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A STABILITY THEOREM FOR A CLASS OF
DISTRIBUTED PARAMETER CONTROL SYSTEMS

M.H. FARAG

ABSTRACT. This paper presents an optimal control prob-
lem governed by a hyperbolic equation. The control may ap-
pear in the cost functional and in the right side of this equa-
tion. The difference approximations problem for the consid-
ered problem is obtained. A stability estimate of the difference
approximations problem is established.

1. Introduction. Very recently the optimal control distributed
parameter systems has received the attention of many control engineers.
Many of the problems of control in air-frames design, shipbuilding,
nuclear reactors, magnetohydrodynamics and other engineering fields
[4, 9] are problems of control of systems with distributed parameters,
and, therefore, are more difficult to optimize. The first serious work
in this direction was introduced by Botkovsky and Lerner [2, 3] and
Butkovsky [1]. Warng [16] and Rehbock [10] attempted to present
a general discussion of various problems associated with the control
of distributed parameter systems. Chaudhuri [5, 11] discussed the
derivation of a maximum principle and obtained the optimal control
function through the discretization schemes and via the method of
gradients and quasilinearization techniques for a class of hyperbolic
partial differential equations. Farag [6] discussed the existence and
uniqueness theorem, the sufficient differentiability conditions of the cost
functional and its gradient formulae based on solving the adjoint system
and the necessary optimality conditions for a class of hyperbolic partial
differential equations.

This paper presents an optimal control problem governed by a hy-
perbolic equation. The control may be act in the cost functional and
in the right side of this equation. The difference approximations prob-
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lem for the considered problem is obtained. A stability estimate of the
difference approximations problem is established.

2. The optimal control problem. Now we need to introduce
some functional spaces:

1) Ly(R) is a Hilbert space consisting of all measurable functions on
Q with

l T
<Zlaz2>L2(Q) = / / Zl(I7t)22(l‘,t) dx dt, ||Z||L2(Q) = <Z7Z>L2(Q)-
0 JO

2) WH(Q) = {z € Ly(Q) and (92/0x) € La(), (02/0t) € La(2)} is
a Hilbert space with

(21, 22) w1 ()

_/l/T [zl(x,t)ZQ(x,t)+azl(x7t) azz(x’t)JfaZl(x’t) aZQé?t)} devdt
0J0

ox ox ot

||ZHW21(Q) =1/ <ZaZ>W21(Q)'

3) W3 (0,1) = {z(x) € Lz(0,1) and (9z(z)/0z) € L2(0,1)} is a Hilbert
space with

l
(21 22)wion = /O [1(2)22(2) + az(;f) 62;?] de

|\Z||W;(o,l) = \/<Z7Z>W2}(O7l)'

4) L5(0,1) is a Hilbert space which consisting of all measurable
functions on (0,1) with

l
(21, 22) Lo (0,0) :/ z1(z)22() dz, || 2| Ly0,0) = /(2 2) La(0,0)-
0

Consider a distributed parameter system described by the equation

(1) 0%u(x,t) B 0%u(x,t)
ot? Ox?

+ B(z, t)u(z,t) = f(z,t), (z,t) €
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subject to initial conditions

ou(x,0)

(2) ’U/(377 0) = (bo(x)a ot = (bl (J?), MRS (05 Z)a
and boundary conditions

ou(z,t) _ Ou(z,t) B
®) 0xr le=0 Oz la=t 0, te(0.T),

where ¢ € W3(0,1), ¢1 € Lo(0,]) and B(z,t) € C(Q), for all
(x,t) € Q|B(z,t)| < p1 and pg > 0.

On the admissible control set

V=A{f=F1):fec L), [fllLoy < Co, Co>0}

it is desired to compute the optimal control f(z,t) which minimizes the
cost function J(f) given by

(4)
J(f) = %/OT/Ol {ﬂo[au(gz,t)r -5 [8uggc;t)r +Ozf2(x,t)}dxdt,

where «, 3y, 31 are constants which depend on the system and its
performance. [ is the final point on the spatial coordinate axis =
and T is the final time. wu(z,t) is the state variable at any time and
spatial coordinate axis x; f(x,t) represents the control variable. The
expression for the cost function of (4) yields the energy of the vibrating
system of (1)—(3) where [y stands for constant mass density and (;
stands for tension which is exerted upon the end points.

Definition 1. The problem of finding a function u = u(z,t) €
W4(Q) from conditions (1)—(3) at given f € V is called the reduced
problem.

Definition 2. For each f € V, a function u(z,t) is called a
weak solution of the reduced problem (1)-(3) belonging to the control
[ € L2(Q) if and only if (i) u(z,t) € W3 (Q2) and equals ¢g at t =0,
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(ii) The integral identity

/ / 877 3U ) n g_z g_z + B(x, tyu(z, t)n(z,t)

l
— f(x,t)n(:z:,t)} dx dt = /o ¢1(x)n(z,0) dx,

is valid for all n = n(x,t) € W}(Q) and n(z,T) = 0.

The solution of the reduced problem (1)—(3) explicitly depends on
the control f, therefore we shall also use the notation u = u(z,t; f).

On the basis of adopted assumptions and the results of [8] it follows
that for every f € V the solution of the problem (1)—(3) exists, is
unique and

©)  lulwye) < C [I6olwion + 191 zaon + 1f @) -

where the constant C'is independent of the numerical difference scheme
used to approximate the problem (which would appear to be the main
result later on).

Optimal control problems of the coefficients of differential equations
do not always have solution [15]. In [7, 17], the numerical solution
of problem (1)—(4) and necessary conditions for minimization are pre-
sented.

3. The difference approximations problem. Now, we shall find
the difference approximations problem for (1)—(4). For discretization
the optimal control problem (1)—(4), we introduce the following net
{(@in,tjn}, n=1,2,...,in Q where

Tip =ihn, i=0,N,=0,1,2,... Ny,

hn:N_n; tj,n:anu jZO,Mn,

Tn = N=N,, M=M,, h=hy, T=T, i =2Tin,

T
M,’

Ti—(1/2) = Ti—(1/2)ns Ui = tjn-
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Here and further for the functions u, (Ou/0x)(
(0n/0t), B(z,t) in Q take the net form u] (ul) o (u
B} = B(zi,tj),i=0,N,j=0,M, g™ =0, i
following notation

U/at) 1, (9n/0x),
Do (])z ()
= 0, N and use the

J i j—1
j i+1 u; j Uy — Uz 4 Uy — Uy
(u])e = —F P (u})z = P (u])g = = —
lo=10,21/2), L= [ri—(1/2):Tit(1/2))
i=T,N =T,

In = [TN_(1/2),1],
Tj = (tj—latj]v Jj=1,M -2,
Tr—1 = (trm—2,tuml,
Qi =1; x Ty,
i=0,N, j=1,M—1.

The given functions in (5) approximate as follows:

1
meas l; /h do(x) dx

1
(¢1); = N / $1(z) da,

fl-j: /fxtdxdt

meas Qw

(b0)i

i=0,N, j=1M-—1,
where meas!; and meas();; are the Lebesgue-measure of [;, €2;;.

The discrete analogy of the integral identity (5) writes in the form

i/:l {% {/0“’(1/2) —(ud) () da + /xl (—(uh ) (my)7) do

N—(1/2)
N— rz+(1/2> N
Z/ (ui)e(ny)e) dw}dt
i=1 YTi—(1/2)
1 N—-1M-1 it1 pty )
+3 L] e 6 dwa
i=0 j=1 YT t



936 M.H. FARAG

(7) M—-1

Py [ L i s

l o _
+/ (Byuly — f(z,t)nk dx}
TN—(1/2)

N-1

Tip(/2) . l
23 [ il - st b= [ ou@nte0)de
i—1 Y Ti—(1/2) 0

(2

Then from (7) we have

M-1 N-1
1 o o1 o S o o
+h 3 {5 (Biuy —f3)m + 5 (Bivuly = f)nky + Y (Blui —f))n]

N—-1 1
1 S0 + 3 (0o + Gk}

From [12], we have

(9)
N-—1 ) N—1 ‘ ‘ ‘ ‘
Y ) = Y e ey — (),
1=0 i=1
j=1,M-1
(10)
N-1 N-1
h Z (uj 1)2?(775)&6 =—h (Ugil)anl + (UJ 1)3@7’]5\, — (uo 1)3131707
1=0 i=1
j=1.M-1
M M—1




DISTRIBUTED PARAMETER CONTROL SYSTEMS 937

Using (9)—(11), from (8) we obtain

(12)
M—1 hN 1 hTN 1M—-1 _
TZ Denl + = 3 [wd =l = 5= 30 D (ul ™ aan]
i=1 =1 j=1
7_M71 _ _ TMfl hTN 1M—1 _
+ 9 Z ( ]+1)9’c775\7 D) Z (u J+1)x770 Y (uffl)mnf
j=1 j=1 i=1 j=1
- M— 1 - M-1
1 )
T3 -3 Z (ug™ )2
J=1 j=1
hTM 1 N—-1M-— 1
7 {( B(j)uo 0770) (Bgqu fN77N p+hT u _f]
j=1 =1 j:1
M-1

ht ; . h
Y Z (up)eemp + o0 [ug — ug]ng
j=1

01,0

Py [U}v —un|nn

N-1
=1y (¢1)ml + 5 [(@1)ond + (1) R ].
i=1

Hence, equality to zero the coefficients of ng ,1=0,N, j

=0,M in
(12), we obtain the difference approximations problem for (1)—(

):

. 1. . o o .
(uf)ee = 5 1] oz + (] sl + Bluj = f7,

(13) 2

i=T,N_1, j=1,M—1
(14) u} = (¢o)i, (u))e=(¢1)i, i=0,N—T1,
(15) (uh™)e + (u) e = h[(u)er + Bdu — f3],

j=1,M—1,



938 M.H. FARAG

() + (e = —h[(uly )i + Biuy — fis

(16) S
j=1,M—1.

But the functional (4) is approximated by the following way [13, 14]:

AT e Q

(17) =3 DS {Bol(wd)i]? = Brl(ul)a]?} + 5 [f] iz(g)
j=0 1
The controls [f] matrix with elements ff ,i=0,N,j =1, M are chosen
from the set
(18)  Fu={lf]: /) € T2(Q), WAz < Ro R >0}
where
M-2 ,N-1 4
10, 0y = 7 3 4 X207+ 5 102 + (721

) =

war {2 NP G Y2

i=1

4. Stability theorem. In this section, we show a stability result
with respect to the W;(Q)—norm, where W;(Q) is the Hilbert space of
network functions v = ], ¢ = 0, N, 0, M and here the usual notations
for the norm and inner product are used, i.e.,

<U79>W;(Q) = <U79>32(Q) + <u$7g$>ZQ(Q) + (ug, gf>f2(9)

(20)
”M‘Wé(g) = <U>U>W;(Q)
where
(21)
M -l 1 , 4 4 ,
(.90 7 { s [<ua>t<ga>t+<uzv>t<ggvm},
Jj=1 z:l
N—1

M
<uma gm () = hr Z
Jj=

s
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Theorem 4.1. Suppose that all the functions in the system (1)—(3)
satisfy the above enumerated conditions. Then the estimation of stabil-
ity for difference scheme (13)—(16) is

(22) Nl g < C (160200 0 + 16112, o) + A2, )]

Proof. Multiplying (13) by [(u]); + (u!)¢] and summing on i from 1

(3

to N —1,and on j from 1 to p— 1, p < M, we obtain
p—1N-—-1 ' o .
(23) hTd N { u{“)m + (] )az] + Blul — fg}
j=1 i=1
[((w3)?)e + ((wi)")7] = 0.

But
(24) utf(ut + uf) = (uf)ta .] = 17 M — 15
and, using (15)—(16), we have
BNl
=5 21 as + (] sl [((wi)?)e + ((ws))d
i=1
BNl
25) = § 20 I e+ ()
b (e + Bjud — A1) + ()]
+ g [y + By — 11k + el
If we take into account (24) and (25) in (23), then we obtain
(26)
p—1N-1 p—1N-1 ‘ '
hr 3 D () 3D [ e+l Dall(wd)ee + ()]
j=1 i=1 j=1 i=0

p—1 p—1
+ [<<u6>%>t+<<uzv>%>t1+@Z[<Bg’ug— D((ud)s + (ud)o)
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It is valid the identity

(28) 7Y (W)= (u))F =7,

(29) TZ ul T3+ @)D =[]+ (W]

Using the above relations and from (26), we have

N-1
B S 1D e +5 Z
i=1

J+1
:0

t=pt

t=17 -
)] li=pr

+ 5 U impr +Hh)?] iy
P IN-1 P . . .
=—hr 37 > (Bl = fle])e + ()]
hTJp__lz_ o . . .
(30) — 5 DBl — ) ((d)e + (wh)o)
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But
p—1N-—-1 ) )
he 3 S B = )l + ()]
j=1 i=1
N-1 p-l . .
SIS DES SRRV AN (CHANERICT)
N-1 p-1 ) ) ) )
GY  <uh (IR + ]+ [dil?)
=1 j=1
< mh Z T 2|u£\2 +20F 1 + 20(wd)el* + 2| (u))el?)
N-1 pfl
<dmhy T + (u])3),
Pt , , .
Sl A + (o)
(32) =
< 4 Sl + ()7 + ()2
j=1
ht L ;
o S I(Bhdy = ) (e + (wh)o)
(33) = -
< 4 Sl () ()
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Using these inequalities, from (30) we have

(31)
N-1
{n g+ wnb]
h N—-1 i i1
T3 Z[(uz)x+(uz )z] le=pr
1=0
N-1 ) h
<ory {n Y 2+ + (k)
j=1 =1
N—-1 h N-1 . h ) )
S+ LR+ b GG P+ ()
i=1 i=1

v
+y Sl
But
B )2 + 2 e
=
_ gN__:[ (61)x + (o))
(35) < IS o+ T—;N [(Gn)eon — (G0

l\DIb

=05 ¢0§+8{hN 1 (o031}

0 i=
|(¢0)$”i2 0 l) + 8||(¢1)||L (0 l)

Using the following identity uf = ué + Tzizl(uf)g and the Cauchy-
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Bunyakovsky inequality for the sum, we have

N-1 J N-1
(36) hy o (ul) <2hz D242ty Ry (uf),
i=1 = k=1 i=1
h . 2h ]
(37) 3 S (ug)® +2t;7 ) 5 (ug)z,
k=1
h ; _2h ' h
(38) Sun < (ul)® + 24,7y 5 (uk)z
k=1
Summing these inequalities, we obtain
(39)
N-1 h ' '
h ) (u])”+ 3 [(u)? + (uy)?]
=1
N—-1 h
<o G+ 5 1) + ()
=1

+ %{T > iln i L)+ B }

k=1 i=1

=2
L
vl >

< o0l 00+ 20{7 o[ X ()} +
j=1

1

Substituting (35) and (39) into (34), we have

(10) {hz g+ )]+

(42) F(p) —c{|¢o|%2<07l>|<¢o>m||ig(o,l)|¢>1||L2<0,Z>

Ti[hz 77+ 5 2+ )]
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Then the inequality (40) may be written in the form

T

1-7C

(43) Z(p) <

Z(p—1
ST Zb-1+

F(p).
Assume that 1 — 7C > 1/2 and denote E =1/(1 — 7C'), then
(44) Z(p) < EZ(p—1) +TEF(p).

Now, applying the inequality (44) successively p — 1 times, we obtain

(45) Z(p) < EP7'Z(1) +ET§p:EP—SF(s),

s=2

N—-1

2(1) = T{h 3 (@00 + 2 (@0 + <<¢1>N>21}
(46) =

+Th [(¢0)m + T(¢1)m]2'

2

<.
(e}

Besides, the following inequalities are valid

cr \?
(47) EP = (1 + ) < (Cp7)/(1=C1) L (TC/0.5) _ 2TC
1-Cr - - ’
(48)
ETY pE'*F(s) = EP~ 17‘ZpF ) < EPTYE(p)rp < TeTCF(p).
s=2

Using the inequalities (47), (48) and (46), then from (45) we obtain

Z(p) <21 )+T62TCF( ): TNZ(1) + TF(p))

(49) ‘em{ [hZ (60 + o (620 + (61)x)°)]

N-1
F S ((dn)a + (00 + TFG) |

=0
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Besides, we have
(50)

[((¢1)0)* + ((#1)n)?]

N-1 9

30 {002 + 3 (0%~ (01)?}

0
< Ol o) + 9117,

Using (50) and expressions for F(p), then from (49) we have

2(9) < {160l )1 001 11

(51) D N-1 h ) .
o> [ R G )
j=1

From (51) and (39), then the estimation of stability (22) is obtained.
The theorem is proved. a
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