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ACCUMULATION POINTS OF THE BOUNDARY
OF A CAT(0) SPACE ON WHICH A
GROUP ACTS GEOMETRICALLY

TETSUYA HOSAKA

ABSTRACT. In this paper, using a result of Ontaneda,
we show that there is no isolated point in the boundary
of a CAT(0) space on which a group acts geometrically,
i.e., properly and cocompactly by isometries, if the cardinal
number of the boundary is greater than two.

1. Introduction and preliminaries. The purpose of this paper is
to study boundaries of CAT(0) groups, i.e., the boundary of a CAT(0)
space on which a group acts geometrically.

We say that a metric space (X, d) is a geodesic space if, for each
x, y ∈ X, there exists an isometry ξ : [0, d(x, y)] → X such that
ξ(0) = x and ξ(d(x, y)) = y (such a ξ is called a geodesic). Also a
metric space (X, d) is said to be proper if every closed metric ball is
compact.

Let (X, d) be a geodesic space, and let T be a geodesic triangle in X.
A comparison triangle for T is a geodesic triangle T in the Euclidean
plane R2 with same edge lengths as T . Choose two points x and y in T .
Let x̄ and ȳ denote the corresponding points in T . Then the inequality

d(x, y) ≤ dR2(x̄, ȳ)

is called the CAT(0)-inequality, where dR2 is the natural metric on
R2. A geodesic space (X, d) is called a CAT(0) space if the CAT(0)-
inequality holds for all geodesic triangles T and for all choices of two
points x and y in T .

Let (X, d) be a proper CAT(0) space and x0 ∈ X. The boundary
of X with respect to x0, denoted by ∂x0X, is defined as the set of all
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geodesic rays issuing from x0. Then we define a topology on X ∪ ∂x0X
by the following conditions:

(1) X is an open subspace of X ∪ ∂x0X.

(2) For α ∈ ∂x0X and r, ε > 0, let

Ux0(α; r, ε) = {x ∈ X ∪ ∂x0X | x �∈ B(x0, r), d(α(r), ξx(r)) < ε},

where ξx : [0, d(x0, x)] → X is the geodesic from x0 to x (ξx = x if
x ∈ ∂x0X). Then, for each ε0 > 0, the set

{Ux0(α; r, ε0) | r > 0}

is a neighborhood basis for α in X ∪ ∂x0X.

This is called the cone topology on X∪∂x0X. It is known that X∪∂x0X
is a metrizable compactification of X, [1, 2].

Let (X, d) be a geodesic space. Two geodesic rays ξ, ζ : [0,∞) → X
are said to be asymptotic if there exists a constant N such that
d(ξ(t), ζ(t)) ≤ N for each t ≥ 0. It is known that, for each geodesic
ray ξ in X and each point x ∈ X, there exists a unique geodesic ray ξ′

issuing from x such that ξ and ξ′ are asymptotic.

Let x0 and x1 be two points of a proper CAT(0) space X. Then there
exists a unique bijection Φ : ∂x0X → ∂x1X such that ξ and Φ(ξ) are
asymptotic for each ξ ∈ ∂x0X. It is known that Φ : ∂x0X → ∂x1X is a
homeomorphism [1, 3].

Let (X, d) be a proper CAT(0) space. The asymptotic relation is an
equivalence relation in the set of all geodesic rays in X. The boundary
of X, denoted by ∂X, is defined as the set of asymptotic equivalence
classes of geodesic rays. The equivalence class of a geodesic ray ξ is
denoted by ξ(∞). For each x0 ∈ X and each α ∈ ∂X, there exists a
unique element ξ ∈ ∂x0X with ξ(∞) = α. Thus we may identify ∂X
with ∂x0X for each x0 ∈ X.

Let (X, d) be a proper CAT(0) space and G a group which acts
on X by isometries. For each element g ∈ G and each geodesic ray
ξ : [0,∞) → X, a map gξ : [0,∞) → X defined by (gξ)(t) := g(ξ(t)) is
also a geodesic ray. If geodesic rays ξ and ξ′ are asymptotic, then gξ
and gξ′ are also asymptotic. Thus g induces a homeomorphism of ∂X
and G acts on ∂X.
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A geometric action on a CAT(0) space is an action by isometries
which is proper [1, p. 131] and cocompact. We note that every CAT(0)
space on which a group acts geometrically is a proper space [1, p. 132].
A group which acts geometrically on some CAT(0) space is called a
CAT(0) group.

Details of CAT(0) spaces and their boundaries are found in [1, 3],
and we can see several studies of boundaries of CAT(0) groups in [2, 5,
6]. In recent years, Ontaneda proved that a CAT(0) space on which a
group acts geometrically is almost extendible [7]. In this paper, using
this result, we show the following theorem.

Main theorem. Suppose that a group G acts geometrically on
a CAT(0) space X. If |∂X| > 2, then each point of ∂X is an
accumulation point.

Here a point x of a topological space X is called an accumulation
point, if X \ {x} = X, where X \ {x} is the closure of X \ {x} in X.

2. Lemmas on CAT(0) spaces and their boundaries. In
this section, we give some lemmas about CAT(0) spaces and their
boundaries needed later.

We first introduce some basic properties of CAT(0) spaces.

Lemma 2.1 (cf. [1, pp. 159 160, 176], [3]. Let (X, d) be a proper
CAT(0) space.

(i) For each two points x, y ∈ X, there exists a unique geodesic
segment between x and y in X.

(ii) For each three points x0, x1, x2 ∈ X and each t ∈ [0, 1],

d
(
ξ1(td(x0, x1)), ξ2(td(x0, x2))

) ≤ td(x1, x2),

where ξi : [0, di] → X is the geodesic segment from x0 to xi for each
i = 1, 2.

(iii) If geodesic rays ξ, ξ′ : [0,∞) → X are asymptotic, then
d(ξ(t), ξ′(t)) ≤ d(ξ(0), ξ′(0)) for each t ≥ 0.
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We obtain the following lemmas from some basic properties of CAT(0)
spaces. Details of the proofs of the following two lemmas are found in
[4]. We give outlines of the proofs here.

Lemma 2.2. Let x0, x1, x2 be three points of a CAT(0) space (X, d),
let di = d(x0, xi) for i = 1, 2, and let ξ2 : [0, d2] → X be the geodesic
segment from x0 to x2. If d1 < d2, then

d(x1, ξ2([d1, d2])) = d(x1, ξ2(d1)).

Proof. We can show that d(x1, ξ2(d1)) ≤ d(x1, ξ2(t)) for each t ∈
[d1, d2] by considering a comparison triangle x0, x1, ξ2(t) in R2 for the
geodesic triangle x0, x1, ξ2(t).

Lemma 2.3. Let (X, d) be a proper CAT(0) space, let x0 ∈ X and
let α ∈ ∂x0X. For each r > 0 and ε > 0, we define a subset U ′

x0
(α; r, ε)

of X ∪ ∂x0X as

U ′
x0

(α; r, ε) = {x ∈ X ∪ ∂x0X | x �∈ B(x0, r), d(α(r), Im ξx) < ε},

where ξx : [0, d(x0, x)] → X is the geodesic (segment or ray) from x0 to
x. Then for each ε0 > 0, {U ′

x0
(α; r, ε0) | r > 0} is a neighborhood basis

for α in X ∪ ∂x0X.

Proof. For each r > 0 and ε > 0, the subset Ux0(α; r, ε) is defined as

Ux0(α; r, ε) = {x ∈ X ∪ ∂x0X | x �∈ B(x0, r), d(α(r), ξx(r)) < ε},

and, for each ε0 > 0, {Ux0(α; r, ε0) | r > 0} is a neighborhood basis for
α in X ∪ ∂x0X by the definition of the cone topology.

It is clear that
Ux0(α; r, ε) ⊂ U ′

x0
(α; r, ε)

for each r > 0 and ε > 0. Using Lemma 2.2, we also can show that

U ′
x0

(α; r + ε, ε) ⊂ Ux0(α; r, ε)
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for each r > 0 and ε > 0. Thus

U ′
x0

(α; r + ε, ε) ⊂ Ux0(α; r, ε) ⊂ U ′
x0

(α; r, ε)

for each r > 0 and ε > 0. Since {Ux0(α; r, ε0) | r > 0} is a neighborhood
basis for α in X ∪ ∂x0X, {U ′

x0
(α; r, ε0) | r > 0} is also.

Definition 2.4. A CAT(0) space X is said to be almost extendible, if
there exists a constant E > 0 such that for each pair of points x, y ∈ X,
there is a geodesic ray ζ : [0,∞) → X such that ζ(0) = x and ζ passes
within E of y.

Ontaneda proved the following.

Theorem 2.5 (Ontaneda [7]). A CAT(0) space on which a group
acts geometrically is almost extendible.

3. Proof of the main theorem. In this section, we prove the
following main theorem.

Theorem 3.1. Suppose that a group G acts geometrically on a
CAT(0) space (X, d). If |∂X| > 2, then each point of ∂X is an
accumulation point.

Proof. Suppose that |∂X| > 2. Let x0 ∈ X. Since G acts cocompactly
on X, there exists a constant N > 0 such that

(1) GB(x0, N) = X.

By Theorem 2.5, X is almost extendible. Hence, there exists a constant
E > 0 such that

(2) for each pair of points x, y ∈ X, there is a geodesic ray ζ : [0,∞) →
X such that ζ(0) = x and ζ passes within E of y.

To prove that every point of ∂X is an accumulation point, we show
that, for each α ∈ ∂x0X,

∂x0X \ {α} = ∂x0X,
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where ∂x0X \ {α} is the closure of ∂x0X\{α} in ∂x0X. Now we identify
as ∂X = ∂x0X.

Let α ∈ ∂X (hence α is a geodesic ray with α(0) = x0). Then, by
(1), there exists a sequence {gi | i ∈ N} ⊂ G such that

(3) {gix0}i converges to α and

(4) d(gix0, Im α) ≤ N for each i.

Since X ∪ ∂X and ∂X are compact and the action of G on X is
proper, we may suppose that

(5) {g−1
i x0}i converges to some point α′ ∈ ∂X in X ∪ ∂X and

(6) {g−1
i α}i converges to some point β ∈ ∂X in ∂X.

Now |∂X| > 2. Hence there exists an element δ ∈ ∂X \ {α′, β}. Since
δ �= α′ and δ �= β, there exists a number R > 0 such that

(7) d(δ(R), Im α′) > E + N + 1 and

(8) d(δ(R), Im β) > E + N + 1.

To prove ∂X \ {α} = ∂X, we show that

(∂X \ {α}) ∩ U ′
x0

(α; r, ε) �= ∅

for each r > 0 and ε > 0, where U ′
x0

(α; r, ε) is the set defined in
Lemma 2.3.

Let r > 0, ε > 0, and let

(9) S > max
{

R,
r(N + R + E)

ε

}
.

By (3), (4), (5) and (6), there exists a large number n such that

(10) d(gnx0, α(T )) ≤ N for some T ≥ S,

(11) d(α′(R), ξn(R)) < 1, where ξn is the geodesic from x0 to g−1
n x0,

and

(12) d(β(R), (g−1
n α)x0(R)) < 1, where (g−1

n α)x0 : [0,∞) → X is the
geodesic ray with (g−1

n α)x0(0) = x0 and (g−1
n α)x0(∞) = g−1

n α(∞),

see Figure 1.
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FIGURE 1.

Then we show that d(gnδ(R), Imα) > E.

We first have that

d(gnδ(R), Imα) ≥ d(gnδ(R), (Im gnξn) ∪ (Im α(gnx0)))
− dH(Imα, (Im gnξn) ∪ (Im α(gnx0))),

where dH is the Hausdorff distance and α(gnx0) : [0,∞) → X is the
geodesic ray with α(gnx0)(0) = gnx0 and α(gnx0)(∞) = α(∞). Since ξn

is the geodesic from x0 to g−1
n x0, gnξn is the geodesic from gnx0 to x0.

By (10) and Lemma 2.1 (ii) and (iii),

(13) dH(α([0, T ]), Im gnξn) ≤ N and

(14) dH(α([T,∞)), Imα(gnx0)) ≤ N ,

because the geodesic rays α|[T,∞) and α(gnx0) are asymptotic. Hence

(15) dH(Imα, (Im gnξn) ∪ (Im α(gnx0))) ≤ N .

Thus

d(gnδ(R), Im α) ≥ d(gnδ(R), (Im gnξn) ∪ (Imα(gnx0)))
− dH(Im α, (Im gnξn) ∪ (Imα(gnx0)))

≥ d(gnδ(R), (Im gnξn) ∪ (Imα(gnx0))) − N.
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Here, by Lemma 2.2,

(16) d(gnδ(R)Im gnξn \ gnξn([0, R))) = d(gnδ(R), gnξn(R)) and

(17) d(gnδ(R), α(gnx0)([R,∞))) = d(gnδ(R), α(gnx0)(R)).

Hence,

d(gnδ(R), Im α) ≥ d(gnδ(R), (Im gnξn) ∪ (Imα(gnx0))) − N

= d(gnδ(R), gnξn([0, R]) ∪ α(gnx0)([0, R])) − N

≥ d(gnδ(R), gnα′([0, R]) ∪ gnβ([0, R]))
− dH(gnα′([0, R]) ∪ gnβ([0, R]), gnξn([0, R])

∪ α(gnx0)([0, R])) − N.

By (11) and Lemma 2.1 (ii),

(18)
dH(gnα′([0, R]), gnξn([0, R])) ≤ d(gnα′(R), gnξn(R))

= d(α′(R), ξn(R)) < 1.

Also, by (12) and Lemma 2.1 (ii),

(19)

dH(gnβ([0, R]), α(gnx0)([0, R])) ≤ d(gnβ(R), α(gnx0)(R))

= d(β(R), g−1
n α(gnx0)(R))

< 1,

because g−1
n α(gnx0) = (g−1

n α)x0 . Hence,

(20)
dH(gnα′([0, R]) ∪ gnβ([0, R]), gnξn([0, R]) ∪ α(gnx0)([0, R]))

< 1

by (18) and (19). Thus,

d(gnδ(R), Imα)
≥ d(gnδ(R), gnα′([0, R]) ∪ gnβ([0, R]))
− dH(gnα′([0, R]) ∪ gnβ([0, R]), gnξn([0, R])

∪ α(gnx0)([0, R])) − N

> d(gnδ(R), gnα′([0, R]) ∪ gnβ([0, R])) − 1 − N by (20)
= d(δ(R), α′([0, R]) ∪ β([0, R])) − 1 − N

> (E + N + 1) − 1 − N by (7) and (8)
= E.
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Hence, we obtain that

(21) d(gnδ(R), Imα) > E.

By (2), there exists a geodesic ray ζ : [0,∞) → X such that

(22) ζ(0) = x0 and

(23) Im ζ ∩ B(gnδ(R), E) �= ∅.

Since d(gnδ(R), Im α) > E by (21),

Im α ∩ B(gnδ(R), E) = ∅.

Hence ζ �= α by (23), i.e.,

(24) ζ ∈ ∂X \ {α}.

Finally we show that ζ ∈ U ′
x0

(α; r, ε).

By (23), there exists a number Q > 0 such that

(25) d(ζ(Q), gnδ(R)) ≤ E.

Then, by (10) and (25),

(26)

d(α(T ), ζ(Q)) ≤ d(α(T ), gnx0) + d(gnx0, gnδ(R)) + d(gnδ(R), ζ(Q))
≤ N + R + E.

Hence,

d(α(r), Im ζ) ≤ d

(
α(r), ζ

(
rQ

T

))

≤ r

T
d(α(T ), ζ(Q)) by Lemma 2.1 (ii)

≤ r(N + R + E)
T

by (26)

≤ r(N + R + E)
S

by (10)

< ε by (9).
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This means that

(27) ζ ∈ U ′
x0

(α; r, ε).

Thus by (24) and (27),

ζ ∈ (∂X \ {α}) ∩ U ′
x0

(α; r, ε),

i.e.,
(∂X \ {α}) ∩ U ′

x0
(α; r, ε) �= ∅.

Here r > 0 and ε > 0 are arbitrary. Therefore by Lemma 2.3,

∂X \ {α} = ∂X,

i.e., α is an accumulation point of ∂X.

Remark. Concerning the ends of finitely generated groups, Hopf’s
theorem states that every finitely generated group G has either 0, 1, 2
or infinitely many ends; and in the case of infinitely many ends, the
end space Ends (G) has no isolated points, cf. [1, p. 146]. It is pointed
out by the referee that the main theorem also can be proved by this
fact.
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