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AN ISOPERIMETRIC INEQUALITY
FOR RIESZ CAPACITIES

PEDRO J. MÉNDEZ-HERNÁNDEZ

ABSTRACT. Let A be a compact set of Rn, and let A∗ be
the closed ball centered at the origin with the same measure
as A. We prove that, if Cα is the α-Riesz capacity with
0 < α < 2, then Cα(A) ≥ Cα(A∗). We also prove an
isoperimetric inequality for the expected measure of the stable
sausage generated by A. Our results also yield isoperimetric
inequalities for the relativistic α-stable processes, and other
Lévy processes.

1. Introduction. It is well known that, among all compact
sets of equal measure, the ball has the smallest Newtonian capacity.
This is one of the classical generalized isoperimetric inequalities of
Pólya and Szegő [11]. In [8], Luttinger provided a new method,
based on multiple integrals inequalities, to prove this and many other
isoperimetric inequalities. In this paper we adapt the method of
Luttinger [8] to obtain isoperimetric inequalities for Riesz capacities.
The Riesz kernel is

kα(x − y) =
Γ(n − α/2)

Γ(α/2) πn/22α−1

1
|x − y|n−α

,

where n ≥ 2 and 0 < α < n. Let A be a compact set in Rn, the α-Riesz
capacity of A is defined by

Cα(A) =
[
inf
μ

∫∫
kα(x − y) dμ(x) dμ(y)

]−1

,

where the infimum is taken over all probability Borel measures sup-
ported in A. If α = 2 and n ≥ 3, then this is the classic Newtonian
capacity. Let |A| be the Lebesgue measure of A, and let A∗ be the
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closed ball in Rn centered at the origin such that |A∗| = |A|. Then
Pólya and Szegő’s classical result is:

(1) C2(A) ≥ C2(A∗).

Naturally one might ask if (1) holds for all Riesz capacities. This
problem was stated by Mattila in [9], where the author finds lower
bounds for the Hausdorff measure of the projection of A on an m-
dimensional subspace in terms of Cm(A). In this paper we present a
very short proof of the following result:

Theorem 1. Let α ∈ (0, 2), and let A be a compact set of Rn such
that |A| > 0. Then,

(2) Cα(A) ≥ Cα(A∗),

where A∗ is the closed ball, centered at the origin, such that |A| = |A∗|.

Theorem 1 was previously proved by Betsakos [3]. His proof relies
on some polarization inequalities for transition densities of killed sym-
metric stable processes and a well-known relationship between Green’s
functions and Riesz capacities.

Luttinger obtained (1) from a probabilistic representation of the New-
tonian capacity, due to Spitzer [14], and the following rearrangement
inequality, proved by Friedberg and Luttinger [7].

Theorem 2. Let F0, . . . , Fm : Rn → [0, 1], and let H0, . . . , Hm be
nonnegative nonincreasing radially symmetric functions in Rn. Then,

∫
. . .

∫ [
1 −

m∏
j=0

(1 − Fj(zj) )
] m∏

j=0

Hi(zj − zj+1) dz0 · · · dzm

≥
∫

. . .

∫ [
1 −

m∏
j=0

(1 − F ∗
j (zj) )

] m∏
j=0

Hi(zj − zj+1) dz0 · · · dzm,

where F ∗
i is the symmetric decreasing rearrangement of Fi, and

zm+1 = z0.
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Actually Friedberg and Luttinger proved Theorem 2 for the Steiner
symmetrization of functions in R. However, it was proved in [4] that
the symmetric decreasing rearrangement of a function in Rn can be
obtained as the limit of a sequence of Steiner symmetrizations with
respect to different planes. It is known that such rearrangement
inequalities, combined with a probabilistic representation of the heat
kernel, imply the classical Raleigh-Faber-Krahn inequality and many
other generalized isoperimetric inequalities for heat kernels and Green’s
functions of the Laplacian and fractional Laplacian; see [1, 9, 10].

The other key result, in Luttinger’s proof of (1), is Spitzer’s study of
the expected volume of the Brownian sausage generated by A. The
Markov processes associated to Riesz kernels are the symmetric α-
stable processes. Let Xt be an n-dimensional symmetric α-stable
process of order α ∈ (0, 2), and let Tα

A = inf{t > 0 : Xt ∈ A} be
the first time Xt hits A. Define

Eα
A(t) =

∫
P x(Tα

A ≤ t) dx;

this quantity can be interpreted as the expected Lebesgue measure of
the stable sausage ∪s≤t[Xs + A].

In the case that α = 2,

Eα
A(t) − |A| =

∫
Ac

P x(Tα
A ≤ t) dx

can be interpreted as the total heat flow, up to time t, from A to the
surroundings. This was the original motivation of Spitzer to study the
behavior of Eα

A(t). Getoor [6] proved that

(3) lim
t→∞

Eα
A(t)
t

= Cα(A),

extending Spitzer’s result to all symmetric stable processes.

Not only does Theorem 2 imply isoperimetric inequalities for the
expected area of the stable sausage, but this method applies, without
change, to any Lévy processes whose transition probability densities are
radially symmetric and nonincreasing. This class of processes includes
the relativistic α-stable processes and any processes of the form BAt

,
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where Bt is a Brownian motion and At is a subordinator. We will prove
Theorem 1 in Section 2, and we will discuss extensions of Theorem 1
to other processes in Section 3.

Before publication we learned that Theorem 1 and our generalizations
to other Lévy processes were first proved by Watanabe in [15], where
he also settles the equality case. His argument is also based on
some symmetrization techniques and an analytical representation of
the capacity in terms of Dirichlet forms.

2. Proof of Theorem 1. Recall that the process Xt has right
continuous sample paths and stationary independent increments. Its
infinitesimal generator is ( − Δ

)α/2
,

where 0 < α ≤ 2 and Δ is the Laplacian in Rn. When α = 2 the
process Xt is just an n-dimensional Brownian motion Bt running at
twice the speed. If 0 < α < 2, then Xt = B2σt

, where σt is a stable
subordinator of index α/2 that is independent of Bt; see [2]. Thus,

pα(t, x, y) =
∫ ∞

0

1
(4πu)n/2

exp
[−|x − y|2

4u

]
gα/2(t, u) du,

where gα/2(t, u) is the transition density of σt. Hence, for every positive
t, pα(t, x, y) = fα

t (|x − y|) and the function fα
t (r) is decreasing.

Let Ak be a decreasing sequence of compact sets such that the interior
of Ak contains A for all k, and ∩∞

k=1Ak = A. By the right-continuity
of the sample paths and the Markov property of stable processes, we
have∫

P z0{Tα
A ≤ t } dz0

=
∫ [

1 − P z0{Tα
A > t }

]
dz0

=
∫ [

1 − P z0{Xs ∈ Ac, 0 ≤ s ≤ t}
]
dz0

= lim
k→∞

lim
m→∞

∫ [
1 − P z0{X(jt)/m ∈ Ac

k, j = 1, . . . , m }
]
dz0

= lim
k→∞

lim
m→∞

∫
. . .

∫ [
1 −

m∏
j=1

IAc
k
(zj)

]
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×
m∏

j=1

pα(t/m, zj − zj−1) dz0 · · · dzm

= lim
k→∞

lim
m→∞

∫
. . .

∫ [
1 −

m∏
j=1

[ 1 − IAk
(zj) ]

]

×
m∏

j=1

pα(t/m, zj − zj−1) dz0 · · · dzm,

where IAk
is the indicator function of Ak. Since fα

t (x) is nonincreasing
and radially symmetric, we can take Hm = 1 and F0 = 0 in Theorem 2
to obtain

lim
k→∞

lim
m→∞

∫
. . .

∫ [
1 −

m∏
j=1

[ 1 − IAk
(zj) ]

]

m∏
j=1

pα(t/m, zj − zj−1) dz0 · · · dzm

≥ lim
k→∞

lim
m→∞

∫
. . .

∫ [
1 −

m∏
j=1

[ 1 − IA∗
k
(zj) ]

]

m∏
j=1

pα(t/m, zj − zj−1) dz0 · · · dzm.

Hence,

Eα
A(t) =

∫
P z0{Tα

A ≤ t } dz0 ≥
∫

P z0{Tα
A∗ ≤ t } dz0 = Eα

A∗(t).

Finally we conclude from (3) that

Cα(A) = lim
t→∞

Eα
A(t)
t

≥ lim
t→∞

Eα
A∗(t)
t

= Cα(A∗).

3. Isoperimetric inequalities for radial Lévy processes. Let
Xt be a Lévy process whose transition density is radially symmetric and
decreasing. This class includes any process of the form BAt

, where Bt
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is a Brownian motion and At is a subordinator. An important example
of such processes is the relativistic α-stable processes. The infinitesimal
generator of the relativistic α-stable process is

[m − Δ]α/2 − m,

where m > 0 is the mass of a relativistic particle. These processes arise
in the study of relativistic Hamiltonian systems in physics; see [2, 5,
13 and the references therein].

Let TA = inf{t > 0 : Xt ∈ A} be the first time Xt hits A, and
consider

EA(t) =
∫

P x(TA ≤ t) dx.

This quantity can be interpreted as the expected Lebesgue measure of
∪s≤t[Xt + A], the Xt-sausage generated by A. The following result
generalizes the results of the previous section:

Theorem 3. Let Xt be a transient Lévy processes whose transition
density is radially symmetric and decreasing. Let A be a compact set
in Rn with positive measure. If A∗ is the closed ball centered at the
origin with |A| = |A∗|, then for all t ≥ 0

EA(t) ≥ EA∗(t),(4)
and

C(A) ≥ C(A∗),(5)

where C(A) is the capacity associated to Xt.

An examination of the proof of Theorem 1 shows that (4) follows
from Theorem 2 and the fact that the transition densities of Xt are
radially symmetric and decreasing. On the other hand, Port and Stone
[12] proved that

(6) lim
t→∞

EA(t)
t

= C(A),

thus (5) follows from (4). We include a proof of (6) for the convenience
of the reader. The capacity, associated to Xt, of a compact set A is
defined as

C(A) = lim
λ→0

λ

∫
Ex[ e−λTA ] dx = lim

λ→0
λ

∫ ∞

0

e−λtEA(dt).
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On the other hand, the Markov property and the symmetry of Xt imply

EA(t) − EA(t − h)

=
∫

P x(t − h < TA ≤ t) dx

=
∫ ∫

P x(TA > t − h, Xt−h ∈ dy) P y(TA ≤ h) dy dx

=
∫

P y(TA > t − h) P y(TA ≤ h) dy.

Then

lim
t→∞

(
EA(t) − EA(t − h)

)
=

∫
P y(TA = ∞) P y(TA ≤ h) dy.

This is an additive function of h which is bounded and measurable.
Hence it is a linear function of h and there exists a constant γ(A) such
that

lim
t→∞

(
EA(t) − EA(t − h)

)
= hγ(A).

It follows that
lim

t→∞
1
t

EA(t) = γ(A).

Integration by parts implies that

C(A) = lim
λ→0

λ

∫ ∞

0

e−λtEA(dt) = γ(A),

which proves (6).
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5. R. Carmona, W.C. Masters and B. Simon, Relativistic Schrödinger operator :
Asymptotic behavior of the eigenfunctions, J. Funct. Anal. 91 (1990), 117 142.

6. R.K. Getoor, Some asymptotic formulas involving capacity, Z. Wahrsch. Verw.
Gebiete 4 (1965), 248 252.

7. R. Friedberg and J.M. Luttinger, Rearrangement inequality for period func-
tions, Arch. Rational Mech. Anal. 61 (1976), 35 44.

8. P. Mattila, Orthogonal projections, Riesz capacities, and Minkowski content,
Indiana Univ. Math. J. 39, (1990), 185 198.

9. P.J. Méndez-Hernández, Brascamp-Lieb-Luttinger inequalities for convex do-
mains of finite inradius, Duke Math. J. 113 (2002), 93 131.

10. J.M. Luttinger, Generalized isoperimetric inequalities II, J. Math. Phys. 14
(1973), 586 593.
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