identities and the consequence. Now we derive two iden-
tities for the solutions Ar + Br

√
D of (1), which are significant from

computational point of view.

Theorem 8. For all integers n ≥ 2,

AnAn−2 − A2
n−1 = Db2(25)

BnBn−2 − B2
n−1 = −b2.(26)

Proof. It is straightforward to check the validity of the relations for
n = 2. Assume (25) for all positive integers n ≥ 2 up to m. Now, using



704 A.M.S. RAMASAMY

(8), we get

Am+1Am−1 = (2aAm − Am−1)Am−1

= 2aAmAm−1 − (AmAm−2 − Db2) by assumption
= Am(2aAm−1 − Am−2) + Db2

= A2
m + Db2, again using (8).

This proves (25). Employing (9), a similar proof follows for (26) by
induction on n.

As a consequence of the identity (26) and the expression for Bn given
by (11), we have the following

Theorem 9. Let n be odd. Then the β’s satisfy the following
relations:

βn,nβn−2,n−2 = β2
n−1,n−1;

βn,nβn−2,n−4+ βn,n−2βn−2,n−2 = 2βn−1,n−1βn−1,n−3;
βn,nβn−2,n−6+ βn,n−2βn−2,n−4+ βn,n−4βn−2,n−2 = 2βn−1,n−1βn−1,n−5

+ β2
n−1,n−3;

...

βn,nβn−2,3+ βn,n−2βn−2,5+ βn,n−4βn−2,7+ · · · + βn,5βn−2,n−2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2βn−1,n−1βn−1,4+2βn−1,n−3βn−1,6+ · · · + β2
n−1,(n+3)/2

if n ≡ 1 (mod 4)

2βn−1,n−1βn−1,4+2βn−1,n−3βn−1,6+ · · · +2βn−1,(n+5)/2βn−1,(n+1)/2

if n ≡ 3 (mod 4)

βn,nβn−2,1+ βn,n−2βn−2,3+ βn,n−4βn−2,5+ · · · + βn,3βn−2,n−2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2βn−1,n−1βn−1,2+2βn−1,n−3βn−1,4+ · · · +2βn−1,(n+3)/2βn−1,(n−1)/2

if n ≡ 1 (mod 4)

2βn−1,n−1βn−1,2+2βn−1,n−3βn−1,4+ · · · + β2
n−1,(n+1)/2

if n ≡ 3 (mod 4)
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βn,n−2βn−2,1+ βn,n−4βn−2,3+ βn,n−6βn−2,5+ · · · + βn,1βn−2,n−2

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2βn−1,n−3βn−1,2+2βn−1,n−5βn−1,4+ · · · + β2
n−1,(n−1)/2

if n ≡ 1 (mod 4)

2βn−1,n−3βn−1,2+2βn−1,n−5βn−1,4+ · · · +2βn−1,(n+1)/2βn−1,(n−3)/2

if n ≡ 3 (mod 4)

...

βn,7βn−2,1+ βn,5βn−2,3+ βn,3βn−2,5+ βn,1βn−2,7 = 2βn−1,6βn−1,2

+ β2
n−1,4;

βn,5βn−2,1+ βn,3βn−2,3+ βn,1βn−2,5 = 2βn−1,4βn−1,2;
βn,3βn−2,1+ βn,1βn−2,3 = β2

n−1,2;
βn,1βn−2,1 = 1.

Theorem 10. When n ≡ k (mod 2),

(27) βn,k =
(

(n + k)/2
k

)
k

n + k
2k

where
(

i

j

)
denotes the number of combinations of i objects taken j at

a time.

Proof. Let F (x, y) be the generating function of the recurrence
sequence given by (15) with the boundary conditions β0,0 = 0, β1,0 = 0,
β1,1 = 1. Then

F (x, y) =
∞∑

n=0

∞∑
k=0

βn,kxnyk =
xy

1 − 2xy − x2
.

From this, we obtain the expression

βn,k =
(

(n + k − 2)/2
k − 1

)
2k−1 =

(
(n + k)/2

k

)
k

n + k
2k.
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5. Transferability of coefficients. Now we establish a remarkable
property of the coefficients αs and βs, which is highly useful for reducing
the computations to a large extent. When n is odd, An and Bn have
transferable coefficients in the sense that the coefficients of Bn in (11)
can be used to write the expression of An in terms of D and b while
the coefficients of An in (10) can be used to write the expression of Bn

in terms of D and b as provided by

Theorem 11. Let n be an odd integer ≥ 3. Then

(28) An = a(βn,nD(n−1)/2bn−1 + βn,n−2D
(n−3)/2bn−3 + · · · + βn,1)

(29) Bn = b(αn,nD(n−1)/2bn−1 + αn,n−2D
(n−3)/2bn−3 + · · · + αn,1)

Proof. We observe that

A3 = a(4a2 − 3) = a(4Db2 + 1) = a(β3,3Db2 + β3,1),

B3 = b(4a2 − 1) = b(4Db2 + 3) = b(α3,3Db2 + α3,1).

Thus (28) and (29) hold for n = 3. Now assume these relations for all
integers n up to m. Consider the case when n = m + 2. From (2) we
have

Am+2 = (2Db2 + 1)Am + 2abDBm

= a(2Db2+ 1)(βm,mD(m−1)/2bm−1+ βm,m−2D
(m−3)/2bm−3+ · · ·

+ βm,1)

+ 2ab2D(αm,mD(m−1)/2bm−1+ αm,m−2D
(m−3)/2bm−3+ · · ·

+ αm,1)

by induction assumption. Thus we have

Am+2 = a
[
2(αm,m + βm,m)D(m+1)/2bm+1

+ (2αm,m−2 + 2βm,m−2 + βm,m)D(m−1)/2bm−1

+ · · · + (2αm,1 + 2βm,1 + βm,3)Db2 + βm,1

]
= a

[
βm+2,m+2D

(m+1)/2bm+1 + βm+2,mD(m−1)/2bm−1 + · · ·
+ βm+2,3Db2 + βm+2,1

]
using (14), (18), (24) and Theorem 7. This proves (28). Similarly,
using (3), (12), (17), (23) and the corollary to Theorem 7, we check
that (29) holds.
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6. The Functions a(t) and b(t).

Definition 1 (Mohanty and Ramasamy [7]). Let t be a natural
number. Define

a(t) = A2t−1(30)

and

b(t) = B2t−1(31)

These functions have the following properties:

a(t + 1) = 2(a(t))2 − 1(32)
b(t + 1) = 2a(t)b(t)(33)

Using the relations (32) and (33), by induction we obtain the following:

a(t) ≡ 1 (mod 8), for all t ≥ 3(34)
b(t) ≡ 0 (mod 8), for all t ≥ 4(35)

(36) b(3) ≡ 0 (mod 4).

Lemma 1.
( −1

(a(t))2+ D(b(t))2

)
=

(
D

(a(t))2 + D(b(t))2

)

=
{−1 if D ≡ 3 (mod 4), t =1 and a is even

+1 otherwise,

where (e/f) denotes the Jacobi symbol.

Corollary 3.

( −D

(a(t))2 + D(b(t))2

)
= +1 for all t ≥ 1.
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7. Crucial factorization theorem. Now we establish the factor-
ization of an expression involving the function b(t) given by (31) and
the coefficients β’s arising from (11). The factorization which plays a
crucial role in the derivation of the characteristic number of a system
of Pell’s equations in the generalized case is furnished by the following

Theorem 12. When n is odd,
(37)

D(b(t))2
(
βn−1,n−1D

(n−3)/2(b(t))n−3+ βn−1,n−3D
(n−5)/2(b(t))n−5+ · · ·

+ βn−1,4D(b(t))2 + βn−1,2

)2 + 1

=
(
βn,nD(n−1)/2(b(t))n−1+ βn,n−2D

(n−3)/2(b(t))n−3 + · · ·
+ βn,3D(b(t))2 + βn,1

)
× (

βn−2,n−2D
(n−3)/2(b(t))n−3+ βn−2,n−4D

(n−5)/2(b(t))n−5 + · · ·
+ βn−2,3D(b(t))2 + βn−2,1

)
.

Proof. Expanding the expression in the left side of (37), we get

β2
n−1,n−1D

n−2(b(t))2n−4 + 2βn−1,n−1βn−1,n−3D
n−3(b(t))2n−6

+ (2βn−1,n−1βn−1,n−5 + β2
n−1,n−3)D

n−4(b(t))2n−8+ · · ·
+ (2βn−1,6βn−1,2 + β2

n−1,4)D
3(b(t))6 + 2βn−1,4βn−1,2

× D2(b(t))4 + β2
n−1,2D(b(t))2 + 1

= βn,nβn−2,n−2D
n−2(b(t))2n−4 + (βn,nβn−2,n−4 + βn,n−2βn−2,n−2)

× Dn−3(b(t))2n−6

+ (βn,nβn−2,n−6 + βn,n−2βn−2,n−4 + βn,n−4βn−2,n−2)

× Dn−4(b(t))2n−8 + · · ·
+ (βn,5βn−2,1 + βn,3βn−2,3 + βn,1βn−2,5)D2(b(t))4

+ (βn,3βn−2,1 + βn,1βn−2,3)D(b(t))2 + βn,1βn−2,1

using Theorem 9. This completes the proof.
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Part II. The Pell’s equation U2 − DV 2 = N .

8. Results in brief. Now we consider the general Pell’s equation

(38) U2 − DV 2 = N

where N is a given non-zero integer. We assume the solvability of (38).
For the concept of a class of solutions of (38) and related results, one
may see Nagell [8]. We consider a class K of solutions of (38) and fix
it. Let u + v

√
D be the fundamental solution of (38) contained in K.

Let Ur + Vr

√
D, r = 0, 1, 2, . . . , be the solutions of (38) in K. Then

Ur + Vr

√
D = (u + v

√
D) (a + b

√
D)r.

We have the following relations (Mohanty and Ramasamy [7]):

Ur+s = AsUr + DBsVr(39)
Vr+s = BsUr + AsVr(40)

Ur+2s ≡ −Ur (mod As)(41)
Vr+2s ≡ −Vr (mod As).(42)

9. Characteristic number of a system. Consider a finite number
of given odd primes p1, p2, . . . , ps, not necessarily distinct. Choose one
of these primes, fix it and denote it by p. Let P denote p1p2 · · · ps.
Now we discuss the method of establishing that there cannot exist a
non-negative integer n with n ≡ i (mod m), n �= i, 0 ≤ i < m and
V = Vn which will satisfy the system of Pell’s equations

(43)
{

U2 − DV 2 = N,

Z2 − g V 2 = h

where g and h are given integers and m is 2p, respectively 2P , or its
multiple by a power of 2.

Case (I). First, let m be 2p or its multiple by a power of 2 where p is a
given odd prime. Using the expression for m, write n = i+p ·2t(2μ+1)
where μ is a non-negative integer and t is an appropriately chosen
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natural number. For example, if m = 2p, then t ≥ 1; if m = 4p,
then t ≥ 2, etc. Denote 2t by k. Using (42) successively, we have
Vn ≡ (−1)μVpk+i (mod Apk). Using (40), we obtain Vn ≡ (−1)μUiBpk

(mod Apk). Hence

Z2 = gU2
i B2

pk + h (mod Apk).

In view of (10), (11), (28) and (29), we get

(44)

Z2 ≡ gU2
i (b(t + 1))2(βp,p(a(t + 1))p−1 − βp,p−2(a(t + 1))p−3

+ βp,p−4(a(t + 1))p−5 − · · · )2 + h

(mod a(t + 1)(αp,p(a(t + 1))p−1 − αp,p−2(a(t + 1))p−3

+ αp,p−4(a(t + 1))p−5 − · · · )).

Considering (44) modulo a(t + 1), we have

(45)
Z2 ≡ gU2

i (b(t + 1))2 + h (mod a(t + 1))
≡ 2(2gU2

i (a(t))2 − Dh) (b(t))2 (mod (a(t))2 + D(b(t))2)
≡ −4D(gU2

i − Dh) (b(t))4 (mod (a(t))2 + D(b(t))2).

Now (−4D(gU2
i − Dh)(b(t))4

(a(t))2 + D(b(t))2

)
=

(
gU2

i − Dh

(a(t))2 + D(b(t))2

)

using Corollary 3.

Next, considering (44) modulo αp,p(a(t+1))p−1−αp,p−2(a(t+1))p−3+
αp,p−4(a(t + 1))p−5 − · · · , we obtain

(46)

Z2 ≡ h + gU2
i (b(t + 1))2(βp,p(a(t + 1))p−1 − βp,p−2(a(t + 1))p−3

+ βp,p−4(a(t + 1))p−5 − · · · )2
(mod αp,p(a(t + 1))p−1 − αp,p−2(a(t + 1))p−3

+ αp,p−4(a(t + 1))p−5 − · · · ).
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Applying the property of transferability of the coefficients as provided
by (28) and (29), we get

(47)

Z2 ≡ h + gU2
i (b(t + 1))2(αp,pD

(p−1)/2(b(t + 1))p−1

+ αp,p−2D
(p−3)/2(b(t + 1))p−3 + · · · + αp,3D(b(t + 1))2 + αp,1)2

(mod βp,pD
(p−1)/2(b(t+1))p−1 + βp,p−2D

(p−3)/2(b(t+1))p−3+ · · ·
+ βp,3D(b(t + 1))2 + βp,1))

= h + gU2
i (b(t + 1))2

[
(αp,pD

(p−1)/2(b(t + 1))p−1 + · · · + αp,1)

− (βp,pD
(p−1)/2(b(t + 1))p−1 + · · · + βp,1)

]2
= h + gU2

i (b(t + 1))2 × [
(αp,p − βp,p)D(p−1)/2(b(t + 1))p−1

+ (αp,p−2 − βp,p−2)D(p−3)/2(b(t + 1))p−3 + · · · + (αp,1 − βp,1)
]2

.

Invoking (16) and (22), we obtain

(48) Z2

≡ h + gU2
i (b(t + 1))2(βp−1,p−1D

(p−3)/2(b(t + 1))p−3+ · · ·+ βp−1,2)2.

Now

(
h + gU2

i (b(t + 1))2(βp−1,p−1D(p−3)/2(b(t + 1))p−3 + · · · + βp−1,2)2

βp,pD(p−1)/2(b(t + 1))p−1 + · · · + βp,1

)

=

(
D

βp,pD(p−1)/2(b(t + 1))p−1 + · · · + βp,1

)

×
(

Dh+gU2
i D(b(t+1))2(βp−1,p−1D(p−3)/2(b(t+1))p−3+ · · · +βp−1,2)2

βp,pD(p−1)/2(b(t+1))p−1+ · · · +βp,1

)
.

Therefore, to determine the quadratic character of the expression in the
right side of (48) with respect to βp,pD

(p−1)/2(b(t + 1))p−1 + · · ·+ βp,1,
we have to consider the quadratic character of

1. D, and

2. Dh+gU2
i D(b(t+1))2(βp−1,p−1D

(p−3)/2(b(t+1))p−3+· · ·+βp−1,2)2.
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Now we shall make use of the crucial factorization theorem provided
by (37). Considering

Dh + gU2
i D(b(t + 1))2(βp−1,p−1D

(p−3)/2(b(t + 1))p−3 + · · · + βp−1,2)2

modulo βp,pD
(p−1)/2(b(t + 1))p−1 + · · · + βp,1,

and applying (37) we obtain

gU2
i

[
(βp−2,p−2D

(p−3)/2(b(t+1))p−3+βp−2,p−4D
(p−5)/2(b(t+1))p−5+· · ·

+ βp−2,3D(b(t + 1))2βp−2,1)

× (βp,pD
(p−1)/2(b(t + 1))p−1+ βp,p−2D

(p−3)/2(b(t + 1))p−3 + · · ·
+ βp,3D(b(t + 1))2 + βp,1) − 1

]
+ Dh,

≡ Dh + gU2
i (−1)

≡ −(gU2
i − Dh).

Hence
(

D

βp,pD(p−1)/2(b(t+1))p−1+ · · · +βp,1

)(
−(gU2

i − Dh)

βp,pD(p−1)/2(b(t+1))p−1+ · · · +βp,1

)

=

(
−1

βp,pD(p−1)/2(b(t+1))p−1+ · · · +βp,1

)(
D

βp,pD(p−1)/2(b(t+1))p−1+ · · · +βp,1

)

×
(

gU2
i − Dh

βp,pD(p−1)/2(b(t+1))p−1+ · · · +βp,1

)
.

Clearly,

( −1
βp,pD(p−1)/2(b(t + 1))p−1 + · · · + βp,1

)
= +1.

If D = 2, then

βp,pD
(p−1)/2(b(t + 1))p−1 + · · · + βp,1 ≡ +1 (mod 8)

and so (
D

βp,pD(p−1)/2(b(t + 1))p−1 + · · · + βp,1

)
= +1.
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If D is odd, then
(

D

βp,pD(p−1)/2(b(t + 1))p−1 + · · · + βp,3D(b(t + 1))2 + βp,1

)

=
(

βp,pD
(p−1)/2(b(t + 1))p−1 + · · · + βp,3D(b(t + 1))2 + βp,1

D

)

=
(

βp,1

D

)
=

(
1
D

)
= +1.

Thus in any case we obtain
(

D

βp,pD(p−1)/2(b(t + 1))p−1 + · · · + βp,1

)
= +1.

Hence,
(

h + gU2
i (b(t + 1))2(βp−1,p−1D

(p−3)/2(b(t + 1))p−3 + · · · + βp−1,2)2

βp,pD(p−1)/2(b(t + 1))p−1 + · · · + βp,1

)

=
(

gU2
i − Dh

βp,pD(p−1)/2(b(t + 1))p−1 + · · · + βp,1

)
.

Case (II). Next let m be 2P or its multiple by a power of 2 where P is
the product of given odd primes p1, p2, . . . , ps, not necessarily distinct.
Then n = i + P · 2t(2μ + 1) and we get Vn = (−1)μUiBPk (mod APk)
where k = 2t. Hence

(49)

Z2 ≡ h + gU2
i (b(t + 1))2(βP,P (a(t + 1))P−1

− βP,P−2(a(t + 1))P−3 + βP,P−4(a(t + 1))P−5 − · · · )2
(mod a(t + 1)(αP,P (a(t + 1))P−1

− αP,P−2(a(t + 1))P−3 + αP,P−4(a(t + 1))P−5 − · · · )).
Considering (44) modulo a(t + 1), we arrive at

(
gU2

i − Dh

(a(t))2 + D(b(t))2

)
.

In this case, we have to consider the factors of the polynomial
αP,P (a(t+1))P−1−αP,P−2(a(t+1))P−3+αP,P−4(a(t+1))P−5−· · · ) or
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equivalently those of the polynomial βP,P D(P−1)/2(b(t+1))P−1 + · · ·+
βP,1. The corresponding factors of the polynomials in {a(t + 1)} and
{b(t + 1)} sequences have transferable coefficients as provided by The-
orem 11. Each distinct prime pj in the set {p1, p2, . . . , ps} contributes
a factor Fj of βP,P D(P−1)/2(b(t + 1))P−1 + · · ·+ βP,1 of degree pj − 1.
These factors are polynomials in D(b(t + 1))2. Letting p1, . . . , pw be
the distinct primes in the set {p1, p2, . . . , ps} we have

βP,P D(P−1)/2(b(t + 1))P−1 + · · · + βP,1 = F1 F2 · · · Fw G

where
(50)

Fj = βq,qD
(q−1)/2(b(t+1))q−1+ βq,q−2D

(q−3)/2(b(t+1))q−3+ · · ·
+ βq,3D(b(t + 1))2 + βq,1

with q = pj and G is a polynomial in D(b(t + 1))2 of degree P − (p1 +
· · ·+pw)+w−1. If G is reducible, let Gd be an irreducible polynomial
dividing G. If G is irreducible, let Gd denote G itself. Once again we
shall use Theorem 12.

Let σ denote any Fj or Gd. Considering

h + gU2
i (b(t + 1))2(αP,P D(P−1)/2(b(t + 1))P−1 + · · · + αP,1)2

modulo σ, we get

h + gU2
i (b(t + 1))2(αP,P D(P−1)/2(b(t + 1))P−1 + · · ·
+ αP,1 − F1 F2 · · · Fw G)2

≡ gU2
i [F1 F2 · · · Fw G(βP−2,P−2D

(P−3)/2(b(t + 1))P−3 + · · ·
+ βP−2,1) − 1] + Dh, because of (37)

≡ Dh + gU2
i (−1)

≡ −(gU2
i − Dh) (mod σ) with σ = Fj or Gd.

Thus we are led to the following

Theorem 13. Let p1 = p, p2, . . . , ps be given odd primes, not
necessarily distinct. Choose a modulo m, which has the form
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(1) 2τ · 2p or

(2) 2τ · 2p1 p2 · · · ps with τ ≥ 0.

Let n = i + p · 2t(2μ + 1), t ≥ 1. If, for each t ≥ 1, in case (1) at
least one of the Jacobi symbols

(
gU2

i − Dh

(a(t))2 + D(b(t))2

)
,

(
gU2

i − Dh

βp,pD(p−1)/2(b(t + 1))p−1 + · · · + βp,1

)

equals −1, and in case (2), with the notation of (50) at least one of
(

gU2
i − Dh

(a(t))2+ D(b(t))2

)
,

(
gU2

i − Dh

F1

)
, . . . ,

(
gU2

i − Dh

Fw

)
,

(
gU2

i − Dh

Gd

)

equals −1, then the system (43) has no solution with V = Vn and n ≡ i
(mod m), except possibly V = Vi.

Definition 2. Since the number gU2
i − Dh plays a fundamental

role, we call it the characteristic number of the system (43) for given
integer i.

10. Numerical example. In this section a numerical example is
provided so as to illustrate the application of the method developed in
the previous sections. Let us consider the system of Pell’s equations

(51)
{

U2 − 11V 2 = 5
Z2 − 17V 2 = −32

We determine the common solutions of the two equations in the above
system.

The Pell’s equation

(52) A2 − 11B2 = 1

has the fundamental solution 10 + 3
√

11. The Pell’s equation U2 −
11V 2 = 5 has two non-associated classes of solutions and the funda-
mental solutions are 4 − √

11, 4 +
√

11 respectively. So the general
solution of the equation U2 − 11V 2 = 5 in the concerned class is given
by

Ur +
√

11 Vr = (4 −
√

11) (10 + 3
√

11)r(53)
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or

Ur +
√

11 Vr = (4 +
√

11) (10 + 3
√

11)r(54)

as the case may be. Consider the class of solutions of the Pell’s
equation U2 − 11V 2 = 5 arising from (53) with the restriction given
by 17V 2 − 32 = Z2. It is ascertained that r ≡ 1 (mod 2), r ≡ 1
(mod 9), r ≡ 1 (mod 11) and r ≡ 1 (mod 13). A sketch of the
stepwise calculations is provided here. Since equation (42) implies
that Vr+22 ≡ −Vr (mod 89), the sequence Vr (mod 89) is periodic
with period 44 and the sequence 17(Vr)2 − 32 (mod 89) is periodic
with period 22. Moreover, 17(Vr)2 − 32 = (Zr)2, therefore the Jacobi
symbol ((17(Vr)2 − 32)/89) must have the value +1. However, for
r ≡ 3, 7, 15, 17, 25, 29, 37, 39 (mod 44), a simple calculation shows that
the Jacobi symbol has the value −1; hence, these values must be
excluded. Next, working analogously with the prime moduli 103093,
1085657 and 353, in place of 89, we further refine our sieving leaving
only the case r ≡ 1 (mod 88). In a similar way we see that r ≡ 1
(mod 13) and r ≡ 1 (mod 9). The prime moduli we will have to work
are respectively 521, 103, 5927, 25875519071714157933602321 in the
former case and 2953 in the latter case.

The characteristic number gU2
i − Dh of the system (51) for i = 1,

given by Definition 2, is 1185. We have to choose a modulus and
determine the values of t for which the characteristic number will be
a quadratic non-residue with respect to some appropriate polynomial.
By induction we obtain the following results:

a(t + 1) ≡ 3 (mod 4) for t = 1 and 1 (mod 4) for all t ≥ 2,

b(t + 1) ≡ 0 (mod 4) for all t ≥ 1.

The prime factors of the characteristic number of the system are 3, 5
and 79. We have

a(t + 1) ≡ 1 (mod 3) for all t ≥ 1,

b(t + 1) ≡ 0 (mod 3) for all t ≥ 1,

a(t + 1) ≡ 4 (mod 5) for t = 1 and 1 (mod 5) for all t ≥ 2,

b(t + 1) ≡ 0 (mod 5) for all t ≥ 1.

The sequences a(t+1) and b(t+1) (mod 79) are periodic with period 12.
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Now we illustrate the method of solving the problem with two
different moduli.

(A) Modulus with a single odd prime. The modulus m = 2τ · 2 · 13
(τ ≥ 0). Here, with the notations of case (i) of Theorem 13, we
have Z2 ≡ 1185 (mod a(t + 1)F ) where F = 4096D6{b(t + 1)}12 +
11264D5{b(t + 1)}10 + 11520D4{b(t + 1)}8 + 5376D3{b(t + 1)}6 +
1120D2{b(t + 1)}4 + 84D{b(t + 1)}2 + 1. The Jacobi symbol

(
1185

a(t + 1)

)
=

(
3

a(t + 1)

)
·
(

5
a(t + 1)

)
·
(

79
a(t + 1)

)
.

When t = 1, we have a(t + 1) ≡ 3 (mod 4), 1 (mod 3), 4 (mod 5) and
41 (mod 79). So

(
1185

a(t + 1)

)
=

(
a(t + 1)

3

)
·
(

a(t + 1)
5

)
·
(

a(t + 1)
79

)
=

(
41
79

)
= −1.

Consequently t = 1 is impossible. Henceforth we consider the case
t ≥ 2. Now a(t + 1) ≡ 1 (mod 4), 1 (mod 3) and 1 (mod 5). We have

(
a(t + 1)

3

)
= +1 and

(
a(t + 1)

5

)
= +1.

Therefore (1185/a(t+1)) reduces to (a(t+1)/79). When t ≡ 1, 2, 3, 4, 6,
8 (mod 12), we have respectively a(t+1) ≡ 41, 43, 63, 37, 66, 12 (mod 79).
Since each one of these values of a(t + 1) is a quadratic non-residue of
79, it follows that the relation Z2 = 17(Vr)2−32 is impossible for these
values of t. Next we have

(
1185
F

)
=

(
3
F

)
·
(

5
F

)
·
(

79
F

)
.

Because of the relations F ≡ 1 (mod 4), 1 (mod 3), 1 (mod 5) for all
t ≥ 1, we obtain (

1185
F

)
=

(
F

79

)
.

When t ≡ 0, 5, 7, 9, 10, 11 (mod 12), we have F ≡ 75, 24, 47, 15, 70, 27
(mod 79). Since these values are quadratic non-residues of 79, we see
that the relation Z2 = 17(Vr)2 − 32 does not hold for these values of t.



718 A.M.S. RAMASAMY

(B) Modulus with an odd prime and the square of another odd prime.
The modulus m = 2τ · 2 · 32 · 11, τ ≥ 0. With the notations of case
(ii) of Theorem 13, we have Z2 ≡ 1185 (mod a(t + 1) F1 F2 G1 G2 G3)
where

F1 = 4D{b(t +1)}2 + 1,

F2 = 1024D5{b(t +1)}10 + 2304D4{b(t +1)}8 + 1792D3{b(t +1)}6

+ 560D2{b(t +1)}4 + 60D{b(t +1)}2 + 1,

G1 = 64D3{b(t +1)}6 + 96D2{b(t +1)}4 + 36D{b(t +1)}2 + 1,

G2 = 1048576D10{b(t +1)}20 + 5505024D9{b(t +1)}18

+ 12320768D8{b(t +1)}16 + 15302656D7{b(t +1)}14

+ 11493376D6{b(t +1)}12 + 5326848D5{b(t +1)}10

+ 1487104D4{b(t +1)}8 + 232256D3{b(t +1)}6

+ 17440D2{b(t +1)}4 + 480D{b(t +1)}2 + 1

and G3 is a polynomial in b(t+1) of degree 60. We have to consider
the Jacobi symbols

(
1185

a(t + 1)

)
,

(
1185
F1

)
,

(
1185
F2

)
,

(
1185
G1

)
,

(
1185
G2

)
and

(
1185
G3

)
.

The results pertaining to (1185/a(t + 1)) obtained in (A) are applicable
here also. We get

(
1185
F1

)
=

(
F1

79

)
,

(
1185
F2

)
=

(
F2

79

)
,

(
1185
G1

)
=

(
G1

79

)

and

(
1185
G2

)
=

(
G2

79

)
.

When t ≡ 1, 6, 9, 10 (mod 12), we have F1 ≡ 6, 41, 43, 37 (mod 79);
when t ≡ 2, 3, 4, 7, 9, 11 (mod 12), we have F2 ≡ 3, 48, 24, 66, 75, 70
(mod 79); when t ≡ 0, 2, 3, 5, 6, 8, 9, 11 (mod 12), we have G1 ≡
17, 33, 47, 39, 17, 33, 47, 39 (mod 79); when t ≡ 1, 2, 3, 9, 10, 11 (mod 12),
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we have G2 ≡ 56, 37, 7, 74, 74, 77 (mod 79) which are all quadratic non-
residues of 79. We are able to conclude without considering the values
attained by G3 modulo 79. It is seen that the relation Z2 = 17(Vr)2−32
does not hold for the present modulus.

As a result of the above discussion of any one modulus provided by
(A) and (B), it is seen that the system of Pell’s equations U2−11V 2 = 5,
Z2−17V 2 = −32 has no common solution Vi except possibly for i = 1.
However, when i = 1 we obtain U = ±7, V = ±2 and Z = ±6.

Next we consider the class of solutions provided by equation (54).
Since the same characteristic number is got in this case, the results
obtained for the previous class of solutions are applicable here also.
Thus we have established the following:

Theorem 14. The only positive integral solutions common to the
two Pell’s equations U2 − 11V 2 = 5 and Z2 − 17V 2 = −32 are U = 7,
V = 2 and Z = 6.
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