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BRANCH CURVES FOR CAMPEDELLI DOUBLE PLANES

CARYN WERNER

ABSTRACT. Following an idea of Stagnaro, we find new
examples of surfaces of general type with pg = q = 0 and
K2 = 1 and 2, constructed as branched double covers of the
plane, and we determine all possible configurations of branch
loci that are invariant under an involution.

1. Introduction. A numerical Godeaux surface is a minimal surface
of general type with pg = 0, K2 = 1. A numerical Campedelli surface
is a minimal surface of general type with pg = 0, K2 = 2. One method
for constructing each of these surfaces is as the minimal resolution of a
double cover of the plane branched over a (possibly reducible) curve of
degree 10. When the curve has one ordinary quadruple point and five
infinitely near triple points, not all on a conic, the surface obtained has
K2 = 1; when the curve has six infinitely near triple points, not on a
conic, the surface has K2 = 2. This double plane construction was first
suggested by Campedelli [7] 70 years ago; while isolated examples of
these branch curves have been found, there has been little systematic
work on their construction.

Recently Stagnaro [13] constructed several examples by considering
curves invariant under an involution of the plane. In this note we extend
this idea to find all possible configurations of branch curves invariant
under plane involution; we then compute the torsion of the resulting
surfaces.

The subgroup of torsion divisors in the Picard group gives a classi-
fication of numerical Godeaux surfaces. The torsion subgroup can be
one of {1}, Z/2Z, Z/3Z, Z/4Z, or Z/5Z. The surfaces with torsion
Z/3Z,Z/4Z, and Z/5Z have been completely classified, see [12], and
have smooth moduli spaces of dimension 8. Examples of surfaces with
trivial torsion, see [1], and order two torsion, see [2, 14], have been
constructed, but little is known about their moduli.

Less is known of numerical Campedelli surfaces. There are several
examples of these surfaces constructed as quotients of group actions on
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complete intersections, as well as constructions as double planes, see
for example [8, 11].

Recently Calabri, Ciliberto and Mendes Lopes [5] have classified
all numerical Godeaux surfaces with involution. A similar study
of numerical Campedelli surfaces with involution has been done by
Calabri, Mendes Lopes and Pardini in [6].

The paper is organized as follows. In Section 2, we review the double
plane surfaces determined by these curves, and in Section 3, we analyze
the construction of the singular branch curves that are invariant under
an involution. In Section 4 we compute the torsion of the numerical
Godeaux surfaces to be of order four. In the case of the numerical
Campedelli surfaces, we show that the torsion group must contain
Z/2Z⊕ Z/2Z.

2. Double covers of the plane. Let C denote a possibly
reducible degree ten curve in the projective plane with one ordinary
quadruple point P0 and five infinitely near triple points P1, . . . , P5.
(An infinitely near triple point refers to a triple point where all three
tangent directions coincide, so that after blowing up the plane at the
point the proper transform of the curve has a triple point.) We require
that the six points P0, P1, . . . , P5 do not lie on a conic.

Write ρ1: Y1 → P2 for the blowup of the plane at P0, P1, . . . , P5, with
Ei = ρ−1

1 (Pi) the exceptional curve above each point Pi. The strict
transform of C has an ordinary triple point Pi

′ on each curve Ei for
i = 1, . . . , 5. Blowing up each of the five Pi

′ resolves the singularities
of C, and composing with ρ1, we obtain a rational map, ρ: Y → P2.
Setting C to be the strict transform of C on Y , we have

C ≡ 10H − 4E0 − 3
5∑
1

Ei − 6
5∑
1

Fi

where H denotes the pullback to Y of the class of a line in the
plane, Fi denotes the second set of exceptional curves obtained by
blowing up Y1 at P1

′, . . . , P5
′ (we abuse notation by letting E0, . . . , E5

denote the proper transform of the exceptional curves on Y ). Then
C +

∑5
1 Ei = 2L is an even divisor, and we can form the double cover

π: X → Y of the surface Y branched along 2L (locally z2 = f(x, y),
where f(x, y) is a local equation for the branch curve C +

∑5
1 Ei).
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If C has no other singularites than those prescribed, then X is a
non-singular surface. The curves Ei, i = 1, . . . , 5 have self-intersection
−2 on Y . Since they are components of the branch locus, π−1(Ei)
are (−1)-rational curves on X. Contract these five curves to obtain the
surface X.

Proposition 2.1. The surface X is a numerical Godeaux surface.

Proof. The proof is standard, see, for example, [3], and we just
sketch it here. We have branch curve C on the rational surface Y ,
where ρ: Y → P2 is the eleven-fold blowup of the plane. The canonical
divisor on the surface Y , KY , is given by

KY ≡ ρ∗ (KP2) + E0 +
5∑
1

Ei + 2
5∑
1

Fi.

Since Y is obtained from the plane by 11 blow-ups, KY
2 = KP2

2−11 =
−2. By the projection formula for the double cover π: X → Y ,
π∗OX = OY ⊕OY (−L), where 2L is linearly equivalent to the branch
curve. Since this branch curve is

C +
5∑
1

Ei ≡ 10H − 4E0 − 2
5∑
1

Ei − 6
5∑
1

Fi,

we have L ≡ 5H − 2E0 −
∑5

1 Ei − 3
∑5

1 Fi and L2 = −4.

By Riemann-Roch, χ(OX) = 1, where χ(OX) = 1 − q + pg,
with irregularity q = dim H1(X,OX) and pg = dim H2(X,OX) =
dim H0(X,OX(KX)) the geometric genus of X.

The canonical divisor on the double cover X is KX = π∗(KY + L),
so that KX = π∗(2H − E − ∑5

1 Fi

)
. Therefore, the canonical system

|KX | corresponds to the system of plane conics which pass through the
six singular points of the branch curve C. The condition that these six
points do not lie on a conic implies that this system is empty; therefore,
pg = 0, which implies q = 0.

We also have

2KX ≡ π∗
(

4H − 2E − 2
5∑
1

Fi

)
,
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so the bicanonical system is the pullback to X of the system of plane
quartics with a double point at P0, through P1, . . . , P5 with the same
tangent direction as C. This corresponds to a pencil of plane quartics,
therefore dim

(
H0 (X, 2KX)

)
= 2, thus X is of general type.

Next we compute the self-intersection of KX on the non-minimal
surface X. Since KX = π∗(KY + L), KX

2 = 2 (KY + L)2 = −4.
After blowing down the five exceptional curves on X to obtain X, we
have KX

2 = 1. Since dim
(
H0 (X, 2KX)

)
= 1 + KX

2, X is minimal.
Therefore X is a numerical Godeaux surface.

The case of numerical Campedelli surfaces is similar. We let C be a
degree ten plane curve with six infinitely near triple points P0, . . . , P5.
As above we let ρ: Y → P2 be the blowup of the plane resolving the
singularities of the curve C; in this case Y is the twelve-fold blowup of
P2. We require that the six points P0, . . . , P5 do not lie on a conic,
and that C has no additional singularities. Using the same notation as
above, we have as proper transform of the branch curve

C ≡ 10H − 3
5∑
0

Ei − 6
5∑
0

Fi

and C +
∑5

0 Ei = 2L is an even divisor, so we can form the double
cover π: X → Y of the surface Y branched along 2L.

If C has no other singularites than those prescribed, then X is a non-
singular surface. The six curves π−1(Ei) are −1-exceptional curves on
X; contracting these we obtain the surface X.

Proposition 2.2. The surface X is a numerical Campedelli surface.

Proof. As above we use Riemann-Roch to see that χ(OX) = 1.
In this case the canonical divisor on X is KX ≡ π∗ (KY + L) =
π∗(2H − ∑5

0 Fi

)
, so again the canonical system corresponds to the

system of plane conics through the six singular points of the branch
curve C. By our assumption this system is empty, and therefore pg = 0
and q = 0.

Also 2KX = π∗(4H − 2
∑5

0 Fi

)
, thus the bicanonical system corre-

sponds to plane quartics through all six points Pi with the same tangent
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direction as C. This is again the pullback of a system of plane quartics;
in this case dim

(
H0 (X, 2KX)

)
= 3, and X is of general type.

Finally, we have KX
2 = 2 (KY + L)2 = −4; blowing down the six

exceptional curves Ei we have KX
2 = 2 on the minimal surface X.

Therefore X is a numerical Campedelli surface.

We check in Section 3 that for our examples of branch curves, each
resulting Campedelli surface has

∣∣2KX

∣∣ free from base points, thus the
bicanonical map is a morphism.

3. The branch curves. Consider the space of degree ten plane
curves defined by homogeneous polynomial F (X, Y, Z) = 0, where
we use homogeneous coordinates [X: Y : Z] on P2. The polynomial
F (X, Y, Z) depends on 66 coefficients, so we have a 65-dimensional
projective space of degree ten plane curves. Following Stagnaro [13],
we consider the polynomials invariant under the involution [X: Y : Z] →
[X:−Y : Z]. The subspace of degree ten plane curves invariant under
this action is 35-dimensional. As we require that the six singular points
of the branch curve do not lie on a conic, two of these points must be
invariant with respect to this involution. We use a computer algebra
system to generate the polynomials for the branch curves.

3.1 Godeaux branch curves. We first find branch curves for
numerical Godeaux surfaces, that is, curves C with one order four
point and five infinitely near triple points. We place the order four
point P0 at [1: 0: 0] and a triple point P1 at [0: 0: 1] with infinitely near
tangent direction X = 0 (so after blowing up P1, the transform of
the curve passes through P1

′). These points are invariant under the
involution, and each of these singularities imposes six conditions on
invariant polynomials F (X, Y, Z), so the space of these curves is 23-
dimensional. To impose the remaining four infinitely near triple points,
we choose two pairs of points, P2, P3 and P4, P5 occurring as orbits of
the involution. Each orbit will impose twelve linear conditions on the
coefficients of the polynomial F . Allowing the points to vary, we can
find curves C with the required singularities.

There is a 16-dimensional projective space of sextics invariant under
this involution. It is two conditions for these curves to have a double
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point at P0 and one condition to pass through P1 with tangent X =
0. A tacnode imposes six conditions on the space of plane curves;
therefore, there exists a sextic S with a double point at P0, through P1

with the tangent X = 0, and with tacnodes at P2, . . . , P5 with the same
tangent direction as C. The curve S intersects C with multiplicity 8
at P0, 6 at P1, and 12 at P2, P3, P4, P5. This give a total intersection
of 8 + 6 + 48 = 62; therefore, S must be a component of C and C
is reducible. By considering this sextic S, we analyze the possible
configurations of branch curves.

Theorem 3.1. Let C be a degree ten plane curve, invariant under
the involution, with one order four point and five infinitely near triple
points, so that the double plane ramified over C is a numerical Godeaux
surface. Let Ci, Di denote irreducible plane curves of degree i. Then C
must be one of the following:

(1) C4 + C6 (6) C2 + C8

(2) C2 + D2 + C6 (7) C2 + C4 + D4

(3) C1 + C4 + C5 (8) C3 + D3 + C4

(4) C1 + D1 + C8 (9) C2 + D2 + C3 + D3.

(5) C1 + D1 + C4 + D4

The configuration of C as in case (1) is given by Stagnaro [13],
and case (6) can be obtained from Stagnaro’s example by a birational
transformation of the plane. Examples of C as in cases (5) and (9)
were given by Oort and Peters [10]; the other cases for C yield new
examples.

Proof. To enumerate the possible branch curves C, we consider the
sextic S, which is invariant under the involution, has a double point at
P0, passes through P1, P1

′, and has tacnodes at P2, P3, P4, P5. Since S
is a component of C, the other components of C must form a degree four
curve, with a double point at P0, a tacnode at P1, through P2, P3, P4, P5

with the same tangent direction as S.

If S is irreducible, then C cannot have a line as component. Therefore
the possibilities are cases (1) and (2). The case of irreducible sextic and
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quartic composing C is given in Stagnaro [13]. In case (2) we obtain
new examples of branch curves, one where each conic is invariant under
the involution, and another where the conics are mapped to each other
by the involution. In the case where C = C2 + D2 + C6, where the
conics C2 and D2 are each invariant, a set of polynomials defining the
curves is xz + 2y2, xz + y2, and

x4y2 + 8x2y4 − 2y6 + 12x3y2z + 21xy4z + 23x2y2z2 + 20y4z2 − 6x3z3

+ 6xy2z3 − 18x2z4 − 14y2z4 − 15xz5;

here P2 = [−1: 1: 1], P3 = [−1:−1: 1], P4 = [−2: 1: 1], P5 = [−2:−1: 1].
The conics have the same tangent at P0, which results in an additional
double point on E0; this double point can be resolved without changing
the invariants of the resulting double cover.

In the case where the two conics are exchanged by the involution, an
example is given by xy − 2y2 + xz, −xy − 2y2 + xz, and

y2(25600x4 + 189024x3z + 411326x2z2 − 122868xz3 − 6075z4)
+ y4(−201439x2 − 742742xz + 101430z2) + 396165y6

− 23296x4z2 − 72800x3z3 + 42273x2z4 + 3402xz5.

The singular points in this example are P2 = [1: 1: 1], P4 = [9/2: 3: 1],
and P3, P5 their images under the involution Y → −Y .

Next suppose S is reducible. If S contains a line as a component, the
line must be tangent to Pi for i = 2, 3, 4, or 5. In this case S splits as
a line and a quintic, or as two lines and a quartic. If S has only one
line as component, the other component of S must be an irreducible
quintic, and we obtain case (3). An example of such a curve is given
by the line x = 2z, the quartic 49x2y2 + 16y4 − 114xy2z + 4x2z2 = 0,
and

1225x3y2 + 396xy4 − 5044x2y2z − 720y4z − 3996x3z2 + 3821xy2z2

+ 17208x2z3 + 2590y2z3 − 18396xz4.

Here P2 = [2: 1: 1], P3 = [2:−1: 1], P4 = [1: 2: 1], P5 = [1:−2: 1]. In this
case C has an additional double point away from P0, . . . , P5, as the
line is tangent to the quintic at P2 and P3, so there is one additional
point of intersection. This ordinary double point does not affect the
invariants of the resulting surface.
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In the case where the tangents to both pairs P2, P3 and P4, P5 are
collinear (and necessarily components of C), we obtain either case
(4), where the other component of C is an irreducible octic, and case
(5), where the octic reduces into two quartics. Examples of both of
these cases can be obtained by applying a Cremona transformation to
previous examples. We have the general fact:

Remark 3.2. Consider a plane curve of degree d with order n point
at P0, order m point at P1 and at P1

′. Then the image of this curve
under the Cremona transformation centered at P0, P1, P1

′ is a plane
curve of degree 2d − 2m − n, with an order d − 2m point at P0 and
order d − n − m points at P1, P1

′.

Examples of case (4), C composed of two lines and an irreducible
octic, can be obtained by applying this Cremona transformation to the
curves in case (2). Similarly an example of case (5) can be obtained by
transforming the curves in the last case (4).

If the sextic S does not have a linear component, then it either
contains a conic, or it consists of two cubics. When S does contain a
conic as component, then the conic must be tangent to C at P2, . . . , P5.
In this case this conic is a component of the branch curve C, and the
remaining octic is either irreducible, as in case (6), composed of two
quartics, as in case (7), or composed of a sextic and conic, so that again
the branch curve C consists of a sextic and two conics. The case (6) can
be obtained from case (1), and case (7) from case (8), by a Cremona
transformation. Another example of C composed of a sextic and two
conics is obtained by the Cremona transformation of the curves in case
(3). Note that this example of a sextic and two conics making up C
is distinct from that previously given for case (2), as this sextic has a
triple point at P0, and is different from S.

Lastly, when S is composed of two cubics, we obtain either case (8) or
(9); an example of case (8) is given by polynomials 36x3−9xy2−48x2z+
14y2z+7xz2, 15x2y2−4y4−2xy2z−9x2z2 and xy2+4y2z+9xz2−14z3,
with singularities at P2 = [1: 1: 1], P3 = [1:−1: 1], P4 = [−7/3:

√
21: 1],

P5 = [−7/3:−√
21: 1]. An example of case (9) is given in [10].
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3.2 Campedelli branch curves. We proceed as above to find
branch curves for the numerical Campedelli construction. Two of the
triple points are necessarily invariant under the involution, and we
choose two orbits of points for the remaining four singularities. Again
each of the invariant triple points will impose six conditions on the 35-
dimensional space of invariant degree 10 curves. The remaining triple
points will each impose 12 conditions, and allowing the points to vary
we may find such curves.

In this case there exist (possibly reducible) degree four curves Q0

and Q1, invariant under the involution, which pass through each of the
six singular points with the same tangent direction as C, and have a
tacnode at P0 or P1, respectively. These quartics must intersect C with
multiplicity 42, and therefore must be components of C. Thus, C is
necessarily reducible.

Choose invariant points P0 = [1: 0: 0] with tangent direction Z = 0
and P1 = [0: 0: 1] with tangent X = 0.

Theorem 3.3. The possible configurations for degree ten curves
C invariant under the involution,with six infinitely near triple points
and no other singularities, are as follows, where Ci, Di and Ei denote
irreducible curves of degree i:

(1) C2 + C4 + D4

(2) C1 + D1 + C4 + D4

(3) C2 + D2 + C6

(4) C2 + D2 + C3 + D3

(5) C2 + D2 + E2 + C4.

Proof. The first three cases are the configurations of Campedelli
curves given by Stagnaro [13]; case (5) is the classical Campedelli con-
struction, while the configuration in case (4) was given by Campedelli-
Kulikov-Oort, see [8]. Here we give examples of each class, and com-
plete the classification to prove that any such Campedelli branch curve,
invariant under involution, must have one of these forms.

We use the quartics Q0 and Q1. The general plane quartic polyno-
mial, invariant under involution, has nine coefficients. A tacnode at P0,
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with tangent Z = 0, imposes three linear conditions; it is one condition
to require the curve to pass through P1 with tangent X = 0, and re-
quiring this curve to pass through two pairs of points P2, P3 and P4, P5,
with designated tangent directions places an additional four linear con-
ditions on the coefficients of the polynomial. Thus, for any choice of
points P2 and P4 and corresponding tangent directions, we can find a
possibly reducible quartic Q0 (and similarly Q1).

If both quartics are irreducible, then we obtain the first and sec-
ond cases, where Q0 and Q1 are components of C. An example of
polynomials defining the components of C as in case (1) are quar-
tics 123y4 − 205xy2z + 85x2z2 − 32y2z2 + 29xz3 and −160x2y2 −
1587y4 + 145x3z + 3289xy2z − 1687x2z2, together with the conic
5x2 − 108y2 + 62xz + 41z2, where the singularities are at the points
P2 = [1: 1: 1], P3 = [1:−1: 1], P4 = [(23/5): 2: 1], P5 = [(23/5):−2: 1].

For case (2), the curve C has bitangents through P2, P4 and P3, P5

and these two lines are components of C, for example, the lines
x + y + z and x − y + z which are tangent to the quartic curve
56x3z − 35x2y2 + 72x2z2 − 132xy2z + 36y4 and the quartic curve
40x2z2 + 6xy2z + 56xz3 − y4 − 35y2z2 at [−2: 1: 1], [3:−4: 1] and
[−2:−1: 1], [3: 4: 1]. In this case there is one additional singularity
of C, namely at the intersection point of the two lines. This is an
ordinary double point, whose resolution does not affect the invariants
of the resulting double cover.

More generally, given any conic, invariant under our involution, and
a choice of points P2 and P4 on the conic (and their images under
the involution, P3 and P5), we can find Q0 and Q1. For the general
choice of these points, these curves will not have additional singularities,
the six points P0, . . . , P5 will not lie on a conic, and we will obtain a
Campedelli branch curve configuration.

When the quartic Q0 is reducible, it must decompose as two irre-
ducible conics, and coincide with Q1; thus, we obtain the third case.
We have two conics, C1 and C2, both through P0 and P1 with the des-
ignated tangent directions, C1 through P2, P3 and C2 through P4, P5.
A dimension count shows that for general points P2, . . . , P5, there is a
pencil of sextics, invariant under the involution, tangent to C1 and C2

at P0 and P1, with tacnodes at P2, P3, P4, P5 with the tangents desig-
nated by C1 and C2. By Bertini’s theorem the general member of this
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pencil will be an irreducible sextic with no additional singularities, as
in case (3).

For example, in this case we have a family of branch curves given by
the conics y2 + xz and y2 − 4xz, with P2 = [−4: 2: 1], P3 = [−4:−2: 1],
P4 = [1: 2: 1], P5 = [1:−2: 1], and the pencil of sextics generated by

(
y2 + xz

) (
4x2 − 5y2 + 12xz + 4z2

)2

and (
y2 − 4xz

) (
x2 − 5y2 + 3xz + 16z2

)2
.

One reducible member of the pencil of sextics is the curve composed of
two cubics, each tangent to C1, C2 at P2, . . . , P5, one cubic tangent at
P0, the other at P1. This gives case (4); in our example, this reducible
member is composed of the cubic curves defined by x3 − 2xy2 +6x2z−
3y2z + 13xz2 and 3xy2 + 4x2z − 8y2z + 16z3.

Lastly, given the conics C1 and C2 as above, suppose there exists
an invariant conic Q tangent to C at four points P2, P3, P4, and
P5. In this case C1, C2, and Q must be components of C, and
the remaining component must be of degree four, through each of
the six points P0, . . . , P5 with coinciding tangent direction. These
requirements impose six conditions on the eight-dimensional space of
invariant quartics, and there is a two-dimensional family of such curves.
Again Bertini’s theorem guarantees that the general member have no
additional singularities. An example of this final case is given by C1,
C2 as above, and the conic Q defined by 5x2 − 4y2 + 6xz + 5z2 is
tangent to C1 at P2 = [−1: 1: 1], P3 = [−1:−1: 1] and tangent to C2 at
P4 = [1: 2: 1], P5 = [1:−2: 1]. Then the net of quartics is given by

α
(
12y4 + 20x3z − 52xy2z − 24x2z2 + 20xz3

)
+ β

(−5y4 + 15xy2z + 20x2z2
)

+ γ
(
20x2y2 − 16y4 + 24xy2z + 20y2z2

)
.

It is not known whether all minimal surfaces of general type with
pg = 0, K2 = 2, must have bicanonical map a morphism; for all known
examples the bicanonical system is base point free. We prove this is
the case for our examples.
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Proposition 3.4. For each of the above configurations of Campedelli
branch curves, the minimal model of the double cover, X, has bicanon-
ical system free from base points.

Proof. Consider the first configuration of branch curve for a Campedelli
surface, with C2 representing the pullback to Y of the conic component
of the branch curve, through the points P2, . . . , P5, Q0 the quartic with
a tacnode at P0, through each of the remaining Pi with the same tan-
gent as C2, and Q1 the quartic with a tacnode at P1, through the
remaining five Pi with the tangent as C2. Then we have three mem-
bers of |2K|,

M1 = 2
(
π−1(Q0) + π∗(F0)

)
M2 = 2

(
π−1(Q1) + π∗(F1)

)
M3 = 2

(
π−1(C2) + π∗(L01)

)

where L01 represents the pullback to Y of the line through P0 and P1.
Since the proper transforms of Q0 and Q1 are disjoint, any base point
of |2K| must lie on F0 ∩Q1 or F1 ∩Q0. But C2 does not pass through
F0 or F1 (since the conic does not contain the points P0 or P1), and
the line L01 will meet F0 and F1 at the points contracting E0 and E1.
Thus there are no base points. The other cases are proved similarly.

4. Torsion.

Proposition 4.1. The numerical Godeaux surfaces constructed
above have torsion Z/4Z.

As the torsion of the surface is unchanged by blowing down curves,
we compute the torsion working on the double cover X. To prove the
proposition, we first note that the surface X has order two torsion,
using the following lemma.

Lemma 4.2 (Beauville [4]). Let Y be a smooth surface with no
torsion, {Ci}i∈I a collection of smooth disjoint curves on Y and π: X →
Y a connected double cover branched along ∪i∈ICi. Define a map
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ϕ:Z/2ZI → Pic Y ⊗ Z/2Z by sending
∑

niCi to its class in Pic Y .
If e =

∑
i∈I Ci, then the group Pic2X of 2−torsion elements in PicX

is isomorphic to ker (ϕ) / (Z/2Z) e.

If
∑

i∈J Ci ≡ 2A is an even divisor on Y , where J ⊂ I, then the map
from the kernel of ϕ to Pic X sends

∑
i∈J Ci to

∑
i∈J π−1(Ci)−π∗(A).

For components Ci of the branch locus of π: X → Y , 2π−1(Ci) =
π∗(Ci), thus

∑
i∈J π−1(Ci) − π∗(A) is 2-torsion in PicX.

In the case of the surface constructed using the branch curve com-
posed of a quartic and a sextic, C = Q4+S6, both the proper transform
of Q4 and of S6 on Y are even divisors, so we obtain order two torsion.
In particular,

τ1 = π−1 (Q4) − π∗ (2H − E − 2F1 − F2 − F3 − F4 − F5)
and

τ2 = π−1 (S6) − π∗ (3H − E − F1 − 2F2 − 2F3 − 2F4 − 2F5)

are both order two, with

τ1 + τ2 = π−1 (C) − π∗ (L) ≡ 0.

Alternately we note that for any torsion divisor τ on X, by Riemann-
Roch the divisor Dτ = KX + τ is effective. Thus if τ is of order two,
2Dτ ≡ 2KX . As KX = π∗ (KY + L) = π∗

(
2H − E − ∑5

1 Fi

)
, the

bicanonical system |2KX | corresponds to the pencil of plane quartics
which have a double point at the order four point of C, and which
pass through each of the five triple points of C with the same tangent
direction as C. Therefore π∗(Q4 + 2F1) is in the bicanonical system,
and

2
(
π−1(Q4) + π∗(F1)

) ≡ 2KX .

Thus X has order two torsion. We next determine the base points
of the tricanonical system to finish the computation of the torsion,
applying the following.

Lemma 4.3 (Miyaoka [9]). For a minimal Godeaux surface, the
number of base points of |3K| is equal to⎧⎨

⎩
0 if Tors = 0 orZ/2Z
1 if Tors = Z/3Z orZ/4Z
2 if Tors = Z/5Z.
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Thus if |3K| has one base point, since there is order two torsion the
torsion group must be Z/4Z.

We use the projection formula to compute the base points of the
tricanonical system. Since π∗OX = OY ⊕ OY (−L) and KX =
π∗ (KY + L), we have

π∗OX (3KX) = OY (3KY + 3L) ⊕OY (3KY + 2L) .

As 3KY + 3L ≡ 6H − 3E − 3
∑5

1 Fi and 3KY + 2L ≡ H − E, the
tricanonical system on X corresponds to sections of OY (3KY + 3L),
the pencil of plane sextics with a triple point at P0, and double points
at each of the Pi where one tangent direction coincides with C, together
with sections of OY (3KY + 2L), the pencil of lines through P0.

We have
3KX ≡ π−1(C) + π∗(H − E);

since the pencil of lines |π∗(H − E)| has no base points, any base point
of |3KX | must lie on the branch curve π−1(C).

Also
3KX ≡ M = π∗

(
6H − 3E − 3

∑
Fi

)
,

thus any base point of |3KX | must be a base point of the pencil |M |.
For each of our two examples of C, computing the pencil of plane

sextics, we find that |M | has one base point that lies on π−1(C). Thus
the surface X, and therefore X, has order four torsion.

Proposition 4.4. The numerical Campedelli surfaces constructed
above have 2-torsion subgroup Tors2 = Z/2Z ⊕ Z/2Z in cases (1) (4)
of Theorem 3.3, and Tors2 = (Z/2Z)3 in case (5).

Proof. Case (5) of Theorem 3.3, the classical Campedelli configura-
tion, has torsion group equal to (Z/2Z)3, see [8]. In the other cases we
consider the bicanonical system on X, for each of the branch curves C
of the double cover π: X → Y ,

(i) C is a conic and two quartics,

(ii) C is two lines and two quartics,

(iii) C is two conics and a sextic,
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(iv) C is two conics and two cubics.

In case (i), we have branch divisor C = C2 + Q0 + Q1 with

C2 ≡ 2
(

H −
5∑
2

Fi

)

Q0 ≡ 2
(

2H − 2F0 −
5∑
1

Fi

)

Q1 ≡ 2
(

2H − F0 − 2F1 −
5∑
2

Fi

)
;

thus,

τ1 = π−1 (C2) − π∗
(

H −
5∑
2

Fi

)

τ2 = π−1 (Q0) − π∗
(

2H − 2F0 −
5∑
1

Fi

)

τ3 = π−1 (Q1) − π∗
(

2H − F0 − 2F1 −
5∑
2

Fi

)

are each order two torsion divisors, with

τ1 + τ2 + τ3 = π−1 (C) − π∗ (L) ≡ 0.

In case (ii), we have C = L1 + L2 + Q0 + Q1 with

L1 + L2 ≡ 2 (H − F2 − F3 − F4 − F5)

Q0 ≡ 2
(

2H − 2F0 −
5∑
1

Fi

)

Q1 ≡ 2
(

2H − F0 − 2F1 −
5∑
2

Fi

)
;
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thus,

τ1 = π−1 (L1 + L2) − π∗
(

H −
5∑
2

Fi

)

τ2 = π−1 (Q0) − π∗
(

2H − 2F0 −
5∑
1

Fi

)

τ3 = π−1 (Q1) − π∗
(

2H − F0 − 2F1 −
5∑
2

Fi

)

are each order two torsion divisors, with

τ1 + τ2 + τ3 = π−1 (C) − π∗ (L) ≡ 0.

In cases (iii) and (iv), the branch curve is C = C1 + C2 + S6 with

C1 ≡ 2 (H − F0 − F1 − F2 − F3)
C2 ≡ 2 (H − F0 − F1 − F4 − F5)
S6 ≡ 2 (3H − F0 − F1 − 2F2 − 2F3 − 2F4 − 2F5) ,

and 2-torsion divisors

τ1 = π−1 (C1) − π∗ (H − F0 − F1 − F2 − F3)
τ2 = π−1 (C2) − π∗ (H − F0 − F1 − F4 − F5)
τ3 = π−1 (S6) − π∗ (3H − F0 − F1 − 2F2 − 2F3 − 2F4 − 2F5) ,

τ1 + τ2 + τ3 = π−1 (C) − π∗ (L) ≡ 0.

Therefore in each case, we have Z/2Z ⊕ Z/2Z ⊆ Tors2 (X). By
Lemma 4.2, all 2-torsion on the double cover comes from the decom-
position of the branch curve, thus

Z/2Z ⊕ Z/2Z = Tors2 (X) .
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