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LP ESTIMATES FOR ROUGH
SINGULAR INTEGRALS ASSOCIATED
TO SOME HYPERSURFACES

EUNHEE KOH

ABSTRACT. We consider a class of rough singular integral
operators that are associated to a Calderén-Zygmund type
kernel K and a hypersurface given by the graph {(y, ¢(¢(y))) :
y € R"}. Here ¢(t) is an increasing convex C? function on
[0,00), and 9 is a smooth convex function on R"™, which is
homogeneous of degree 1 and of finite type. Also, K|gn-1
satisfies a cancelation condition and some other hypotheses
but may fail to be smooth. We obtain LP estimates for these
operators assuming that the maximal function related to the
function ¢(t) is bounded on LP.

1. Introduction. Let S"~! be the unit sphere in R", n > 2, with
the induced Lebesgue measure do. Throughout this paper, we shall
assume that  is a homogeneous function of degree zero on R™, which
satisfies the condition Q2 € L'(S™~!) and the cancelation condition

/ Q(y) do(y) = 0.
Sgn—1

Let K(y) = Q(y)/|y|™ for y € R™"\{0}. For d > n and a suitable
mapping ® : R® — R?, define the singular integral operator Tk,o by

Tr.af(x) = po. - flz—2(y)K(y) dy

for r € R
When n =d, Q € C*®(5"1) and ®(y) = y for y € R", Tk ¢ reduces
to a classical Calderén-Zygmund singular integral operator Tk, given
by
Tk f(z) =Tk of(x) =pv. [ flz—y)K(y)dy
R7l
for x € R™, and hence it is bounded on LP(R"™) for all 1 < p < 0.
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510 E. KOH

In [3], Calder6n and Zygmund used the method of rotations to
establish the LP-boundedness of Tk for 1 < p < oo under the weaker
hypothesis Q € Llog™ L(S™1), that is,

/3 ()| log™* |2(y)| do(y) < oc.

They also showed that the condition Q € Llog™ L(S" ') is sharp in
the sense that if Q € L(log™ L)'~¢(S™~!) for some £ > 0, Tk cannot
be bounded on LP(R™) for any p.

When Q € L9(S"1) for some ¢ > 1, Duoandikoetxea and Rubio de
Francia obtained the LP estimates for T by using a method involving
some Fourier transform estimates instead of the method of rotations.
See [3] and [10].

Ricci and Weiss [20], and independently Connett [9], obtained the
improved result that if Q € H'(S"~1), then Tk is bounded on LP(R™)
for 1 < p < oo. Now let us recall that, for 1 < ¢ < oo, the inclusion
relations

Coo(Snfl) C Loo(Snfl) C Lq(Snfl) C Llong L(snfl)
C Hl(Sn—l) C Ll(Sn—l)

hold and that all the inclusions are proper. (For a definition of the
Hardy space H'(S™™1), see Section 2.)

From now on we will restrict our attention to the case of hypersur-
faces. That is, we take d = n + 1. First let us consider the surface of
revolution ®(y) = (y, ¢(|y|)) for y € R™. For a given €, let

(11) Thof(r.8) = Ticaf (o, t) = po- [ (e =yt =6y K () dy

for (z,t) € R™ x R. This operator Tk , is called the singular integral
operator along the surface of revolution {(y,#(|y|)) : v € R™}. Just
like in the case of Tk, LP estimates for Tk 4 have been obtained for
Q belonging to spaces ranging from C*°(S"~!) to H'(S"~1!). For
Q € C>(S"~1), Kim, Wainger, Wright and Ziesler in [14] proved the L?
boundedness of singular integrals along certain surfaces of revolution.
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Theorem A [14]. Suppose that Q € C*°(S" 1) and ¢ : [0,00) — R
is C?, convex and increasing. Then Tk s in (1.1) extends to a bounded
operator on LP(R™*1) for 1 < p < oco.

Chen and Fan improved the above result to the situation QinL?(S™~1)
or some ¢ > 1, assuming that ¢ satisfies weaker hypotheses than those
of Theorem A. In fact, they proved the LP estimate of Tk 4 when
belongs to the Block space B?(S"1), 3 > 0 and r > 1, introduced in
[17], which contains L9(S™~!) for ¢ > 1. However, we would like to
point out that by a result of Keitoku and Sato in [13], it follows that
the statement that Tk  is bounded on L for every 1 < p < oo for
Q € LY(S™1) for some ¢ > 1 is equivalent to the statement that T 4
is bounded on LP for every 1 < p < oo for Q € B2(S"~1), see [15].

Let ¢ : [0,00) — R be continuously differentiable on (0, c0), which
satisfies

(1.2) [¢(t) — 6(0)] < et

for some a > 0 and sufficiently small ¢, where ¢ is independent of ¢.

Theorem B [6]. Suppose Q € LI(S"1) for some ¢ > 1 and ¢
satisfies the condition (1.2). If the mazimal operator Vy given by
2 dr
(1.3) Vog(t) = sup gt —o(r)) —
kez r

2k

is bounded on LP(R) for all 1 < p < oo, then Tk 4 in (1.1) is bounded
in LP(R™1) for all 1 < p < oc.

In [1], Al-Salman and Pan extended this result to the case Q €
Llog™ L(S™~1') also by the Fourier transform estimate method in [10],
using Theorem B.

Theorem C [1]. Suppose Q € Llog™ L(S™ 1) and ¢ satisfies the
condition (1.2). Let Tk 4 be given by (1.1). Let m € N and V(;m) be
the maximal function on R given by
gm(kt1)

dr

(14) Vit =sup | [ (= o) ]

¢ keZ
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for t € R. If there exists a constant C), independent of m such that

(1.5) V™ gl (ry < Cpmlgllinry

for all 1 < p < oo, then Tk is bounded on LP(R™1) for all
1 <p<oo.

Lu, Pan and Yang [16] also obtained the following extension to the
case Q € H'(S" 1) with a stronger assumption on ¢, again using
Theorem B. See [8] and [7] for the definition of the Hardy space
H'(S""1) on the sphere.

Theorem D [16]. Suppose that Q@ € HY(S"™1) and ¢ satis-
fies condition (1.2). Let us define My the mazimal operator along

{(r,é(r)) : 7 € RT} by

2k+1
oo —rt—o(r) Y

(1.6) Myg(z,t) = sup
2k T

keZ

forz € Randt € R. Then Tk 4 given by (1.1) is bounded on LP(R"*1)
for 1 < p < oo, provided that My is a bounded operator in LP(R?) for
all 1 < p < oo.

We note that the LP boundedness of V, in (1.3) is equivalent to the
estimate (1.5) for V(;Em) in (1.4) and that if the maximal operator M,
in (1.6) is bounded in LP(R?) for all 1 < p < oo, then the operator V
is bounded in LP(R) for all 1 < p < co. Chen and Fan showed that
if ¢ : [0,00) — R is C?, convex and increasing, then Vj is a bounded
operator in LP(R) for all 1 < p < co. For more details on Tk ¢, we
refer the readers to [18], where Pan gave a survey of some recent results
concerning this topic and also stated some open problems.

So far we have briefly recalled some well-known results for the clas-
sical Calderén-Zygmund singular integral operator Tk and the related
operator Tk ¢ associated to the surface of revolution. Now it is natu-
ral to ask the following question whether the results on Tk 4 may be
extended to more general surfaces than just the surfaces of revolution:
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Question. Let ¢ satisfy (1.2), and let ¢ be a smooth convex function
on R™, which is homogeneous of degree 1 and of finite type with

B(0) = Vo(0) = 0. Let d(y) = (5, d((y)) for y € R”. For a
suitable Q € L*(S"1), define

Ticoof(@,0) = Ticaf(e.t) = po. | fle 9.t = oW (0) K () dy.

Then, does Tk 44 extend to a bounded operator on LP(R"*1) for
1 < p < oo, if Q satisfies the hypotheses in Theorems A, B, C and
D, respectively?

The first step in answering this question was taken by Wainger,
Wright and Ziesler [24]. Namely, they obtained the LP estimates for
Tk ¢4, when Q € C>°(S™~1). They also determined precisely for which
convex functions 1 of finite type, Tk 4 is bounded on L? for all C*
functions ¢ with ¢(0) = 0. In this context they introduced the linear
subspaces E; = {v € R™:¢(v) = O(s!*1) for small s > 0}. Clearly,
E. C By C - C Ey = R™ Let lp be the smallest [ such that
E; # R". They showed that the L?-boundedness holds for all such ¢
if and only if codim Ej, > 2. Specifically for the question stated above,
they showed the following result when E;, = {0}, which is satisfied
by a homogeneous function . Let us denote ¢;,(r) = ¢(r') for any
reRT.

Theorem E [24]. Suppose that Q € C=(S" 1), E,, = {0} and that
b1, is C1 and convex. Let v be a smooth convex function of finite type
with 1(0) = V)(0) = 0. Then

| Tk g fllerriry < Cpllfllrrrtry, 1 <p<oo.

However, this leaves the question open for rough , that is, Q ¢
C°(S™~1). In this paper, we answer this question in the affirmative
when v is a certain homogeneous function. Our approach is mainly
the one which originated in the work of Duoandikoetxea and Rubio de
Francia [10] and was further developed by Fan and Pan [12]. But in our
case some difficulty arises, because the rotation-invariance of a surface
of revolution is not available. We will try to adapt the approach of [12]
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by making the level surface H = {x € R : ¢(x) = 1} play the role of
the sphere and using a sort of polar coordinates adapted to H. Here
the difficulty is that the cancelation hypothesis |, gn-1 y) do(y) = 0is
made for the sphere and not on H. This difficulty may be resolved as
follows.

In order to obtain a similar cancelation condition on H, we replace
the Lebesgue measure by the weighted measure which is related to the
polar coordinates with respect to 1 and use an idea in [24]. Also,
when Q € H'(S"™1), we cannot apply the oscillatory integral estimate
of Fan and Pan [12], which was used to obtain Theorem D. So we
replace their oscillatory integral estimate by an estimate better adapted
to our hypersurface and use these estimates to prove an extension of
Theorem D.

Following [16], we define a more general singular integral operator T,
which is associated to the hypersurfaces of the form {(y, ¢(¢(y))) : y €
R}, as follows:

(L7 Tf(x,t)=po. [ fle—yt =) b (y)K(y)dy

R™

for a bounded function b on [0, 00) and answer the question about 7.

Our main results may be stated as follows. Suppose that ¢ satisfies
the condition (1.2) and that 1) is a homogeneous function of degree one
in R™. Let H be the hypersurface defined by {y € R™ : ¢(y) = 1} with
the induced Lebesgue measure dog. For a fixed point w € H, let u,,
be the outward unit normal to the surface H at w, and let T, be the
affine tangent plane to H at w. Also, following [2] we define the “ball”
B(w,s) by B(w,s) = {y € H : dist (y,T,,) < s} for s > 0.

We will now introduce a definition concerning the function v, which
we will use instead of the usual condition that 1 is a smooth convex
function of finite type. The advantage of this definition is that it allows
some non-smooth and non-finite type examples.

Definition 1.1. Let 1) be a C? convex function on R" with 1(0) = 0
such that the associated surface H = {z : ¢ (z) = 1} is compact. We
will say that 1 is a-conver type if there is a constant a > 0 such that,
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for some small § > 0,

o
1.8 B — .
(1.8) Egg/o on(B(w,s)) g <00

We remark that if ¢ is a smooth convex function of finite type, then
1 is a-convex type for some a > 0. For Q € L9(S"1), we obtain
the following extension of Theorem B by using the method of Fourier
transform estimate in [6] and an observation of Duoandikoetxea and
Rubio de Francia in [10]. In Section 4, we shall establish the following

Theorem 1. Let Q € L4(S™ 1) for some ¢ > 1. Suppose that ¢
satisfies (1.2) and that v is a-convex type for some a > 0, which is
a homogeneous function of degree 1. Then T is a bounded operator in
LP(R™1) for all 1 < p < oo, provided that the mazimal operator Vg,
in (1.3) is bounded on LP(R) for all 1 < p < 0.

By using Theorem 1 and some methods in [1], we obtain the following
extension of Theorem C. This is established in Section 4.

Theorem 2. Let Q € Llog™ L(S™1). Suppose that ¢ satisfies (1.2)
and that v is a homogeneous function of degree 1, which is a-convex
type for some a > 0. Then T is a bounded operator on LP(R"*1) for all

1 < p < o0, provided that the maximal operator Vém) in (1.4) satisfies
(1.5).

Finally, we obtain the following extension of Theorem D, with the
condition Q@ € H(S™ '), by using Theorem 1 and some modified
oscillatory integral estimates for a polynomial phase of degree 1. In
Section 3, we shall establish the following

Theorem 3. Suppose Q € H(S"1). Let ¢ satisfy (1.2) and ¢ be
a smooth convex function of finite type with (0) = V(0) = 0, which
is a homogeneous function of degree 1. If the maximal operator My
defined by (1.6) is bounded on LP(R?) for all 1 < p < oo, then T is
bounded on LP(R™1) for all 1 < p < .
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This paper is organized as follows. In Section 2, we shall state some
important known lemmas which are useful for obtaining our results.
Since the proofs of Theorems 1 and 2 have some similarity to that
of Theorem 3, we shall first prove Theorem 3 in Section 3 in some
detail and only sketch the proof of Theorems 1 and 2 in Section 4.
Some oscillatory integral estimates that are important for our proofs
are shown in Section 5.

Throughout the paper, A < B means that there exists a positive
constant C' such that A < CB. We say that A ~ B if A < B and
B < A

2. Some lemmas. We begin by recalling the definition of the
Hardy space H'(S""!) on S"~!. Let P,, be the Poisson kernel on
S7=1 defined by

1—1r2

P -
|z —ryl?

iy (2)

where r € [0,1) and z, y € S"~ L. For f € L*(S™!), we define

P f(z) = sup
0<r<1

| Pt doty)

where z € S"~1. The Hardy space H'(S"™!) is given by
HY(S" ) ={f e L'(S"") : [P fllprsny < oo}

and || f|| g1 (sn-1) = [|[PT fl|L1(sn-1). See [12, 8] and [7] for the details.

There are two types of H' atoms on the unit sphere.

Definition 2.1. A function a(-) on S"7! is a regular atom if there
exist ¢ € S~ ! and p € (0,2] such that

(i) supp (a) € S"'NB((, p) where B(¢,p) = {y € R™ : |[y—¢| < p}
(i) [Jal| poe (gn-1) < p~"H
(111) fSnfl a‘(y) dU(y) = 0

Definition 2.2. A function a(-) on S"7! is an exceptional atom if
a(-) € L*°(S™ 1) and ||a|| poe (gn-1) < 1.
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And we shall use the following characterization of H'(S"~1) in [7] or
(8]

Lemma 2.3. For any f € H'(S"™!), there are complex numbers c;
and atoms (reqular and exceptional) a; such that

f=> ¢
J
converges in, H*(S™~ 1) norm and || f| g (gn-1) ~ > lel
The following lemmas are the main tools for proving Theorem 3.

Lemma 2.4. Let I,n € N and {ojr : j=1,...,l and k € Z}
be a family of measures on R™ with oo = 0 for every k € Z. Let
a1, aj2>0,neR\{1}, {n;:j=1,... I} CNand L; : R" — R"™
be linear transformations for j = 1,... 1. Suppose

(i) lojl <1 for ke Z and j =1,...,1
(i) [;4(6)] < COPILiEN ™ for €€ R™, ke Z andj=1,... I

i) [64(€) = Gj-1k(€)] < C*ILEN™" for & € R™, k € Z and
ji=1...,1
(iv) For some q > 1, there exists Ay > 0 such that

—

| sup [ okl * f| | arn) < Agll fllza(rm)
ez

forall f € LYR™) and j=1,... L

Then for every p € ((2¢/q+1),(2¢/q — 1)), there exists a constant C,
such that

ZUl,k * f

keZ

< Coll flleerm

LP(R™)
and

1/2
(o)

kez

< Cpllfllze(rm)
Lp(Rn)
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hold for every f € LP(R™). The constant C, is independent of the
linear transformations {L;}}_,.

Lemma 2.5 [11]. Let n,m € N, n € RT\{1}, 61,52 > 0 and
L:R"™ — R™ be a linear transformation. Suppose that {ok}rez is a
sequence of measures on R™ satisfying

(i) llonl| <1 for ke Z
(i) |55 (6)] < Clmin{(y*|L&])*, (y*|LE[)~*}] for £ € R™ and k € Z
(iii) For some g > 1, there exists Aq > 0 such that for all f € LY(R™)

lo* fllparmy = | 21612 okl * fl|Lacrm) < Agll fllnacrm)y

Then for every p € ((2¢/q+1),(2¢/q—1)) there exists a constant
Cp = C(p,n,m,n,01,02) such that

Z(fk*f < CpllfllLe(rm)

kez Lr(R™)

and

1/2
H(Z o *f|2> < Ol Lo

kez Lr(R™)
hold for any f € LP(R™). The constant C), is independent of the linear

transformation L.

In order to handle the truncation in the phase space, we need the
following useful lemma in [12].

Lemma 2.6. For s<d, let P:R* — R® and Q : R? — R4 be two
nonsingular linear transformations and ¢ € S(R®). Let z € R and
r > 0. Define J and X, =X,(¢,Q, P) by

(Jf)(x) = [(Q'(P' @ idga-s)(x))
and

Xof(z) = T (|| ® 6pa-s) * T f) (@)
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where/ Q' is the transpose of Q, dpa-= is the Dirac delta on R~% and
® € S(R?®) satisfies ® =¢. Let X = X (¢,Q, P) be given by

X f(x) =sup | X, f(2)[;
>0

then for 1 < p < oo, there exists a constant C,, = C(p, ¢, s,d) such that

X fllo < Coll fls

for f € LP(RY). The constant C,, is independent of the linear trans-
formations Q and P.

By introducing polar coordinates with respect to v, we get that for
some continuous function h,

X = r —rw — r rw T'n_l w - w , ,
e %://Hf( t = S K (rw)r" ™ h(w) oy (w)b(r) d
dr
_zk:/lk/Hf(ar:—rcu,t—qb(r))K(w)h(w)dgH(w)b(T)7
= onxflat)
k

where z € R", t € R", I, = [2F,2*!] and doy is the measure on H
induced by Lebesgue measure on R™. And

dr
-

T = [ [ exploilt-w o+ ronDK @) dou(e)b0)

To prove our result, we need the mean value zero property on H of K
with the weighted measure hdop, which is similar to the mean value
zero property on S”~! of Q with do.

Lemma 2.7 [24]. Suppose that v is a C? convex function and
Jgno1 Qy) do(y) = 0. Then, for some continuous function h,

/ K(w)h(w)dog(w) = 0.
H
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We shall denote dy = hdoy, LP(H) = LP(H,du). Then we note that
I K| Loy = 92 Lr(sn-1y. By using the preceding lemmas, we shall
prove Theorem 3.

3. Proof of Theorem 3. Since 2 € H'(S"') and [Qdo = 0,
Lemma 2.3 and Lemma 2.7 imply that there are regular atoms as(.) on
S™=1 and {cs} C C such that

K(y) 20y) _ Z €5 (y) = chKs(y) for yeR"

oyt ly|"

S S

where as is homogeneous of degree 0, fH Ky(w)du(w) =0, suppas N
H c{y € H; |ly—ns| < ps} for some n;, € H and ps > 0 and
lasllz(an < py ™1 And

Tf(z,t)= chTsf(x,t) = ZZCSUZ * f(x,t)
s s k

where

Tof(z,t) =pu. | flz—y,t—o(y))) bW (y)Ks(y) dy,

Rn
and

e = [ [ exploilg-w o+ ron KL () du@)br) T

If there is a constant C), that is independent of s such that || T f]|, <
Cyllflly for any p > 1, then [Tfll, < 3, les| 1T fllp < Cp 3, e 1]
~ CpllQ g, (sn-1)l| fllp for all p > 1. So, it is enough to show that
ITsfllp < Cpllfllp for any p > 1 where C,, is independent of s. For
1/4 < ps, ITsfllp < Collfllp for all p > 1 is induced from K is in L™
and Theorem 1 which shall be proven in Section 4. So we assume that
0 < ps < 1/4 for all s.

Since H is of finite type, we may parametrize H in the neighborhood
of ns, B(ns, ps) as

ns + (%,95(2)) for Ze€ B(0,ps) ={& € R"|®] < ps}
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where g5(0) = Vg,(0) = 0 and for some integer a > 2,

S [07g,/92°] # 0.

|la]=a

Let a; be the smallest integer such that Ela\:al |0%gs/0z2%| # 0. By
induction, we can obtain that 2 < a1 < az < --- < a; < cdots < aj—1 <
4ai(n — 1) < a; such that 3, [0%g:/02*| # 0 for all k =2,... 1.
And we have that, for 7 <[ and Z € B(0, ps),

N L1 9%g,(0) . V
gS(Z) — Z a 87 @ S C] Ps aj+1
lol=a1

where C; is independent of s. For a simple notation, let us denote

K,(2) = Ky(ns + (2,95(2)) and di(2) = du(ns + (Z,95())) for
zZ € B(0, ps).

From now on, we will fix s,z € Z and make a family of measures
{ok. jk}j=01... 1 on R"! to prove Theorem 3 by following Lemma 2.4.
For £ = (£1,...6,) = (é &) € R xR and 7 € R, define a family of
measures {Gx. ;k}j—0.1,. 1 on R"™! by

FrohET) = o (E,T)
dr

= [ [ explilrg ey ro . 0) ) )

= /I /|~|< exp{—i[r ns + rf “Z418ngs(Z) + To(r)]}

For j=2,...,1—1,

o) // exp{ ~i[re m+ 1€ 2
I, J12|<ps
dr

prge 30 L PO o )] VR @) bir)

al r

la|=a1
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e = [ f el e 2 4o
k Z|<Ps

x K.(2)dp(z) b(r)
Fanlen) = [ [ el o0 K0

To apply Lemma 2.4, we will check the condition (1)—(iv) for {ok, ;k;
j=0,1,...,land k € Z}.

Condition (i). By Lemma 2.7, we have that for all s,k € Z and
j=1,...,l, 0k, 0k =0and |lox, jxl| <1.

Condition (ii). Since H is of finite type, we have that
[T nk (& 7] < C2Eptm D g, ) 7HE.

For j =1,...,1, we get that

—1/4j
- . 1 |9°g,(0)
k aj — |2 Is\F
0k, k(&) < C | 27[6nlps Z_:,a! dz ’
=201,

and
051k (6 7)< C(25ps| (&, -, &)))

by using the estimates on the oscillatory integral related to the hyper-
surface H, which is proven in Section 5.

Proposition 3.1. Let F,,,(2) = Z\a\gm bo 2% for Z € R"L. Suppose
| K|l () < p~ ! and supp K C B(0,p) = {§ € R" ;]3| < p}.
Then there exists a constant C such that

2k+1

J.

dr

/ iy exp{—i 7 Fm (%)} Ko (2) dfi(2)

—1/4m
< Cf2kpm b /
<C(2™ > |bal :

lee|=m



ROUGH SINGULAR INTEGRALS 523

The constant C may depend on m and the dimension n, but it is

independent of k, p and {ba }a|<m-

Now let us denote

ot 1
G1(§7T):p8§:ps(§l>“‘ 767171)7 ™ = Z
— a5 ]‘ aagS(O) _ ]. .
Gj(é,T)psé‘nlE_a 2| M= 2sisi-ld
_ 4a1(n—1) _ 1
Gl(faT) = Ps n, ™= Z

Then we have that, for 1 <j < N, ke Z, (£ € R" and 7 € R,

(3.9) |55, (&, 7)| < C 127Gy (€, 7)1 7™
where the constant C' is independent of j and s.

Condition (iii). If j = I, Lemma 2.7 implies that

oK. 1k — Ok i—1k(&T)]
T 1 00,0)
< / / 1 —expy—iré,|gs(Z) — <_ fa 2@)
I 1 J)z1<p, { [ az—;l al 0z }}
dr

x Ro(2) dp(2)] b(r)
<02 |6ulps® < C 27 [g,pt T = O 2FGi(€, 7).

For j=2,...,1—1,

0K, Gk — 0K =116 7))
. 1 0%gs(0) .
g/ / 1—expq—iré&, <— o= z
I ‘2‘<Ps { azaj Oé' 62 }
~ dr

a; 1
<C2alps Y

lee|=a;

0%gs(0
20|~ Gy el
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And

—_—

oK. 1k — 0K.0k(&T)]

T S N gern dr
< /Ik /2|<ps [1 —exp{—irf  z} |Ks(2)| di(2) b(r) —

r
< C2%¢lps = C [2Ga(€, 7).

So we have that, for j =1,... [,

(3.10) |0 e e — Ok g—1k (& 7)| < C[28G5(¢,7)]

Condition (iv). To verify the estimate (iv) in Lemma 2.4, it suffices
to establish the LP boundedness of the operators UI*KSI j defined by

UrKsl,jf(x’t) = 2ug |(01k, 1,5,k * )2, t)] for j=0,...,1L
€

When j = 0, the assumption of My, and the change of variable derive

that
* p dr p
lofre. 0l = sup [ f(x—rns,t—¢(r) —| dtde
reJrR| & JI, r

< Cpll(idnr @ M) fII; < Coll FI15-

First, we consider the case j = 1,

J\*Ks\,lf(xvt) = Zug (o5, 1.8 % (@, 2)]-
€

Choose ¢ € C§° such that ¢(¢t) = 1 for |t| < 1/2 and ({(¢t) = 0 for
[t| > 1. For k € Z, we denote another measure vy by

lj;c (ga 7_) = C(ZkGl(ga T))Jmk (fa T)

for £ € R" and 7 € R. Let 7 = ok 1,6 — Vk-
Then by (3.10), (3.9) and |o]x_| 0.k < ¢, we have

|75 (& 7)| < lojr, 1k (€ 7) = o ok (7))
+ ‘1 - <(2kG1(§7T))| ‘Umk (677—)‘
S 25Ga(€ 7)),
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and
170 S lofrn (6T +1C25 s (Grs o Enm))] S 125G (6, )™
So, we have that
(3.11) |7 (€, 7)) S min {[2°G1 (€, 7)|, 125G (€, ) 7™ .
Define that

T (£)(wt) = sup (7] * f) (. 1)]

v (Nl t) = sup|(jvs] * f)(z1)] - and

1/2
o () t) = {Zm " f)(x,t)]Q} .

k

Then

(3.12) ok 1)@ t) S g-(f)z,t) + v (f)(z,1)

siy D@D S i@ v
S g-r(f)(xv t) + 2V*(f)($7t)

By the LP(R?) boundedness of My, Lemma 2.6 and its remark, we have

[V (Lo ro+ry S Mok, 0f Lo (rnt1)
S (idn—1 ® M) f || Lo (rnt1)
S I fllze ety

Also from (3.11),

lgr ()l 2 rrery S N fllL2rnry-

Thus (3.13) implies that

I7*(F)ll2rrtry S I fllL2 gty
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By invoking Lemma 2.5, we obtain
g (P)llerrtry S fllerntry for 4/3 <p<d.
Thus by (3.13) again, we obtain
(3.14) 17 (I lze(rasry S llpo(rnery for 4/3 <p <4
By using (3.13), (3.14), and a bootstrap argument, we obtain
g7 (F)lLrrr+ty SN fllr(gr+1y forany 1 <p<oo.

Now from (3.12),

o7, 11 (Lo resry S fllLo(rn+ry forany 1<p<oo.
By the same process as in the case j = 1, we get that
(3.15) o1k, 1, (e rrrry < Cpll fllerntr)

for 1 < j < N, where C,, is independent of s. Now by (3.9), (3.10),
(3.15) and Lemma 2.4, we have

D okt f

keZ
for 1<p<oo

| Ts fllLr(rrtry = < Cpllfllze(mmr

Lp(Rn+1)

where the constant C' is independent of s. This completes the proof of
Theorem 3. ]

4. Proof of Theorems 1 and 2.

Proof of Theorem 1. The case 2 € L4(S"'). Given a finite
measure g in R"! define another measure p® in R™ as follows:
p’(E) = u(E x R) for every Borel subset E of R" in terms of Fourier
transforms; this means /./LB(E) = [(§,0) for all £ € R™. To obtain
Theorem 1, we need the following lemmas in [10].
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Lemma 4.1 [10]. Suppose that the probability measures {vy}72
in R satisfy that

(1) [Pk(&5) = D(0,8)] < CJ25¢]*, [Dr(€, 5)| < C[27¢|~* for some
a >0 and

(ii) MOg(t) = supy |V * g(t)| is a bounded operator in LP(R) for all
p>1.
Then M f(x,t) = supy vk * f(z,t)| is also bounded in LP(R™*1) for
any p > 1.

— 00

Lemma 4.2 [10]. Suppose that the measures {o}}3 _ . satisfy that
(i) lokll €1, 6(0,8) =0 for all s € R,

(ii) |Gk (&, s)| < Cmin{|2%¢], [2¢| 71} for some a > 0 and

(iii) ogg = supy, ||oP] * g| is bounded in LY(R) and

(iv) o*f = supy |lox| * f| is bounded in LI(R"H1), for some 1 <
g < o0.

—0o0

Then the operators

oo

Tf(z,t) = Z ok * f(z,t) and T**f(x,t):sip

k=—o0

Zaj*f(x,t)‘

P>k
are bounded in LP(R™*Y) for any p € ((2¢/q + 1), (2¢/q — 1)).

Suppose that Q € LI(S"~!) for some ¢ > 1 and V is a bounded
operator in LP?(R) for any 1 < p < co. Let ¢ satisfy (1.2) and 9 be
a a-convez type for some a > 0, which is a homogeneous function of
degree 1. We have that

Tf(z,t)= ZU"? * f(x,t)

k
dr
-2 /z /H Flar = et = () K () diu(w) gb(r) =

Now let us begin to prove Theorem 1 by applying Lemma 4.2 to
{ok}rez. By the cancelation property of K in H (Lemma 2.7), we
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get that 05(0,s) = 0 and
_ —iréw dr
el < [ [l K@)l du) T
I* JH r
S 2% K| oy S 127€)

It follows from the method in [10, p. 553] that

FH(E )| < /

Ik

<\/
<| /.

_| JI [ e trere) du(W)du(t?)] 1/2.
LH x H

Let I(&,w—0) = [, e” "¢~ dr/r. By Van der Corput’s lemma, we
know that

dr

1/2
er/
r

/ e K (w)dp(w)
H

/ e K (w)dp(w)
H

[1(¢,w = 0)| < Cmin{1, [2%¢ - (w — 0)[ "}
For any 0 < a < 1,
1(&,w—0)] S [2°¢ 7€’ - (w - 0) 7,
where &' = £/|¢|. Then we get by Holder inequality
7% (£, 5)|

_ 1/2
< (2Fjg)=/? / é“'-(w—9)|_“K(w)K(9)du(W)du(9)]

LH x H

1/2¢
< (28¢) 2 / 6’-(w—9)laq'du(w)du(9)] 1K | Lo (m)-
LH x H

Let us consider the following integral

J[ 1601 u " don(6) doute)

HxH
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for some a > 0 and for all unit vectors u, where doy is the Lebesque
measure on H. Recall the definitions. For a fixed w € H, let u, be
the outward unit normal to the surface H at w, and let T, be the affine
tangent plane to H at w. Define B(w,s) = {y € H : dist (y,T.,) < s}
for any s > 0. We investigate the following integral

/ [(0 —w)-ul " *dog(0) = /OOUH{Q eEH:|(0—w) ul~*>t}dt
H 0

ds
:/0 ou{0 € H |0 —w)-ul < 5}

Here it suffices that we consider the last integral near 0. Since 1 is
convex, we have the following inequality, for a sufficiently small §,

{6 e H (0 ds
OUH{ € H:|( —w)~u\<s}slm

J ds
g/ o8 € H: 10— w) ual < 5} o
0

6
~ ds
2/0 UH(B(W,S))E
5
~ ds
< su og(Blw,s)) =— < 1

since v satisfies the condition (1.8). So we have proven the uniform
estimate for any unit vector u

// (0 —w) - ul™" dog (0) dog(w) S 1.

HxH

Since h is continuous and H is compact, we have

Jf10=w)-¢17 dute) aute)

HxH

= / / (0 —w) - €179 1(B) dogr (0)h(w) dop (w)

HxH

< In2, // (0 —w) - €77 dog(0) do(w) < C for aq = a.

HxH
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So
(4.16) % (€, 8)| < C[2ke| /2

for @ € LI(S™" ') where ¢ > 1 and a¢’ = a. This proves the
condition (ii) in Lemma 4.2. Then we can obtain the conditions (i)—(ii)
of {|ok|}kez in Lemma 4.1 and the conditions (iii)—(iv) of {o}rez
in Lemma 4.2 by similar methods with those of Section 3. Thus
Lemma 4.2 completes the proof of Theorem 1. i

Proof of Theorem 2. The case Q € Llog™ L(S™1). For Q €
Llogt L(S™ '), we begin with an appropriate decomposition of
which is described in [1]. Let A,, = {y € R" : 2™ < |Q(y)| < 2m*1}
for m € N and A(Q) = {m € N : 0(A,;,) > 274"} where o is the
normalized Lebesque measure on S"~ 1. For each m € A(f), let

Am = ||Q||£11(Amﬂ5”*1) |:QXAm _[4 Qd0:| .

Then the following hold for all m in A(Q):
(i) [gn-1 am do = 0;
(i) lam|lLr(sn-1) < 25
(i) |21y < 2742,
In addition, we have the following decomposition

Q = QO + Z HQHLl(AmmSn—l)am
meA()

where Qp € L?(S"~!) and satisfies

/ QO do = 0.
Sn—1

Clearly, Qo and a,, are homogeneous of degree 0 for all m € A(9Q).
This induces the following decomposition of T',

T=To+ Y 9l a,nsm)Tm
meA(Q)
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where
Tof(at)=po. | flz—yt— () 2 gy
Rn Yy |
and
T, f(2.t) = po. @—%t—m¢@m“f%%m
R™ Yy |

for any m € A(Q) and (z,t) € R™ x R. See [1] for the details. Since
Qo € L3(S" 1), we know that [Ty f]l, < Cp|lfllp for all 1 < p < oo
by Theorem 1. If we can show that ||T,,f|, < C,m]| f|, for each
m € A(Q) and all 1 < p < 0o, then

1Ty <Co 1+ > mlQluannse)| 17l
meA(Q)

< Cp L+ 1192 Lrog+ pesn—)] 1 lp-

To prove Theorem 2, it suffices to show that || T, f||, < Cp,m | f]|, for

each m € A(Q) and all 1 < p < co. Let us fix m € A(Q2). We shall
then proceed to further decompose T, as T}, = Zkez T i, that is,

om(k+1)
i _ . 1 am(y) @
mmmééw [ = vt = otet) S ) §
= Z optx fx,t) = Z T i f (2, 8).
keZ kez

By invoking Lemma 2.7, we know that a.,, satisfies the cancelation
property on H with du, i.e.,

(4.17) / Wn¥) 1) = 0.

|y|™

From now on, we shall follow the proof of Theorem 1. And so we need
the following lemma in [1] modified from Lemma 2.5.

Lemma 4.3. Let s,d € N, n > 2, 6,00 > 0, B > 0 and
L : R®* — R? be a linear transformation. Suppose that {o}}rez is
a sequence of measures on R satisfying
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(i) llokll S B for ke Z
(ii) [6(6)] < Blmin{(n*|Lg])*, (n*|Lg])*2}] for £ €R® and k € Z
(iii) For some q > 1, there exists Aq > 0 such that

lo" fllacney = I sup Vol flllzocre S Bl fllvacrm

Then, for every p € ((2q/q+1),(2q/q—1)), there exists a constant
OP = C(p’ S, da n, 617 52) SuCh that

Zak*f

keZ

(S ey

kez

< Cp Bllfllor(re
Lr(R4)

< Cp BllfllLr(re
Lr(R4)

hold for any f € LP(RY). The constant C,, is independent of B and
the linear transformation L.

So we apply Lemma 4.3 to o}* for a fixed m € A(Q). Firstly, we
shall estimate {\:;,’:”(f,s)\ : k € Z} for (§,s) € R*" x R. By the
equations (4.17), we get that

om(k+1)

(&, 5)] < /

omk

< m2"M €D lamllzr(sn-1)

. . d
/ je=itrew _qlam®)] (g)l dpu(y) =
H |y r

By the same argument as the equation (4.16), we have that |0/}C\"(f, DIBS
(2™F[€]) = || am || p2(gn-1) for some ay > 0. Interpolating with |(;£\1(§, s)| <
M [|@p || 1 (sn-1), We obtain that

o7 (€, )| S m (27F[€])~/™  for some > 0.

So we prove this estimate

(4.18) |07 (€, )] S min [m (27F1E)/ ™, m (27 (¢)) /™)
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In order to apply Lemma 4.3, we must show LP-boundedness of (o™)*
given by

(@) (f)(@,t) = sup | |og’| = f(z,t)] for (x,t) € R" xR.
keZ
Since the proof is similar with those of Ul*KM in Theorem 3, we shall
give a quick proof. Fix m € A(Q) and choose ¢ € C§° such that
¢(t) =1 for |t| < 1/2 and ((t) = 0 for |t| > 1. For k € Z, we denote
other measures v;* and 7" by

vt = (o) ¢ (Gemr ® 0g) and 7" = |of| — v

—

where (U,’C”)O(é, s) = U/}C’\’(O, s) for any £ € R™ and s € R. Here we note
that

o) Il Sm and  [[ofr|(€, 5)] S m(27*|e])/™.

In addition, by (4.18), we have

T (&) < Lo l(€ )| + (o)l )12 e)]
< m(2mkfel)—o/m

77 (&, )] < (o] — 10D, )] + [ 1{o7)01(E, 9)] 11 - C2m*e)|
< m(27* g,

So, we have that
(419) 7 (E )| S min{m(2"FIE) 7 m(2mRIE) ™).
Define that

T (f) = sup ("] + ),

Vi (£) = sup (i + f)],

o) = { S+ f)]Q}l/Q.

k

Then

(4.20) (@) () < 9-(F) +vin(f), 70 (f) S 9-(F) + 203, (f)
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By the assumption of V}"*, Lemma 2.6 and its remark for 1 < p < oo,
we have

I ()l % || sup (@R = DI < 6dme © VE)Fllp < Cpmll 1

for any 1 < p < oo where C), is independent of m. Also from (4.19) and
(4.20) llg=(H)ll2 < 112 and (|77, (f)ll2 < I f]l2- And Lemma 4.3 implies

lg=(Dllp SIfllp and[[(@™)lp S [fllp forany 1 <p<oo

by using (4.20) and the bootstrap argument. Additionally, by the equa-
tions (4.18) and Lemma 4.3, we have that |1, f|l, = || >, o' fllp <
Cpom || f]lp for all 1 < p < oo where C), is independent of m. Therefore,
ITfllp < Cpllfllp forall 1 <p <oo. @

5. Estimate of oscillatory integral on H. Let us introduce the
following lemma.

Lemma 5.1 [19]. If P(y) = Z\a|§m aay®™ is a polynomial of degree
m in R™ and € < 1/m, then

[ oz a3 ool )

lal<m

The constant A. may depend on &, m and the dimension n, but it is
independent of the coefficients {aq}-

Define the operator S,, = Sk, by

S (r) = 6(r/2") / exp{—irFn(2)} 6(|2/) f(2) dii(2)

R?L*l
where ¢ € C§°(R), ¢(r) = 1 for |r| < 1/2 and ¢(r) = 0 for |r| > 1.
Then

5% S f (i) = / Lo (5.)/(2) dii(2)

R
where

Lin(5,2) = 2"6(12/pl)o (13/p])
X / exp{—i 28 (F, () — E(2)} [o(r))? dr.
R
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By using Van der Corput’s lemma, we get

L (5, 2)] S 28|0(12/p)@ (5/0])] [28(Fun(5) — Fun(2))]

Since |Lun (5 2)| S 25[6(12/p)é (13/p])], we get

1L (5. 2)] £ 250012/ (13/0)| (25 (Fin (@) — Fun(2))] 7/

It follows from Lemma 5.1 that

swp [ L5913

zeRn—1

< hlls sup / 19" Lm0, 03)|
zerr—1 Jpn—1

n— ~ ~\\1—1/2m .
s sw [ 2 A Bt~ Fulp)]
zZ|<1

ZER"1

—1/2m
< 2Fpr! {2’%’” > |bo¢|:|

le|=m

and similarly

—1/2m
sw [ L) £ 2 |2 Y el
geRn—l Rn—1

lal=m

Hence

1S

—1/4m
122 < 1S5S [12 < 25/2(n-1/2 [2%7” 3 ba] .

lee|=m

By interpolation with ||Sy,[l1,00 < C, we get

1Smllpr S 2007 pln=1/2" [2%’" S bl

lo|=m

—1/(2mp")
} for1<p<2.

535
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Now we can estimate the given oscillatory integral by the Holder
inequality and the result above.

J.

dr
r

[ erOR G )
[Z]<p

(/ / e TP K (2) dju(3)
I [Z]<p

2_k/p ||Sm||p,p’||KHLP(H)

—1/(2mp")
o /¥ kol pn=1)/p <2kpm 3 Ibal) 1/

lee|=m

. —1/(2mp’)
(257 3 ol

|a]=m

IN

P’ dr l/p/
?)

A

A

12

So, choosing p’ = 2 completes the proof of Proposition 3.1.
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