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BOUNDEDNESS OF SOLUTIONS OF
SECOND-ORDER FORCED NONLINEAR

DYNAMIC EQUATIONS

S.H. SAKER

ABSTRACT. In this paper, we give some sufficient condi-
tions which ensure that every solution of a certain class of
forced nonlinear dynamic equations of the form

(∗) xΔΔ(t) + qσ(t)f(x(t)) = r(t),

on time scale T is bounded. To the best of our knowledge
nothing is known regarding the qualitative behavior of solu-
tions of the nonlinear dynamic equation (∗) on time scales
until now. Our results not only unify the boundedness of
differential and difference equations but are also new for the
q-difference equations.

1. Introduction. The theory of time scales, which has recently
received a lot of attention, was introduced by Stefan Hilger in his Ph.D.
Thesis [16] in order to unify continuous and discrete analysis. Not only
can this theory of the so-called “dynamic equations” unify the theories
of differential equations and difference equations, but also it is able to
extend these classical cases to cases “in between,” e.g., to so-called q-
difference equations. A time scale T is an arbitrary closed subset of the
reals, and the cases when this time scale is equal to the reals or to the
integers represent the classical theories of differential and of difference
equations. Many other interesting time scales exist, and they give rise
to plenty of applications, among them the study of population dynamic
models, see [5]. A book on the subject of time scales by Bohner and
Peterson [5] summarizes and organizes much of the time scale calculus,
see also [1]. For the notions used below we refer to [5] and to the next
section, where we recall some of the main tools used in the subsequent
sections of this paper.
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The problem of obtaining sufficient conditions to ensure that all
solutions of certain classes of second order dynamic equations are
oscillatory has been studied by a number of authors [2 4, 6 15, 17,
18]. A large portion of these results have been for the nonlinear
dynamic equation of the form

(1.1) (α(t)xΔ)Δ + q(t)(f ◦ xσ) = 0, t ∈ T,

with q(t) ≥ 0. Although much less is known regarding the oscillatory
behavior of (1.1), when q(t) is oscillatory, to the best of our knowledge
there is only one paper in this direction [13].

Following this trend, in this paper we will consider the forced nonlin-
ear dynamic equation

(1.2) xΔΔ(t) + qσf(x(t)) = r(t), t ∈ T,

where qσ(t) and r(t) are real-valued rd−continuous functions defined
on the time scale T and qσ(t) > 0 (throughout a, b ∈ T with a < b).
Since we are interested in asymptotic behavior of solution of (1.2), we
suppose that the time scale under consideration is not bounded above,
i.e., it is a time scale interval of the form [t0,∞). By a solution of (1.2)
we mean a nontrivial real-valued function x satisfying equation (1.2)
for t ≥ t0.

In this paper, in Section 3, we show that, under quite general
conditions, solutions of (1.2) can be defined for all t ≥ t0. We will
establish some sufficient conditions for the boundedness of all solutions
of (1.2). To the best of our knowledge this approach to the study of
(1.2) of asymptotic behavior has not been studied before.

Note that if T = R, we have σ(t) = t, μ(t) = 0, xΔ(t) = x′(t), and
(1.2) becomes the second-order nonlinear differential equation

(1.3) x′′(t) + q(t)f(x(t)) = r(t), t ∈ [t0,∞).

If T = N, we have σ(t) = t + 1, μ(t) = 1, xΔ(t) = Δx(t) = x(t + 1)
−x(t), and (1.2) becomes the second order nonlinear difference equation

(1.4) Δ2xt + qt+1 f(xt) = rt, t ∈ [t0,∞).

If T = hN, h > 0, we have σ(t) = t + h, μ(t) = h, xΔ(t) = Δhx(t) =
(x(t + h) − x(t))/h, and (1.2) becomes

(1.5) Δ2
hxt + qt+h f(xt) = rt, t ∈ [t0,∞).
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If T = �N = {�k, k ∈ N, � > 1}, we have σ(t) = �t, μ(t) = (� − 1)t,
xΔ

� (t) = (x(�t) − x(t))/(� − 1)t, and (1.2) becomes

(1.6) Δ2
�xt + q�t f(xt) = rt, t ∈ [t0,∞).

Our results not only unify the boundedness of all solutions of (1.3) and
(1.4) but also are essentially new for equations (1.5) and (1.6). Also,
we note that our results can be applied on other time scales for which
the forward jump operator and the step function are defined.

2. Some preliminaries on time scales. A time scale T is an
arbitrary nonempty closed subset of the real numbers R. On any time
scale T we define the forward jump operator and the graininess function
by:

σ(t) := inf{s ∈ T : s > t} and μ(t) := σ(t) − t.

A point t ∈ T with σ(t) = t is called right-dense while t is referred to
as being right-scattered if σ(t) > t. The backward jump operator ρ(t)
and left-dense and left-scattered points are defined in a similar way.

A function f : T → R is said to be rd-continuous if it is continuous
at each right-dense point and if there exists a finite left limit in all
left-dense points. The (delta) derivative is defined by

fΔ(t) = lim
s→t

s∈U(t)

f(σ(t)) − f(s)
σ(t) − s

, where U(t) = T \ {σ(t)}.

The derivative and the shift operator σ are related by the useful formula

(2.1) fσ = f + μfΔ, where fσ := f(σ(t)).

We will make use of the following product and quotient rules for the
derivative of the product fg and the quotient f/g (where ggσ �= 0) of
two differentiable functions f and g:

(2.2) (fg)Δ = fΔg + fσgΔ, and
(

f

g

)Δ

=
fΔg − fgΔ

ggσ
.

By using the product rule form (2.2), the derivative of f(t) = (t−α)m

for m ∈ N, and α ∈ R can be calculated, see [5, Theorem 1.24], as

fΔ(t) =
m−1∑
ν=0

(σ(t) − α)ν (t − α)m−ν−1.
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For a, b ∈ T, and a differentiable function f , the Cauchy integral of fΔ

is defined by
b∫

a

fΔ(t)Δt = f(b) − f(a).

The integration by parts formula follows from (2.2) and reads

(2.5)

b∫
a

f(t)gΔ(t)Δt = [f(t)g(t)]ba −
b∫

a

fΔ(t)g(σ(t))Δt,

and infinite integrals are defined as

∞∫
a

f(t)Δt = lim
b→∞

b∫
a

f(t)Δt.

Note that if T = R, we have σ(t) = ρ(t) = t, μ(t) = 0, fΔ(t) = f ′(t),
and

b∫
a

f(t)Δt =

b∫
a

f(t) dt.

If T = N, we have σ(t) = t + 1, ρ(t) = t − 1, μ(t) = 1,

fΔ(t) = Δf(t) = f(t + 1) − f(t), and

b∫
a

f(t)Δt =
b−1∑
i=a

f(i).

If T = hN, we have σ(t) = t + h, ρ(t) = t − h, μ(t) = h,

fΔ(t) = Δf(t) =
f(t + h) − f(t)

h
, and

b∫
a

f(t)Δt =
(b/h)−1∑
i=(a/h)

hf(ih).

If T = qN = {t : t = qk, k ∈ N, q > 1}, we have σ(t) = qt,
μ(t) = (q − 1)t,

xΔ
q (t) =

x(qt) − x(t)
(q − 1)t

and

∞∫
a

f(t)Δt =
∞∑

k=0

μ(qk)f(qk).
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On an arbitrary time scale T, the usual chain rule from calculus is
no longer valid, see Bohner and Peterson [5, p. 31]. One form of the
extended chain rule is as follows, see [5, p. 32].

Lemma 2.1. Assume that g : T → R is delta differentiable on
T. Assume that f : R → R is continuously differentiable. Then
f ◦ g : T → R is delta differentiable and satisfies

(f ◦ g)Δ(t) =

{ 1∫
0

f ′(g(t) + hgΔ(t)μ(t)) dh

}
gΔ(t).

We denote the set of all p : T → R which are rd-continuous and
regressive by R. If p ∈ R, we define the exponential function by

ep(t, s) = exp

( t∫
s

ξμ(τ)(p(τ ))Δτ

)
,

for t ∈ T, s ∈ Tk, where ξh(z) is the cylinder transformation, which is
given by

ξh(z) =

{
log(1 + hz)

h
h �= 0,

z h = 0.
Alternately, for p ∈ R, one can define the exponential function ep(·, t0),
to be the unique solution of the IVP

xΔ = p(t)x, x(t0) = 1.

We define
R+ := {f ∈ R : 1 + μ(t)p(t) > 0, t ∈ T}.

For properties of this exponential function, we refer to the book by
Bohner and Peterson [5]. One such property that we will use is the
formula

eΔ
p (t, t0) = p(t)ep(t, t0).

Also if p ∈ R, then ep(t, s) is real-valued and nonzero on T. If p ∈ R+,
then ep(t, t0) always positive.
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3. Global existence and boundedness of solutions. In this
section, we show that under some conditions all solutions of (1.2) may
be continued indefinitely to the right. Also, we determine sufficient
conditions for boundedness of solutions of (1.2), and in the case when
r(t) is small, we are able to obtain necessary and sufficient conditions.
Before stating our main results, it will be convenient to write equation
(1.2) as the equivalent system

(3.1)
xΔ = y,

yΔ = − qσ(t)f(x(t)) + r(t).

Let
p(t) = e−qΔ(t)/q(t) (t, t0),

and there exists a function F such that

FΔ(x) = xΔf(x).

Theorem 3.1. If F (x) is bounded from below, qΔ(t) ≥ 0,

t∫
t0

μ(s)
pσr2(s)
qσ(s)

Δs +
p(t)
q(t)

and
pσrq

qσp
,

are bounded. Then every solution of (3.1) can be defined for all t ≥ t0.

Proof. Suppose the theorem is false so that there exists a solution
(x(t), y(t)) of (3.1) and a number T > t0 such that limt→T (x(t)+y(t)) =
∞. Since F (x) is bounded from below, there exists a constant K > 0
such that F (x) > −K for all x. Let

V (x, y, t) = p(t)
(

y2(t)
q(t)

+ F (x) + K

)
.

Then, by using (2.2), we have

V Δ = pσ

(
y2(t)
q(t)

+ F (x) + K

)Δ

+ pΔ(t)
(

y2(t)
q(t)

+ F (x) + K

)
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= pσ

(
q(y + yσ)yΔ − y2qΔ

qqσ
+ yf(x)

)

− qΔ(t)
q(t)

e−qΔ(t)/q(t) (t, t0)
(

y2(t)
q(t)

+ F (x) + K

)

≤ pσ

(
(y + yσ)yΔ

qσ
− y2qΔ

qqσ
+ yf(x)

)

≤ pσ

(−yqσ(t)f(x(t))+yr(t)
qσ

+
−yσqσ(t)f(x(t))+yσr(t)

qσ
+ yf(x)

)

=
pσr(t)

qσ

(
y + y + μ(t)

(− qσ(t)f(x(t)) + r(t)
))

≤ pσr(t)
qσ

(2y + μ(t)r(t))

=
2pσr(t)

qσ
y(t) + μ(t)

pσr2(t)
qσ

.

Integrating, we obtain

V ≤ G(t) +

t∫
t0

2pσ(s)r(s)
qσ(s)

y(s)Δs,

where G(t) =
t∫

t0

μ(s)(pσr2(s))/(qσ(s))Δs + V (t0). Then

p(t)y2(t)
q(t)

≤ V (t) ≤ G(t) +

t∫
t0

2pσ(s)r(s)
qσ(s)

y(s)Δs.

By using the fact that 2 |y| ≤ y2 + 1, we obtain

p(t)y(t)
q(t)

≤ G′(t) +

t∫
t0

pσ(s)r(s)
qσ(s)

y(s)Δs,

where G′(t) = G(t) + p(t)/2q(t). Now, by using the boundedness of
G′(t), we see that

p(t)y(t)
q(t)

≤ K1 +

t∫
t0

pσ(s)r(s)q(s)
qσ(s)p(s)

p(s)y(s)
q(s)

Δs,
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for some K1 > 0. Then by Gronwall’s inequality [5], we have

p(t)y(t)
q(t)

≤ K1e(pσrq)/(qσp) (t, t0).

Then, p(t)y(t)/q(t) is bounded on [t0, T ], say p(t)y(t)/q(t) < M . Then,
y(t) < Mq(t)/p(t) is bounded. Say y(t) < N . But, since xΔ(t) = y(t),
we have

x(t) ≤ x(t0) + N(t − t0) < x(t0) + N(T − t0),

and so x(t) is bounded on [t0, T ] contradicting the assumption that
(x(t), y(t)) was a solution of (3.1) with finite escape time. the proof is
complete.

In the following theorems we establish some sufficient conditions for
the boundedness of solutions of (1.2).

Theorem 3.2. Suppose that q(t), p(t) and r(t) are bounded,

qΔ(t) ≥ 0,

∞∫
t0

pσ(s)r(s)q(s)
qσ (s)p(s)

Δs < ∞ and e(pσrq)/(qσp)(∞, t0) < ∞.

If F (x) → ∞ as |x| → ∞, then all solutions of (1.2) are bounded.

Proof. Since F (x) → ∞ as |x| → ∞, F (x) is bounded from below,
say F (x) > −K for some K > 0. As in the proof of Theorem 3.1, we
let V (x, y, t) = p(t)[y2(t)/q(t) + F (x) + K], and proceeding as in the
proof of Theorem 3.1 to obtain

p(t)y(t)
q(t)

≤ G′(t) +

t∫
t0

pσ(s)r(s)
qσ(s)

y(s)Δs,

where

G′(t) =

t∫
t0

μ(s)
pσr2(s)
qσ(s)

Δs + V (t0) +
p(t)
2q(t)

.
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Now by using the boundedness of G′(t), we see that

p(t)y(t)
q(t)

≤ K1 +

t∫
t0

pσ(s)r(s)q(s)
qσ(s)p(s)

p(s)y(s)
q(s)

Δs,

for some K1 > 0. Then by Gronwall’s inequality [5], we have

p(t)y(t)
q(t)

≤ K1e(pσrq)/(qσp)(t, t0) < K1e(pσrq)/(qσp)(∞, t0) < A.

Hence,

V (t) ≤ V (t0) + G(t) + A

t∫
t0

pσ(s)r(s)q(s)
qσ(s)p(s)

Δs

< V (t0) + G(t) + A

∞∫
t0

pσ(s)r(s)q(s)
qσ(s)p(s)

Δs < B,

and so
p(t)F (x(t)) < B.

Since p(t) > p > 0, then F (x(t)) is bounded from which it follows that
x(t) is bounded. The proof is complete.

Theorem 3.3. Suppose there exist positive constants c, B, and k
such that

qσ(t) ≤ c,

∣∣∣∣
t∫

t0

r(s)Δs

∣∣∣∣ ≤ B,

for all t ≥ t0 and xf(x) > 0 for |x| ≥ k. Then
∫ ±∞

t0
f(x(s))Δs = ∞ is

a necessary condition for all solutions of (1.2) to be bounded.

Proof. Suppose to the contrary that
∫∞

t0
f(x(s))Δs ≤ M < ∞ (the

case when
∫ −∞

t0
f(x(s))Δs is similar and will be omitted). Integrating
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the second equation in (3.1), we get

y(t) = y(t0) −
t∫

t0

qσ(s)f(x(s))Δs +

t∫
t0

r(s)Δs ≥ y(t0)

−
t∫

t0

qσ(s)f(x(s))Δs− B

≥ y(t0) − c

t∫
t0

f(x(s))Δs − B ≥ y(t0) − cM − B.

Choose the point (x(t0), y(t0)) to be such that x(t0) > k and y(t0) >
cM +B +α. Then we have y(t) > α and, by the first equation of (3.1),
we have xΔ(t) > α. Thus

x(t) > x(t0) + α(t − t0) −→ ∞ as t → ∞,

which is an unbounded solution. The proof is complete.

Theorem 3.4. If F (x) → ∞ as |x| → ∞, bounded from below,

1
p(t)

t∫
t0

μ(s)
pσr2(s)
qσ(s)

Δs ≤ k1,
1

p(t)
≤ k2,

and
t∫

t0

(
pσ(s)|r(s)|
(qσ(s))1/2

)
Δs < ∞,

then every solution of (1.2) is bounded.

Proof. Since F (x) is bounded from below, there exits a constant
K > 0 such that F (x) > −K for all x. Let V be as defined in
Theorem 3.1. Differentiating and integrating V , as in Theorem 3.1,
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we obtain

y2(t)
q(t)

≤ V (t) ≤ 1
p(t)

t∫
t0

μ(s)
pσr2(s)
qσ(s)

Δs +
V (t0)
p(t)

+
2

p(t)

t∫
t0

pσ(s)r(s)
qσ(s)

y(s)Δs.

Then,

y2(t)
q(t)

≤ K1 + K2

t∫
t0

pσ(s)|r(s)|
qσ(s)

y(s)Δs.

for some K1 > 1 and K2 > 0. Thus,

|y(t)|
(q(t))1/2

≤ K1 + K2

t∫
t0

pσ(s)|r(s)|
(qσ(s))1/2

(
y(s)

(qσ(s))1/2

)
Δs,

and so, by Gronwall’s inequality, we get

|y(t)|
(q(t))1/2

≤ K1eK2(pσ |r|)/((qσ)1/2) (t, t0) < L < ∞.

Then, we have

p(t)F (x) ≤ V ≤ G(t) +

t∫
t0

2pσ(s)r(s)
qσ(s)

y(s)Δs

≤ K + 2L

t∫
t0

pσ(s)|r(s)|
(qσ(s))1/2

Δs < M < ∞,

and so p(t)F (x) < M/p(t) < M/k2 < ∞; then x(t) is bounded. The
proof is complete.
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