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ON THE COMPACTNESS OF THE SET OF
BOUNDED ORBITS FOR A DIFFERENTIAL SYSTEM
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Dedicated to Professor Ye Yan-Qian on his 80th birthday.

ABSTRACT. In this paper, an answer in a special case to
a problem proposed by Conley is given.

1. Introduction. In [2], Conley studied the flows on Rn such that
the set of bounded orbits is compact. In particular, he proposed the
following problem, see [2, p. 31]:

Problem. Suppose V (x) is a smooth function on Rn with ‖∇V ‖ ≥ ε
for |x| ≥ R. Is it true that the set of bounded solutions of dx/dt = y,
dy/dt = θy −∇V (x) is compact whenever θ �= 0?

In the present paper, we shall give a positive answer in the case n = 1.

2. The main result. When n = 1, the differential system in the
problem is the following planar system

(1)

dx

dt
= y,

dy

dt
= θy − dV

dx
,

where θ �= 0, without loss of generality we assume that θ > 0 (when
θ < 0 one can make a change t → −t, y → −y); and V (x) is a smooth
scalar function such that following condition is satisfied:

(2)
∣∣∣∣dV

dx

∣∣∣∣ ≥ ε when |x| ≥ R.

It is easy to show the following properties of the system (1).
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(i) By [2, pp. 12 13], a system is called gradient-like if there is
some continuous real valued function which is strictly decreasing on
nonconstant solutions. It is easy to see that the system (1) is gradient-
like with respect to the function

(3) g(x, y) = −
(

y2

2
+ V (x)

)
.

In fact, the derivative of g on solutions is as follows:

(4)
dg

dt

∣∣∣∣
(1)

= − θy2.

Therefore g is at least nonincreasing on solutions. Further, from the
first expression of (1) it follows that there are not any nonconstant
solutions lying on the straight line y = 0 over some time interval.
Hence, g is strictly decreasing on nonconstant solutions. This means
that the system (1) is gradient-like.

(ii) From the above definition of a gradient-like system, it follows
that the system (1) has no closed orbits. Moreover, the ω-limit set
(or the α-limit set) of any bounded orbit of the system (1) consists of
critical points. Any nonconstant bounded orbit of the system (1) must
tend to distinct critical points as t → +∞ and as t → −∞, respectively.

(iii) Let W denote the union of all bounded orbits of the system (1).
Clearly, each critical point of the system (1) can be denoted by (x0, 0),
where x0 satisfies dV /dx(x0) = 0. Let D denote the set of all critical
points of (1). If dV /dx �= 0 for all x, then D is empty. Hence, from the
property (ii) it follows that W is empty. If dV /dx has only one zero x1,
then W consists of the critical point (x1, 0). Therefore, in what follows,
it will suffice to consider the case that dV /dx has at least two zeros.
Since the set of zeros of dV /dx is closed and the condition (2) implies
that it is also bounded, it follows that this set is compact. Thus, there
must be a maximal value x = b and a minimal value x = a such that
all zeros of dV /dx lie entirely in the closed interval [a, b] of the x-axis.
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Then we distinguish four cases:

(5)

(I)
dV

dx
> 0 for x > b and

dV

dx
< 0 for x < a

(II)
dV

dx
< 0 for x > b and

dV

dx
> 0 for x < a

(III)
dV

dx
> 0 for x > b and

dV

dx
> 0 for x < a

(IV)
dV

dx
< 0 for x > b and

dV

dx
< 0 for x < a.

In this paper, we shall prove the following theorem.

Theorem 1. If the set of bounded orbits of the system (1) is non-
empty, then it must be compact.

3. Proof of the theorem. We now first introduce a result from
[1], see [1, p. 910].

Consider the differential system

(6)

dx

dt
= X(x, y),

dy

dt
= Y (x, y),

in the plane R2 where X and Y are continuous and assume that
solutions of arbitrary initial value problems are unique. Let the vector
field V = (X, Y ) define a flow f(p, t).

Let B ⊂ R2 be the closure of a bounded and connected open set
with the boundary ∂B. Let L1 . . . Ln denote its boundary components,
where Li ∩ Lj = ∅ for i �= j, and L1 the external boundary. Each of
them is a smooth simple closed curve. We define three subsets b+, b−,
τ as follows:

b+ = {p ∈ ∂B | ∃ ε > 0 with f(p, (−ε, 0)) ∩ B = ∅} ,

b− = {p ∈ ∂B | ∃ ε > 0 with f(p, (0, ε)) ∩ B = ∅} ,

τ = {p ∈ ∂B | V is tangent to ∂B at p} .
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Definition 1 [3]. If b+ ∩ b− = τ and b+ ∪ b− = ∂B, then B is called
an isolating block for the flow defined by (6).

The following is a theorem in [1].

Theorem 2. The set of bounded orbits of the system (6) is compact
if and only if there is an isolating block B of the system (6) such that
all critical points and closed orbits of (6) are contained in the region G
enclosed by the external boundary L1 of B.

Proof of Theorem 2. See [1, Theorem 2.1].

Proof of Theorem 1. As stated above, it will be enough to consider
the case that dV /dx has at least two zeros. Consider first case (I). From
dV /dx > 0 for x > b and the condition (2), it follows that dV /dx ≥ ε
for x > R > b. Hence, we have

V (x) − V (b) =
∫ x

b

dV

dx
dx =

∫ R

b

dV

dx
dx +

∫ x

R

dV

dx
dx > ε(x − R).

This implies that V (x) → +∞ as x → +∞. From dV /dx < 0 for x < a
and the condition (2), it follows that dV /dx ≤ −ε for x < −R < a.
Hence we have

V (a) − V (x) =
∫ a

x

dV

dx
dx =

∫ −R

x

dV

dx
dx +

∫ a

−R

dV

dx
dx < ε(x + R).

This implies that V (x) → +∞ as x → −∞. Let F = −g =
(y2/2) + V (x). From (4), we have

(7)
dF

dt

∣∣∣∣
(1)

= θ y2.

Consider the family of curves

(8) F =
y2

2
+ V (x) − d = 0,

where d is an arbitrary constant. Noting that V (x) → +∞ as x → ±∞
together with the monotoneity of V (x) as x > b and as x < a, it is not
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difficult to check that there is a sufficiently large value d0 > 0 such that
the equation V (x) − 2d = 0 determines a unique positive real number
x1(d) > b and a unique negative real number x2(d) < a for each d ≥ d0.
Hence, (8) defines a family of closed curves in the plane for all d ≥ d0.
Each of these closed curves contains all critical points of the system (1)
in its interior. As stated above, (7) means that F is strictly increasing
on nonconstant orbits. Take d1 > d0, and let T denote the interior
region enclosed by the closed curve F = d1. It is easy to see that the
closure T is an isolating block. Obviously, all critical points of (1) are
contained in T . Since the system (1) has no closed orbits, Theorem 2
implies that the set of bounded orbits of (1) is compact.

Secondly consider case (II). Let β1 = maxa−1≤x≤b+1((1/θ) ·(dV /dx))
and β2 = mina−1≤x≤b+1((1/θ) · (dV /dx)). Choose M = (b + 1, 0) and
construct the straight line x = b + 1 through M . It intersects the
straight line y = β1 + 1 at Z1 = (b + 1, β1 + 1) and the straight line
y = β2 − 1 at Z2 = (b + 1, β2 − 1), respectively. Choose N = (a − 1, 0)
and construct the straight line x = a − 1 through N . It intersects
the straight line y = β1 + 1 at E1 = (a − 1, β1 + 1) and the straight
line y = β2 − 1 at E2 = (a − 1, β2 − 1), respectively. Let T1 denote
the interior region enclosed by the curvilinear figure MZ1E1NE2Z2M
made up of the straight line segments Z1E1, E1E2, E2Z2 and Z2Z1.
Let T1 denote its closure. From the second expression of (1) it follows
that dy/dt > 0 for all points on the line segment E1Z1 and dy/dt < 0
on the line segment E2Z2. From the first expression (1) it follows that
dx/dt > 0 for all points on the half-open line segment Z1M and E1N ,
and dx/dt < 0 on the half-open line segment Z2M and E2N . Since
dy/dt > 0 and dx/dt = 0 at M , M is an external tangency to T1.
Similarly, N is also an external tangency to T1. Clearly, no boundary
point of T1 is on a solution curve which is contained completely in T1.
Therefore, T1 is an isolating neighborhood of (1), see [2, pp. 3 4]. Let S
denote the maximal invariant set of (1) in T1. Clearly, all critical points
of (1) are contained in S. By [3, p. 53] we know that for the isolated
invariant set S and the isolating neighborhood T1, one can construct
an isolating block B for S which lies in T1. Then all critical points of
(1) lies in B. Since the system (1) has no closed orbits, Theorem 2
implies that the set of bounded orbits of (1) is compact.
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Thirdly consider case (III). As stated in case (I), we have dV /dx ≥ ε
for x > R > b and V (x) → +∞ as x → +∞. Noting that V (x) → +∞
as x → +∞ together with the monotoneity of V (x) as x > b, it is not
difficult to check that there is a sufficiently large value d2 > 0 such that
the curve

(9) F1 =
y2

2
+ V (x) − d2 = 0 and x ≥ b + 1

intersects the half axis x > b + 1 at M ′ and the straight line x = b + 1
at Z ′

1 = (b+1, δ1) and Z ′
2 = (b+1, δ2), respectively, where δ1 > β1 and

δ2 < β2. Construct the straight line y = δ1 through Z ′
1. It intersects

the straight line x = a − 1 at E′
1. Construct the straight line y = δ2

through Z ′
2. It intersects the straight line x = a − 1 at E′

2. Thus we
obtain a closed curve Z ′

1E
′
1E

′
2Z

′
2M

′Z ′
1 made up of the curve (9) Z ′

2M
′Z ′

1

and the straight line segments Z ′
1E

′
1, E′

1E
′
2, and E′

2Z
′
2. Let T2 denote

the interior region of this closed curve and T2 its closure. Using the
same argument used in cases (I) and (II), it follows that no boundary
point of T2 is on a solution curve which is contained completely in T2.
Therefore, T2 is an isolating neighborhood of (1). The same argument
used in case (II) implies that the set of bounded orbits of (1) is compact.

Finally, consider case (IV). As stated in case (I), we have V (x) → +∞
as x → −∞. This fact together with the monotoneity of V (x) as x < a
implies that there is a sufficiently large value d3 > 0 such that the curve

(10) F2 =
y2

2
+ V (x) − d3 = 0 and x ≤ a − 1

intersects the half axis x < a − 1 at N ′ and the straight line x = a − 1
at E3 = (a−1, δ3) and E4 = (a−1, δ4), respectively, where δ3 > β1 and
δ4 < β2. Construct the straight line y = δ3 through E3. It intersects
the straight line x = b + 1 at Z3. Construct the straight line y = δ4

through E4. It intersects the straight line x = b + 1 at Z4. Thus
we obtain a closed curve E3N

′E4Z4Z3E3 made up of the curve (10)
E3N

′E4 and the straight line segments E4Z4, Z4Z3, and Z3E3. Let T3

denote the interior region of this closed curve and T3 its closure. Then,
the same argument used in case (III) implies that the set of bounded
orbits of (1) is compact. This completes the proof of Theorem 1.

The following is a remark on Theorem 2.
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Remark 1. Consider now the following system [2, p. 31]

(11)

dx

dt
=

1 − x2

(1 + y2)
,

dy

dt
=

−2xy(1 − x2/3)
(1 + y2)2

.

It is easy to see that this system has only two critical points P1 =
(−1, 0) and P2 = (1, 0). The lines x = ±1 and y = 0 are invariant.
From (11) we know that dx/dt > 0 and dy/dt has the sign of −xy for
all points of band region −1 < x < 1. This implies that the orbits with
initial values (0, y0) tend to P1 and P2 respectively as t → −∞ and as
t → +∞. Thus the set of bounded orbits is not compact, see [2].

It is not difficult to prove that there is no isolating block satisfying
the conditions of Theorem 2. In fact, suppose that there is an isolating
block B such that the critical points P1 and P2 are contained in the
region G enclosed by the external boundary L1 of B (note that the
system (11) has no closed orbits). Then, there is a sufficiently large
value y0 > 0 such that for increasing time the bounded orbit Γ through
(0, y0) leaves G from U1 (a strict exit point on L1) and then enters
G at U2 on L1 so that the region K enclosed by the orbit arc U1U2

and the segmental arc U2U1 of L1 (corresponding to y > 0) is a simply
connected region. Lemma 3.1 (or Remark 3.1) in [1] implied that there
must be at least one critical point of (11) in K. This is a contradiction.
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