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A FOURTH-ORDER FOUR-POINT
RIGHT FOCAL BOUNDARY VALUE PROBLEM

DOUGLAS R. ANDERSON AND RICHARD I. AVERY

ABSTRACT. We are concerned with the unit interval right
focal boundary value problem −x(4)(t) = f(x(t)), x(0) =
x′(q) = x′′(r) = x′′′(1) = 0. Under various assumptions on f
and the real numbers 0 < q < r < 1 we prove the existence of
positive solutions for this boundary value problem by applying
a generalization of the Leggett-Williams fixed point theorem,
the Five Functionals Fixed-Point Theorem.

1. Introduction. The literature on positive solutions to boundary
value problems is extensive. The recent book by Agarwal, Wong and
O’Regan [2] gives a good overview for much of the work which has
been done and the methods used. More specifically the monograph
by Agarwal [1] gives a thorough discussion of previously known results
related to right focal boundary value problems. Anderson [3] extended
these known results by finding and giving conditions for the positivity of
the Green’s function for an n-point right focal boundary value problem.
We will use these results in conjunction with the Five Functionals
Fixed Point theorem [8] to give sufficient conditions for the existence
of three positive solutions to a fourth-order four-point right focal
boundary value problem. This theorem has been used successfully
on similar third-order three-point right focal problems [4 7], and on
certain second-order boundary value problems [9, 10, 13].

2. Preliminaries. We are concerned with the existence of three
positive solutions to the fourth-order boundary value problem:

−x(4)(t) = f(x(t)) for all t ∈ [0, 1](1)
x(0) = x′(q) = x′′(r) = x′′′(1) = 0,(2)

where f : R → R is continuous and f(x) ≥ 0 for x ≥ 0. Here

0 < q < r < 1;
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further conditions on the distances between boundary points will be
imposed later in the paper. A solution of (1), (2) is nonnegative on
[0, 1], nondecreasing on [0, q], and nonincreasing on [q, 1].

In this paper we will assume the reader has an understanding of
Green’s functions and their applications. For the remainder of this
section we will state the generalization of the Leggett-Williams fixed
point theorem [8], which will be used to prove our main result, and
provide some background results and definitions. For more on the
Leggett-Williams and other fixed point theorems, see [11, 12, 14].

Definition 1. Let E be a real Banach space. A nonempty closed
convex set P ⊂ E is called a cone if it satisfies the following two
conditions:

(i) x ∈ P, λ ≥ 0 implies λx ∈ P ;

(ii) x ∈ P, −x ∈ P implies x = 0.

Every cone P ⊂ E induces an ordering in E given by

x ≤ y if and only if y − x ∈ P.

Definition 2. An operator is called completely continuous if it is
continuous and maps bounded sets into precompact sets.

Definition 3. A map α is said to be a nonnegative continuous
concave functional on a cone P of a real Banach space E if

α : P −→ [0,∞)

is continuous and

α(tx+ (1 − t)y) ≥ tα(x) + (1 − t)α(y)

for all x, y ∈ P and t ∈ [0, 1]. Similarly we say the map β is a
nonnegative continuous convex functional on a cone P of a real Banach
space E if

β : P −→ [0,∞)
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is continuous and

β(tx+ (1 − t)y) ≤ tβ(x) + (1 − t)β(y)

for all x, y ∈ P and t ∈ [0, 1].

Let γ, β, θ be nonnegative continuous convex functionals on P and
α, ψ be nonnegative continuous concave functionals on P ; then for
nonnegative real numbers h, a, b, d and c we define the following convex
sets:

P (γ, c) = {x ∈ P : γ(x) < c},
P (γ, α, a, c) = {x ∈ P : a ≤ α(x), γ(x) ≤ c},
Q(γ, β, d, c) = {x ∈ P : β(x) ≤ d, γ(x) ≤ c},

P (γ, θ, α, a, b, c) = {x ∈ P : a ≤ α(x), θ(x) ≤ b, γ(x) ≤ c},
and

Q(γ, β, ψ, h, d, c) = {x ∈ P : h ≤ ψ(x), β(x) ≤ d, γ(x) ≤ c}.

The following fixed point theorem is a generalization of the Leggett-
Williams fixed point theorem due to Avery [8].

Theorem 1. Let P be a cone in a real Banach space E, c and M
positive numbers, α and ψ nonnegative continuous concave functionals
on P , and γ, β and θ nonnegative continuous convex functionals on P
with

α(x) ≤ β(x) and ‖x‖ ≤Mγ(x)

for all x ∈ P (γ, c). Suppose

A : P (γ, c) −→ P (γ, c)

is completely continuous and there exists nonnegative numbers h, d, a, b
with 0 < d < a such that:

(i) {x ∈ P (γ, θ, α, a, b, c) : α(x) > a} 	= ∅ and α(Ax) > a
for x ∈ P (γ, θ, α, a, b, c);

(ii) {x ∈ Q(γ, β, ψ, h, d, c) : β(x) < d} 	= ∅ and β(Ax) < d
for x ∈ Q(γ, β, ψ, h, d, c);
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(iii) α(Ax) > a for x ∈ P (γ, α, a, c) with θ(Ax) > b;

(iv) β(Ax) < d for x ∈ Q(γ, β, d, c) with ψ(Ax) < h.

Then A has at least three fixed points x1, x2, x3 ∈ P (γ, c) such that

β(x1) < d, a < α(x2), and d < β(x3) with α(x3) < a.

3. Introduction to the (4, 4) BVP. We are concerned with proving
the existence of three positive solutions of the fourth-order nonlinear
right focal boundary value problem (1), (2), where f : R → R is
continuous and f(x) ≥ 0 for x ≥ 0. The solutions of (1), (2) are the
fixed points of the operator A defined by

Ax(t) =
∫ 1

0

G(t, s)f(x(s)) ds.

Here G(t, s), the Green’s function for the related homogeneous equation

−x(4)(t) = 0

satisfying boundary conditions (2), is given [3] by

(3) G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ∈ [0, q] :

⎧⎨
⎩
u1(t, s) : t ≤ s

u1(t, s) − 1
6

(t− s)3 : t ≥ s

s ∈ [q, r] :

⎧⎨
⎩
u2(t, s) : t ≤ s

u2(t, s) − 1
6

(t− s)3 : t ≥ s,

s ∈ [r, 1] :

⎧⎨
⎩
u3(t, s) : t ≤ s

u3(t, s) − 1
6

(t− s)3 : t ≥ s,

where

ui(t, s) = −

∣∣∣∣∣∣∣
0 t (1/2)t2 (1/6)t3

(1/2)(q − s)2U(1 − i) 1 q (1/2)q2

(r − s)U(2 − i) 0 1 r
1 0 0 1

∣∣∣∣∣∣∣
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for i = 1, 2, 3, and the function U is the unit step function

U(k) =
{

0 : k < 0
1 : k ≥ 0.

The physical motivation for the fourth-order, four-point problem is
a uniform cantilever beam with free vibration such that the left end is
clamped and the right end is free with vanishing bending moment and
shearing force, see Meirovitch [15]. That problem is formulated as

(4) W (4)(x) = f(W (x)) for all x ∈ [0, 1]

(5) W (0) = W ′(0) = W ′′(1) = W ′′′(1) = 0.

In taking the limit in boundary conditions (2) as q → 0 and r → 1,
we arrive at (5). Likewise the middle pair of functions in the Green’s
function (3) for (1), (2) approaches the Green’s function for (4), (5), if
we adjust for the negative sign in (1) that is absent in (4).

Lemma 1. For all t ∈ (0, 1] and all s ∈ (0, 1],

(6) G(q, s) ≥ G(t, s) > 0

if 1 − q < min{q, 2(r − q)}, i.e., 1/2 < q < 1/2 + q/2 < r < 1.

Proof. From [3] we have that if q ≥ 1 − q, G(t, s) > 0 for t ∈ (0, 1],
s ∈ (0, 1]. In the rest of the discussion, we will refer to the derivative
of G with respect to t for fixed s; it is given by
(7)

d

dt
G(t, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ∈ [0, q] :

{ 1
2

(t− s)2 : t < s

0 : t ≥ s

s ∈ [q, r] :

⎧⎪⎨
⎪⎩

1
2

(q − t)(2s− t− q) : t < s

−1
2

(s− q)2 : t ≥ s,

s ∈ [r, 1] :

⎧⎪⎨
⎪⎩

1
2

(t− q)(t− 2r + q)

1
2

(t− q)(t− 2r + q) − 1
2

(t− s)2.
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Fix s ∈ [0, q]. Then G(0, s) = 0 by the first boundary condition and
(d/dt)G(t, s) as noted above is such that G is monotone increasing on
[0, s) and constant on [s, 1]. In particular, G(s, s) = G(q, s) ≥ G(t, s)
for all t ∈ [0, 1].

Now choose s ∈ [q, r]. Again we have G(0, s) = 0 and (d/dt)G(t, s) >
0 on [0, q); the second boundary condition yields (d/dt)G(q, s) = 0. For
t ∈ [q, 1], (7) shows that (d/dt)G(t, s) ≤ 0. Consequently, G(q, s) ≥
G(t, s).

Finally, suppose s ∈ [r, 1]. As in the previous two cases, G(0, s) = 0
and (d/dt)G(t, s) ≥ 0 for t ∈ [0, q]. Using (7), (d/dt)G(t, s) ≤ 0 for
t ∈ [q, 1] if 1 ≤ 2r − q.

Remark. In light of the previous lemma, throughout this paper we
assume that the boundary points satisfy

(8)
1
2
< q <

1 + q

2
< r < 1.

Lemma 2. Pick a real number h ∈ [0, 1 − q]. Then

G(q − h, s) ≤ G(q + h, s)

for all s ∈ [0, 1].

Proof. We proceed by cases based on the branches of the Green’s
function (3), and a computer algebra system.

(i) s ∈ [0, q − h]:

G(q + h, s) −G(q − h, s) =
[
u1(q + h, s) − 1

6
(q + h− s)3

]

−
[
u1(q − h, s) − 1

6
(q − h− s)3

]
= 0.

(ii) s ∈ [q − h, q]:

G(q + h, s) −G(q − h, s) = u1(q + h, s) − 1
6

(q + h− s)3 − u1(q − h, s)

=
1
6

(s+ h− q)3 ≥ 0.
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(iii) s ∈ [q, r], s ≤ q + h:

G(q + h, s) −G(q − h, s) = u2(q + h, s) − 1
6

(q + h− s)3 − u2(q − h, s)

=
1
6

[2h3 − (q + h− s)3] ≥ 0

since s ≥ q implies h3 ≥ (q + h− s)3.

(iv) s ∈ [q + h, r]:

G(q + h, s) −G(q − h, s) = u2(q + h, s) − u2(q − h, s)

=
1
3
h3 ≥ 0.

(v) s ∈ [r, 1], s ≥ q + h:

G(q + h, s) −G(q − h, s) = u3(q + h, s) − u3(q − h, s)

=
1
3
h3 ≥ 0.

(vi) s ∈ [r, q + h]:

G(q + h, s) −G(q − h, s) = u3(q + h, s) − 1
6

(q + h− s)3 − u3(q − h, s)

=
1
6

[2h3 − (q + h− s)3] ≥ 0.

4. Inequalities and equalities needed in the existence theo-
rems. Define the Banach space E by

E = {x |x ∈ C[0, 1], x(0) = 0}

with the supnorm, and define the cone P of E by

P =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
x ∈ E

∣∣∣∣∣∣∣∣∣

x is nondecreasing on [0, q], nonincreasing on [q, 1];
x is nonnegative valued on [0, 1];
x(q + h) ≥ x(q − h) and x(q + h) ≥ m2‖x‖
for all h ∈ [0, 1 − q].

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
,
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where m2 is given in (9) below.

For integers h, k1, k2 with

0 ≤ h ≤ 1 − q

and
0 < k1 ≤ k2 < 1 − q,

define the concave functionals on the cone P

α(x) := min
t∈[q−k2,q−k1]∪[q+k1,q+k2]

x(t) = x(q − k2)

and

ψ(x) := min
t∈[q−h,q+h]

x(t) = x(q − h),

and the convex functionals on the cone P

β(x) := max
t∈[q−h,q+h]

x(t) = x(q),

γ(x) := max
t∈[0,q−h]∪[q+h,1]

x(t) = x(q + h),

and

θ(x) := max
t∈[q−k2,q−k1]∪[q+k1,q+k2]

x(t) = x(q + k1).

We will make use of various properties and constants associated with
the Green’s function (3), which include the values

C1 :=
∫ 1

0

G(q + h, s) ds

=
1
24

[3q4−h4+4h3(1−q)+ 2q2(6r−3r2−4q)+ 6h2(r−q)(r+q−2)],

C2 :=
∫ q−h

0

G(q, s) ds =
1
24

(q − h)4,

C3 :=
∫ 1

q+h

G(q, s) ds
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=

⎧⎪⎨
⎪⎩

1
12
q2[(r−q−h)(3r + 3h−q) + 2(1−r)(3r−2q)] : q + h ≤ r

1
6
q2(3r − 2q)(1 − q − h) : q + h ≥ r,

C4 :=
∫ q+h

q−h

G(q, s) ds

=

⎧⎪⎨
⎪⎩

1
24

(8hq3 + 4h3q − h4) : q + h ≤ r

1
24

[2q2(6hr − 4hq − 3(r−q)2) + q4− (q−h)4] : q + h ≥ r,

C5 :=
∫ q−k1

q−k2

G(q − k2, s) ds+
∫ q+k2

q+k1

G(q − k2, s) ds

and the constants

M := max
0≤s≤1

G(q, s)
G(q − h, s)

=
q2(3r − 2q)

(2q − 1)(3r + q2 − 4q + 1)

m1 := min
0≤s≤1

G(q − k2, s)
G(q + k1, s)

m2 := min
0≤s≤1

G(q + h, s)
G(q, s)

=
r3 − 3(r − q)2

q2(3r − 2q)

for all h ∈ [0, 1 − q] and 0 < k1 ≤ k2 < 1 − q.

5. Theorem on the existence of three positive solutions. In
this section we state and prove a theorem on the existence of three
positive solutions to the BVP (1), (2). By a positive solution of the
BVP (1), (2) we mean a solution which is in the cone defined in the
proof of the following theorem.

Theorem 2. Suppose a, b, and c are nonnegative real numbers with
0 < a < b < b/m1 ≤ c such that nonnegative continuous f satisfies the
following conditions:

(i) f(x) < (a− (c(C2 + C3))/(C1))/C4 for all x ∈ [a/M, a],

(ii) f(x) > b/C5 for x ∈ [b, (b/m1)],

(iii) f(x) ≤ (c/C1) for x ∈ [0, (c/m2)].
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Then, the (4, 4) boundary value problem (1), (2) has three positive
solutions, x1, x2, x3 ∈ P (γ, c).

Proof. Define the completely continuous operator A by

Ax(t) =
∫ 1

0

G(t, s)f(x(s)) ds.

We seek fixed points of A which satisfy the conclusion of the theorem.
We note first, if x ∈ P , then from properties of G(t, s):

Ax(t) ≥ 0,

d

dt
Ax(t) ≥ 0 for t ∈ [0, q],

d

dt
Ax(t) ≤ 0 for t ∈ [q, 1],

Ax(q − h) ≤ Ax(q + h) for h ∈ [0, 1 − q],
and

Ax(q + h) ≥ m2Ax(q) = m2‖Ax‖.
Consequently, Ax ∈ P , that is, A : P → P .

Note that for all x ∈ P ,

α(x) = x(q − k2) ≤ x(q) = β(x)

and
‖x‖ ≤ 1

m2
x(q + h) =

1
m2

γ(x).

If x∈P (γ, c), then ‖x‖ ≤ 1/m2 γ(x) ≤ c/m2, and by assumption (iii)
we have

γ(Ax) = max
t∈[0,q−h]∪[q+h,1]

∫ 1

0

G(t, s)f(x(s)) ds

=
∫ 1

0

G(q + h, s)f(x(s)) ds

≤
(
c

C1

)∫ 1

0

G(q + h, s) ds

= c.
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Therefore,

A : P (γ, c) −→ P (γ, c).

Let

xP (t) ≡ b

2

(
1 +

1
m1

)
and xQ(t) ≡ a

2

(
1 +

1
M

)

for all t ∈ [0, 1]. It is clear that

xP ∈
{
x ∈ P

(
γ, θ, α, b,

b

m1
, c

)
: α(x) > b

}
	= ∅

and

xQ ∈
{
x ∈ Q

(
γ, β, ψ,

a

M
, a, c

)
: β(x) < a

}
	= ∅.

In the following claims we verify the remaining conditions of the
generalized Leggett-Williams fixed point theorem.

Claim 1. If x ∈ Q(γ, β, a, c) with ψ(Ax) < a/M , then β(Ax) < a.

β(Ax) = max
t∈[q−h,q+h]

∫ 1

0

G(t, s)f(x(s))ds

=
∫ 1

0

G(q, s)f(x(s))ds

=
∫ 1

0

G(q, s)
G(q − h, s)

G(q − h, s)f(x(s))ds

≤M

∫ 1

0

G(q − h, s)f(x(s))ds

= Mψ(Ax)
< a.
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Claim 2. If x ∈ Q(γ, β, ψ, (a/M), a, c) then β(Ax) < a.

β(Ax) = max
t∈[q−h,q+h]

∫ 1

0

G(t, s)f(x(s)) ds

=
∫ q−h

0

G(q, s)f(x(s))ds+
∫ q+h

q−h

G(q, s)f(x(s)) ds

+
∫ 1

q+h

G(q, s)f(x(s)) ds

<

(
c

C1

)∫ q−h

0

G(q, s) ds+
(
a− (c(C2 + C3))/C1

C4

)

×
∫ q+h

q−h

G(q, s) ds+
(
c

C1

)∫ 1

q+h

G(q, s) ds

=
(
c

C1

)
(C2 + C3) +

(
a− (c(C2 + C3))/C1

C4

)
C4

= a.

Claim 3. If x ∈ P (γ, α, b, c) with θ(Ax) > b/m1, then α(Ax) > b.

α(Ax) = min
t∈[q−k2,q−k1]∪[q+k1,q+k2]

∫ 1

0

G(t, s)f(x(s)) ds

=
∫ 1

0

G (q − k2, s) f(x(s)) ds

=
∫ 1

0

(
G(q − k2, s)
G(q + k1, s)

)
G(q + k1, s)f(x(s)) ds

≥ m1

∫ 1

0

G(q + k1, s)f(x(s)) ds

= m1θ(Ax)
> b.
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Claim 4. If x ∈ P (γ, θ, α, b, (b/m1), c) then α(Ax) > b.

α(Ax) = min
t∈[q−k2,q−k1]∪[q+k1,q+k2]

∫ 1

0

G(t, s)f(x(s)) ds

≥
∫ q−k1

q−k2

G(q−k2, s)f(x(s)) ds+
∫ q+k2

q+k1

G(q−k2, s)f(x(s)) ds

>

(
b

C5

)(∫ q−k1

q−k2

G(q − k2, s) ds+
∫ q+k2

q+k1

G(q − k2, s) ds

)

=
(
b

C5

)
C5

= b.

Therefore the hypotheses of the generalized Leggett-Williams fixed
point theorem (Five Functionals Fixed-Point theorem) are satisfied,
and there exist three positive solutions x1, x2, x3 ∈ P (γ, c) for the (4, 4)
right focal boundary value problem such that:

α(x1) > b,

β(x2) < a,

and
α(x3) < b with β(x3) > a.
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