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NONEXISTENCE OF POSITIVE SOLUTIONS
TO A QUASI-LINEAR ELLIPTIC EQUATION

AND BLOW-UP ESTIMATES FOR A
NONLINEAR HEAT EQUATION

YANG ZUODONG

ABSTRACT. In this paper we prove blow-up estimates
for a class of quasi-linear heat equations (non-Newtonian
filtration equations). These estimates extend results for semi-
linear heat equations (Newtonian filtration equations). Our
method of proof is to first establish a nonexistence result for
quasi-linear elliptic equations and then established to blow-up
estimates for a class of quasi-linear heat equations.

1. Introduction. The purpose of this paper is to derive a bound
for the rate of blow-up of solutions to the quasi-linear heat equation

(1) ut = div (| � u|p−2 � u) + f(u),

where u ≥ 0, p ≥ 2. Throughout this paper we assume that f ∈ C[0,∞)
is positive and nondecreasing on (0,∞). This problem appears in
the study of non-Newtonian fluids [1, 8] and in nonlinear filtration
theory [2]. In the non-Newtonian fluids theory, the quantity p is a
characteristic of the medium. Media with p > 2 are called dilatant
fluids and those with p < 2 are called pseudo-plastics. If p = 2, they
are Newtonian fluids.

The blow-up rate estimates of positive radial solutions were estab-
lished by Weissler in [13] for the (1) with p = 2, f(u) = um (m > 1),
and Yang and Lu in [16] for the (1) with p ≥ 2, f(u) = um (m > p−1).
In this paper we get the same result for the (1) with p ≥ 2. Then we
extend and complement the results in [13, 16].
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This paper is arranged as follows. In Section 2 some sufficient
conditions for the nonexistence of positive solutions of the elliptic
equation (steady state equation of the (1)) in RN are given. By using
this nonexistence result, the blow-up estimates for equation (1) are
obtained in Section 3.

2. Nonexistence for the steady equation of (1). We first
consider quasi-linear elliptic inequalities of the form

(2) div (|∇u|p−2 ∇u) ≥ q(x)f(u), x ∈ RN (N ≥ 2),

where p > 1, ∇u = (∇1u, . . . ,∇Nu), q(x) : RN → (0,∞) and
f : (0,∞) → (0,∞) are continuous functions. A positive entire solution
of the inequality (2) is defined to be a positive function u ∈ C1(RN)
satisfying (2) at every point of RN.

Define q1,m ∈ C[0,∞) to be the functions satisfying

0 < q1(r) ≤ min
|x|=r

q(x),

0 < m(r) ≤ min
r/2≤|x|≤3r/2

q(x) for r ≥ 0.

Throughout this section we make the following assumptions without
further mention.

(H1) f : (0,∞) → (0,∞) is locally Lipschitz continuous and strictly
increasing.

(H2) f is super-linear in the sense that

∫ ∞

1

( ∫ u

0

f(s) ds
)−1/p

du <∞ and
∫ 1

0+

( ∫ u

0

f(s) ds
)−1/p

du = ∞.

An important special case of (2) satisfying the above hypotheses is
the inequality

div (|∇u|p−2 ∇u) ≥ q(x)uσ, x ∈ RN (N ≥ 2),

where σ > p− 1.



NONEXISTENCE, BLOW-UP ESTIMATES FOR EQUATIONS 1401

Under our conditions we find that the function

G(s) =
∫ ∞

s

( ∫ u

s

f(ξ) dξ
)−1/p

du, s > 0,

is well-defined in (0,∞). It is not hard to see that G is strictly
decreasing, G(0) = +∞ and G(+∞) = 0. Therefore, its inverse
function G−1 : (0,∞) → (0,∞) exists. We use H for G−1 below.
Note that H is also strictly decreasing, H(0) = +∞ and H(+∞) = 0.
If f(u) = uσ, σ > p− 1, then a simple computation gives

H(s) = C(σ)s−p/(σ−(p−1)), for s > 0,

where C(σ) > 0 is a constant.

From reference [5, 7], we give the following lemma.

Lemma 2.1 (Weak comparison principle). Let Ω be a bounded
domain in RN (N ≥ 2) with smooth boundary ∂Ω and θ : (0,∞) →
(0,∞) is continuous and nondecreasing. Let u1, u2 ∈W 1,p(Ω) satisfy

∫
Ω

|∇u1|p−2 ∇u1∇ψ dx+
∫

Ω

θ(u1)ψ dx

≤
∫

Ω

|∇u2|p−2 ∇u2 ∇ψ dx+
∫

Ω

θ(u2)ψ dx

for all nonnegative ψ ∈W 1,p
0 (Ω). Then the inequality

u1 ≤ u2 on ∂Ω

implies that
u1 ≤ u2 in Ω.

Lemma 2.2 Let x0 ∈ RN and k,R > 0. If a positive C1-function u
satisfies

div (|∇u|p−2 ∇u) ≥ kf(u), |x− x0| ≤ R,

then
u(x0) ≤ H((pk/(p− 1))1/pR).
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Proof. If we can construct a positive C1-function u with properties

div (|∇v|p−2 ∇v) = kf(v), |x− x0| ≤ R,

and v → ∞ as |x−x0| → R, then Lemma 2.1 implies that u(x) ≤ v(x),
|x − x0| < R (especially u(x0) ≤ v(x0)). By the argument as in
Lemma 2.3 of [7], there is a positive C1-function v(r), r = |x − x0|,
satisfying

(φp(v′))′ +
N − 1
r

φp(v′) = kf(v(r)), 0 ≤ r < R,(3)

v′(0) = 0, v(r) −→ ∞ as r → R.(4)

where φp(v) = |v|p−2v. From (3), we obtain

(φp(v′))′v′ ≤ (φp(v′))′v′ +
N − 1
r

φp(v′)v′ = kf(v)v′,

and ∫ r

0

(φp(v′))′v′(s) ds ≤ k

∫ r

0

f(v)v′ ds.

Then
v′

p
√
F (v(r)) − F (v(0))

≤
(

pk

p− 1

)1/p

,

it follows that

G(v(0)) =
∫ ∞

v(0)

(F (z) − F (v(0)))−1/p dz

=
∫ R

0

(F (v(r))− F (v(0)))−1/pv′ dr

≤
(

pk

p− 1

)1/p

R,

=⇒ v(0) < H

((
pk

p− 1

)1/p

R

)
.

Thus, we conclude that

u(x0) ≤ v(0) < H

((
pk

p− 1

)1/p

R

)
.
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This completes the proof.

Theorem 2.3. Let p > 1. If

(5) lim
r→∞ inf

H(r(pm(r)/(p− 1))1/p)∫ r

0
(
∫ r

0
(s/t)N−1q1(s) ds)1/(p−1) dt

= 0,

then inequality (2) has no positive entire solutions.

Proof. Suppose to the contrary that there exists a positive entire
solution u of (2). First, we see that u satisfies

(6) 0 < u(x) ≤ H((m(|x|)p/(p− 1))1/p|x|/2), x 
= 0.

In fact, let x0 
= 0 and |x0| = r. Then in view of the definition of
m(r), u satisfies

div (|∇u|p−2∇u) ≥ m(r)f(u), |x− x0| ≤ r/2.

Hence Lemma 2.2 gives

u(x0) ≤ H((pm(r)/(p− 1))1/pr/2),

which is equivalent to (6).

Next, let r0 > 0 be fixed arbitrarily and then choose a sufficiently
small number δ > 0 so that f(max|x|=r0 u) ≥ δ > 0. Define v(r) by

(7) v(r) = 1/δ
∫ r

r0

φ−1
p

(
δ/2

∫ s

r0

(t/s)N−1q1(t) dt
)
ds, r ≥ r0.

Then it is easily seen that

(8)
v(r0) = v′(r0) = 0,

v(r) > 0, v′(r) > 0, r > r0,

div (|∇(δv)|p−2δ∇v(|x|)) = δ/2q1(|x|) < δq1(|x|), |x| ≥ r0,

and

(9)
v(r) ≥ δ(2−p)/(p−1)

∫ r

r0

( ∫ r

r0

(t/s)N−1q1(t) dt
)1/(p−1)

ds

= δ(2−p)/(p−1)θ(r), r ≥ r0.
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Now, we consider the function ω(x) = u(x) − δv(|x|), |x| ≥ r0. Since
ω > 0 on |x| = r0, from (5),(6) and (9) we see that

lim
|x|→∞

inf ω(x) = lim
|x|→∞

inf v(|x|)(u(x)/v(|x|) − δ) < 0,

(since lim|x|→∞((u(x)/θ(|x|))− δ1/(p−1)) < 0 by the assumption of this
theorem) and so ω becomes negative on some sphere |x| = r1 > r0,
sufficiently large. Hence ω takes a maximum for region r0 ≤ |x| < r1,
at some point x̃ which belongs to r0 < |x| < r1. In fact, suppose to
the contrary that |x̃| = r0. Then u(x̃) = max|x|=r0 u(x), because v(|x|)
is radial. Moreover, we shall conclude that x̃ is also the maximum
point of u in Br0 = {x; |x| < r0}. In fact, we know that u has
no maximum point in Br0 unless u ≡ constant (this implies that u
can only attain its maximum on |x| = r0). Suppose not, if there
exists x̂ ∈ Br0 at which u attains its maximum u(x̂) = β, then
∇u(x̂) = 0. On the other hand, choose a small ball B ⊂⊂ Br0 such
that x̂ ∈ ∂B, let ω(x) = β − u, then ω > 0 in B and ω = 0 at x̂.
Now, −div (|∇ω|p−2∇ω) = div (|∇u|p−2∇u) > 0 in B, so Lemma 2.2
of [5] implies that ∇u(x̂) 
= 0. This contradicts the definition of x̂.
Therefore, u(x̂) = maxBr0

u. Now, choose a small ball B1 ⊂ Br0 such
that x̃ ∈ ∂B1 and u(x̃) − u > 0 for x ∈ B1. Then ω1 = u(x̃) − u
has the same properties of the ω above. Lemma 2.2 of [5] implies that
(∂ω1/∂n)(x̃) < 0. Thus, (∂ω/∂n)(x̃) = (∂u/∂n)(x̃) > 0, where n is
the outward normal vector to |x| = r0, ω becomes greater than ω(x̃) at
some x. This contradiction shows that r0 < |x̃| < r1, as stated above,
thus ∇u(x̃) = 0. On the other hand, we also conclude that ∇u(x̃) 
= 0.
Otherwise, we have that ∇v(x̃) = 0 and thus v′r(|x̃|) = 0. But we see
that it is impossible from (7) and |x̃| > r0. This contradiction proves
our theorem.

Remark 1. When p = 2, the related results have been obtained by
[11]. Our theorem for nonexistence extends the results of [11].

Corollary 2.4. Let N ≥ p+ 1. If

(10) lim
|x|→∞

inf |x|pq(x) > 0,

then inequality (2) has no positive entire solutions.
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Proof. Put
q1(r) = C (r + 1)−p, r ≥ 0

where C > 0 is a constant. Because of (10), C > 0 can be chosen so
that q1 ≤ min|x|=r q(x). Since

∫ r

0

( ∫ r

0

(s/t)N−1q1(s) ds
)1/(p−1)

dt > C1 > 0 for r ≥ 1,

condition (5) is satisfied. The conclusion then follows immediately from
Theorem 2.3.

Corollary 2.5. Let N ≥ p+ 1. Consider the elliptic equation

(11) div (|∇u|p−2 ∇u) = q(x)f(u), x ∈ RN

where q is positive and continuous in RN and f satisfies conditions
(H1), (H2). Corollary 2.4 implies that if

lim
|x|→∞

inf |x|pq(x) > 0,

then equation (11) has no positive entire solutions.

Corollary 2.6. Let N ≥ p+ 1. Consider the elliptic equation

(12) div (|∇u|p−2 ∇u) = q(x)uσ, x ∈ RN

where σ > p − 1 and q(x) are continuous in RN. If q(x) > 0 in RN

and
lim

|x|→∞
inf |x|pq(x) > 0,

then equation (12) has no positive entire solutions.

Theorem 2.7. Let m > p − 1 and N ≥ 1, and suppose N/p <
(m+ 1)/(m− p+ 1). Then there does not exist a positive C1 function
v(r) : [0,∞) → R with v′(0) = 0 and

(13) (|v′|p−2 v′)′ +
N − 1
r

|v′|p−2 v′ + vm(r) = 0, r > 0.
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Proof. Suppose there exists such a function v. Then

(rN−1 φp(v′))′ + rN−1vm(r) = 0,

and

(14) rn−1 φp(v′)(r) = −
∫ r

0

sn−1vm(s) ds,

where φp(v) = |v|p−2v. We first dispense with the case N ≤ p. Using
(14), we see that if r ≥ 1, then v′(r) ≤ −C1/(p−1)r(1−N)/(p−1) for some
C > 0. Integrating, we get

v(r) ≤ v(1) + C1/(p−1)(p− 1)/(N − p)(r(p−N)/(p−1) − 1),

and so v(r) → −∞ as r → ∞. This contradicts v(r) > 0 and proves
the lemma for N ≤ p.

Now suppose N > p. Formula (14) implies that v(r) is decreasing
and therefore that

−rN−1 φp(v′) =
∫ r

0

sN−1 vm(s) ds ≥ rN vm(r)/N,

or v′(r) ≤ −(1/N)1/(p−1)r1/(p−1)vm/(p−1)(r). This inequality is easily
integrated to give

v(m−p+1)/(p−1) ≤ p/(m− p+ 1)N1/(p−1) r−p/(p−1).

In particular,

(15) lim
r→+∞ sup rp/(m−p+1) v(r) < +∞.

At this point we use the hypothesis that N/p < (m+ 1)/(m− p+ 1).
This, along with (15), implies that

(16)
∫ +∞

0

rN−1 vm+1(r) dr < +∞.

We multiply (13) by rN−1v(r) and use the identity

(rN−1 φp(v′)v)′ = (N−1)rN−2 φp(v′)v + rN−1(φp(v′))′v + rN−1|v′|p.
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This gives

(rN−1 φp(v′)v)′ − rN−1|v′|p + rN−1 vm+1 = 0.

Integrating from 0 to r we get

(17) −rN−1φp(v′)v(r) +
∫ r

0

sN−1|v′(s)|p ds =
∫ r

0

sN−1vm+1(s) ds.

Since v(r) > 0 and v′(r) < 0, formulas (16) and (17) imply

(18)
∫ +∞

0

sN−1|v′|p ds ≤
∫ +∞

0

sN−1vm+1(s) ds < +∞.

We multiply (13) by rNv′(r) and use the identities

(rN |v′|p)′ = NrN−1|v′|p + prN |v′|p−1v′′,
(rNvm+p−1)′ = NrN−1vm+p−1 + (m+ p− 1)rNvm+p−2v′.

This gives

d

dr

(
rN |v′|p/p+

rNvm+p−1

m+ p− 1

)
=

N

(m+ p− 1)
rN−1vm+p−1

+
N

p
rN−1|v′|p + rNvm+p−2v′

+
1

p−1
(−(N−1)rN−1|v′|p− rNvmv′).

Integrating from 0 to x we get

rN |v′|p
p

+
rNvm+p−1(r)
m+ p− 1

=
N

(m+ p− 1)

∫ r

0

sN−1vm+p−1 ds

+
(
N

p
− N − 1

p− 1

)∫ s

0

sN−1|v′|p ds

+
∫ r

0

sNvm+p−2v′ ds− 1
p−1

∫ r

0

sNvmv′ ds,

then

(19)
rN |v′|p
p

+
rN

(p−1)(m+1)
vm+1(r)

=
(
N

p
−N−1
p−1

) ∫ r

0

sp−1|v′|p ds+ N

(p−1)(m+1)

∫ r

0

sN−1vm+1(s) ds.
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Let h(r) = rN |v′|p/p + ((rN )/((p− 1)(m+ 1)))vm+1(r). By (18)and
(19) we see that limx→∞ h(x) = l exists. Furthermore, again by virtue
of (18), we have that

∫ ∞
0
t−1h(t) ds < +∞; and so l = 0. Thus, letting

r → +∞ in (18), yields

N

(p−1)(m+1)

∫ +∞

0

sN−1vm+1(s) ds

=
(
N−1
p−1

− N

p

)∫ +∞

0

sN−1|v′|p ds.

Finally, (16) and (18) together imply

N/p ≥ m+ 1
m− p+ 1

.

This contradicts the hypothesis that N/p < (m + 1)/(m − p + 1) and
thereby proves the theorem.

3. Blow-up estimates for the equation (1). Motivated by
Weissler [13] and Yang and Lu [16], we use the nonexistence result
of the elliptic equation obtained in Section 2 to establish the blow-up
estimates for equation (1).

Let B(ρ) denote the open ball in RN(N ≥ p, p ≥ 2) of radius ρ,
center at 0. Also, for T > 0, let Γ = Γ(ρ, T ) = B(ρ) × (0, T ) ⊂ RN+1.
A typical point in Γ is denoted by (x, t), with x ∈ B(ρ) and t ∈ (0, T ).

Theorem 3.1. Suppose for ρ > 0 and T > 0 the function
u : Γ(ρ, T ) → R satisfies:

(a) u ∈ C1(Γ) and u has continuous second order x-derivatives
throughout Γ;

(b) u ≥ 0 and ut ≥ 0 in Γ;

(c) for each t ∈ (0, T ), u(·, t) is radially symmetric and non-increasing
as a function of r = |x|;

(d) for each t ∈ (0, T ), ut(·, t) achieves its maximum at x = 0;

(e) u satisfies (1) throughout Γ;

(f) u(0, t) → ∞ as t→ T .
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(g) there are constants β > 0 and m > p− 1 (p ≥ 2) such that

s−mf(s) → β as s→ ∞.

Then there exists a constant C > 0 such that

(19) u(x, t) ≤ C1(T − t)−1/(m−1)

for all (x, t) ∈ Γ.

Proof. We consider equation (1). For 0 < t < T , let α(t) =
u(0, t)(m−p+1)/p; then α(t) → ∞ as t → T . For t ∈ (0, T ) and
y ∈ B(ρα(t)), let

v(y, t) =
u(y/α(t), t)
u(0, t)

.

Since 0 ≤ u(x, t) ≤ u(0, t), it follows that

(20) 0 ≤ v(y, t) ≤ 1.

Furthermore, a routine calculation shows that

div (|∇v|p−2 ∇v) =
[ut(y/α(t), t) − f(u(y/α(t), t))]

um(0, t)
.

Hypotheses (b) and (d) therefore imply that

(21) 0 ≤ div (|∇v|p−2 ∇v) +
f(v(y, t)u(0, t))

um(0, t)
≤ ut(0, t)
um(0, t)

.

Since u(·, t) is radially symmetric, the same is true for v(·, t); and thus
we may set

v(y, t) = w(r, t),

where |y| = r and 0 ≤ r < ρα(t). Note that for each t ∈ (0, T ), w(·, t) is
a C1 function on [0, ρα(t)] with w(0, t) = 1 and wr(0, t) = 0. Rewriting
(20) and (21) in terms of w, we get

0 ≤ w(r, t) ≤ 1,(22)

0 ≤ (Φp(wr))r + (N−1)/rΦp(wr) +
f(w(r, t)u(0, t))

um(0, t)
≤ ut(0, t)
um(0, t)

,

(23)
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where Φp(w) = |w|p−2w and wr denote the derivative of w with respect
to r. Furthermore, wr ≤ 0 by hypothesis (c), and so (23) implies

(Φp(wr))rwr + (N−1)/r |wr|p +
f(w(r, t)u(0, t))

um(0, t)
wr ≤ 0,

which in turn says that

∂

∂r
((p−1)/p |wr|p) +

f(w(r, t)u(0, t))
um(0, t)

wr ≤ −(N−1)/r |wr|p ≤ 0.

Integrating this last inequality from 0 to r shows that

(p−1)
p

|wr|p +
∫ r

0

f(w(r, t)u(0, t))
um(0, t)

wr dr ≤ 0,

and thus

(p−1)
p

|wr(r, t)|p ≤ 1
um+1(0, t)

∫ u(0,t)

w(r,t)u(0,t)

f(z) dz.

From limt→T u(0, t) = +∞ and (g) we see that there exists an ε > 0,
for t ∈ (T − ε, T ), ρ ∈ [w(r, t)u(0, t), u(0, t)) such that f(ρ) ≤ c1ρ

m.
Then

1
um+1 (0, t)

∫ u(0,t)

w(r,t)u(0,t)

f(ρ) dρ

≤ c1
um+1(0, t)

∫ u(0,t)

w(r,t)u(0,t)

ρm dρ

≤ c1
(m+1)um+1(0, t)

(um+1(0, t) − wm+1(r, t)um+1(0, t))

=
c1

m+1
(1 − wm+1(r, t)) ≤ c1

m+1
.

For t ∈ [0, T − ε], we have |f(u(0, t)w(r, t))| ≤M , which implies that

∣∣∣ 1
um+1(0, t)

∫ u(0,t)

w(r,t)u(0,t)

f(ρ) dρ
∣∣∣ ≤ M

um(0, t)
(1 − w(r, t))

≤ M

um(0, t)
≤M1,
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and thus

(24) |wr(r, t)| ≤ c2,

for t ∈ [0, T ). We now claim that

(25) lim
t→T

inf
ut(0, t)
um(0, t)

> 0.

We proceed by contradiction as in [13, 16]. Suppose tn is a sequence
in (0, T ) with tn → T as n→ ∞ and

(26) lim
n→∞

ut(0, tn)
um(0, tn)

= 0.

By using the Ascoli-Alzela theorem, we know that there is a subse-
quence, which we still call tn, and a function w ∈ C([0,∞)) such that
w(·, tn) → w uniformly on compact subsets of [0,∞). In particular, be-
cause of the properties of each w(·, tn), we know that w ≥ 0, w(0) = 1,
and w is nonincreasing on [0,∞). Moreover, formula (24) implies that
each w(·, tn) is Lipschitz with a Lipschitz constant of c2. The same is
therefore true of w, and so w is absolutely continuous on [0,∞). Next
we consider w(·, tn) and w as distributions on (0,∞). (Let w(r, tn) = 0
for r ≥ ρα(tn).) Clearly, w(·, tn) → w in the sense of distributions; and
hence

wr(·, tn) −→ wr, (Φp(wr))r(·, tn) −→ (Φp(wr))r,

in the sense of distributions. Thus, formulas (23) and (26) imply that

(27) (Φp(wr))r + (N − 1)/r Φp(wr) + β wm = 0,

as distributions on (0,∞). This can be rewritten as

(28) (rN−1Φp(wr))r + rN−1 β wm = 0.

Since w is absolutely continuous, it follows immediately from (28) that
w is C1 on (0,∞). In particular, since w ≥ 0, the local existence and
uniqueness of C1 solutions of (28) on (0,∞) guarantees that w > 0 on
(0,∞).
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If N = 2, p > 2, we proceed as follows. From equation (28), we infer
that rΦp(wr) are decreasing and that there exist M < 0 and r0 > 0
such that

rΦp(wr) < M for r ∈ (r0,+∞).

The last inequality implies that

(29)
w(s) > w(s) − w(t) = (−M)1/(p−1)

∫ t

s

r−1/(p−1) dr

= (−M)1/(p−1)(t(p−2)/(p−1) − s(p−2)/(p−1))

for r0 ≤ s ≤ t. Letting t→ +∞ in (23), we obtain a contradiction.

If N = 2, p = 2, a similar argument to the one above shows that

w(s) > w(s) − w(t) > (−M) [ln(t) − ln(s)]

for r0 ≤ s ≤ t. Letting t → +∞ in the last inequality, we obtain a
contradiction.

In the case N > p, it follows from Theorem 2.7 (or from Theorem
3.2 of [17]) that equation (28) has no positive solution. It may be
concluded that equation (20) also cannot hold. Hence, there exist a
c > 0 such that, for all t ∈ (0, T ) close enough to T ,

ut(0, t)
um(0, t)

≥ c > 0.

This can be rewritten as

(30) (u1−m(0, t))t ≤ − (m− 1) c.

Since limt→T u
1−m(0, t) = 0, integrating (30) from t to T yields

(31) u1−m ≥ c1(T − t)

for t close to T . Finally, hypotheses (b) and (c) in the Theorem 3.1,
along with formula (31), show that

u(x, t) ≤ C1(T − t)−1/(m−1)

for all (x, t) ∈ Γ. This completes the proof of the theorem.
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Finally, we give lower bounds for the blow-up rates.

Theorem 3.2. Assume that the conditions (a) (g) in Theorem 3.1
hold. Then there are positive constants C2, δ such that

u(0, t) ≥ C2(T − t)−1/(m−1)

for t ∈ (δ, T ).

Proof. From (1) and condition (c), we get

(32) (p−1)(−u′)p−2 u′′ + (N − 1)/r |u′|p−2 u′ + f(u) = ut.

Since u′′ ≤ 0 at r = 0 with t ∈ (0, T ), we see from (32) and (g) of
Theorem 3.1 that

ut(0, t) ≤ f(u(0, t)) ≤ c1 + c2 u
m(0, t),

hence for t ∈ (δ, s) ⊂ (δ, T ), we have

(32)
ut(0, t)
um(0, t)

≤ f(u(0, t))
um(0, t)

≤ c2 +
c1

um(0, t)
≤ c3.

Integrating (32) over (t, s) ⊂ (δ, T ) and letting s → T , we get by
condition (f):

u(0, t) ≥ C2(T − t)−1/(m−1).

Remark 2. Combining Theorem 3.1 and Theorem 3.2, we conclude
that the blow-up rates of radial positive solutions of (1) under the
conditions of the theorems are

u(0, t) = O((T − t)−1/(m−1)),

as t tends to T .
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