BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 36, Number 6, 2006

ALMOST PERIODIC FUNCTIONALS ON SOME CLASS OF BANACH ALGEBRAS

H.S. MUSTAFAYEV

ABSTRACT. In this paper we study the question of characterizing almost periodic functionals on some class of Banach algebras. Some related problems are also discussed.

1. Introduction. Let A be a Banach algebra, A^* its dual and A_1 its closed unit ball. For $\varphi \in A^*$ and $a \in A$, the functionals $\varphi \cdot a$ and $a \cdot \varphi$ are defined by $\langle \varphi \cdot a, b \rangle = \langle \varphi, ab \rangle$ and $\langle a \cdot \varphi, b \rangle = \langle \varphi, ba \rangle$. These operations invert A^* into a Banach A-bimodule. Kitchen [11] calls a functional φ almost periodic on A, if the linear operator $L_{\varphi}: A \to A^*$, defined by $L_{\varphi}(a) = \varphi \cdot a$, is compact. This is equivalent to the fact that the set $\{\varphi \cdot a : a \in A_1\}$ is relatively norm compact in A^* . For example if $A = L^{1}(G)$ for a locally compact group G, then this reduces to the classical notion of almost periodicity for $\varphi \in L^{\infty}(G)$. Since for $a \in A$, $L^*_{\alpha}(a) = a \cdot \varphi$, it follows that φ is almost periodic if and only if the set $\{a \cdot \varphi : a \in A_1\}$ is relatively norm compact in A^* . By ap (A) we denote the set of all almost periodic functionals on A. Clearly, ap(A) is a norm closed A-subbimodule of A^* . In the theory of representations of Banach algebras and in the Arens regularity theory it is important to have a convenient description of ap(A) for concrete classes of Banach algebras, see [6, 7, 11, 13, 15, 17, 18] for a discussion of this problem. The following problem was posed in [6, Problem 2]: Characterize those Banach algebras A for which each $\varphi \in A^*$ is almost periodic. It has been proved by Quigg [18, Theorem 3.2], that for a C^* -algebra A, ap $(A) = A^*$ if and only if A is scattered and its irreducible representations are finite dimensional. Recall that A is called scattered if every positive functional on A is a sum of pure positive functionals. By Lau and Ülger [13, Theorem 3.6], other characterizations of the C^* -algebra A satisfying the equality ap $(A) = A^*$ are given. Among

Copyright ©2006 Rocky Mountain Mathematics Consortium

²⁰⁰⁰ AMS Mathematics Subject Classification. Primary 43A20, 43A60, 46H15, 46L05.

Key words and phrases. Almost periodic functional, almost periodic representation, group algebra, M-ideal, Schur property, C*-algebra. Received by the editors on April 28, 2004.

them we note the following: $\operatorname{ap}(A) = A^*$ if and only if the space A^* is an ℓ^1 -sum of finite dimensional Banach spaces if and only if A^* has the Schur property, i.e., every weakly convergent sequence in A^* is norm convergent. In [15, Theorem 4.8], the characterization of almost periodic functionals on Herz algebras is given.

In this paper we study the question of characterizing almost periodic functionals on some well-known classes of Banach algebras. These results generalize and unify the above-mentioned results or parts of them. Some other applications to related problems are also given.

2. Preliminaries. We recall the main definitions and results that we require later. If X is a Banach space, we denote by X^* its dual. The natural duality between X^{*} and X is denoted by $\langle \varphi, x \rangle$. If $E \subset X$, then \overline{E} will denote the norm closure of E in X. Now let A be an arbitrary Banach algebra. A weak^{*} closed subspace $E \subset A^*$ is said to be an invariant subspace of A^* , if $\varphi \cdot a \in E$ and $a \cdot \varphi \in E$, for all $\varphi \in E$ and $a \in A$. Note that if A has an approximate identity, then a weak^{*} closed subspace $E \subset A^*$ is an invariant subspace of A^* if and only if $a \cdot \varphi \cdot b \in E$ for all $\varphi \in E$ and $a, b \in A$. An invariant subspace E of A^* is said to be minimal if E does not contain other nonzero invariant subspaces of A^* . By A_c we will denote the set of all equivalence classes of irreducible finite-dimensional representations of A. We can see that if $\sigma \in A_c$, then the algebra $A/\ker \sigma$ is isomorphic to the full matrix algebra and consequently, ker σ is a maximal bi-ideal in A of finite codimension. Hence $(\ker \sigma)^{\perp}$ is a minimal finite dimensional invariant subspace of A^* .

Lemma 1. If A has a bounded approximate identity, then every minimal finite-dimensional invariant subspace E of A^* has the form $(\ker \sigma)^{\perp}$, for some $\sigma \in \widehat{A}_c$.

Proof. Let E be a nonzero minimal finite-dimensional invariant subspace of A^* . Then $E = J^{\perp}$ for some maximal nontrivial biideal J in A of finite codimension. Note that the quotient algebra A/J also has a bounded approximate identity. Since A/J is finite dimensional, it has a unit element. Hence J is a maximal modular bi-ideal. Then J is contained in a maximal modular nontrivial left

ideal I. Let σ be the regular representation of A on A/I. Then σ is a nonzero irreducible finite-dimensional representation of A and $J \subset \ker \sigma = \{a \in A : aA \subset I\}$. By maximality of J we have $J = \ker \sigma$, so that $E = (\ker \sigma)^{\perp}$. \Box

Let A be an arbitrary Banach algebra. As is known [6], the second dual A^{**} of A can be equipped with two Banach algebra multiplications \circ and * (the first and the second Arens multiplication) which extend the multiplication in A (canonically embedded into A^{**}). Namely for $a \in A, \varphi \in A^*$ and $F, H \in A^{**}$, we set $\langle F \circ H, \varphi \rangle = \langle F, H \cdot \varphi \rangle$ and $\langle F * H, \varphi \rangle = \langle H, \varphi \cdot F \rangle$, where $H \cdot \varphi$ and $\varphi \cdot F$ are functionals on A defined by $\langle H \cdot \varphi, a \rangle = \langle H, \varphi \cdot a \rangle$ and $\langle \varphi \cdot F, a \rangle = \langle F, a \cdot \varphi \rangle$. If $F \circ H = F * H$ for every $F, H \in A^{**}$, then A is said to be Arens regular. Recall that $\varphi \in A^*$ is said to be weakly almost periodic on A, if the set $\{\varphi \cdot a : a \in A_1\}$ is relatively weakly compact in A^* . As in the introduction we can see that φ is weakly almost periodic if and only if the set $\{a \cdot \varphi : a \in A_1\}$ is relatively weakly compact in A^* . Let wap (A)denote the set of all weakly almost periodic functionals on A. Then, Arens regularity of A is equivalent to the condition that wap $(A) = A^*$ [6, Theorem 1]. Throughout the paper by A^{**} we will denote the Banach algebra A^{**} equipped with the first Arens multiplication. It can be seen that for F fixed in A^{**} , the mapping $H \to H \circ F$ is weak^{*}-weak^{*} continuous on A^{**} . The weak^{*}-weak^{*} continuity of the mapping $H \to F \circ H$ is equivalent to the Arens regularity of the algebra A [6, Theorem 1]. Note also that ap(A) is a Banach A^{**} bimodule. Moreover, $\varphi \in ap(A)$ if and only if either $\{F \cdot \varphi : F \in A_1^{**}\}$ or $\{\varphi \cdot F : F \in A_1^{**}\}$ is relatively norm compact in A^{**} .

Later on we shall need the following results with which we now proceed. Let G be a locally compact group, and let T be a continuous representation of G on a Banach space X. T is said to be almost periodic if the set $\{T_g x : g \in G\}$ is relatively compact in X for all $x \in X$. The following result is an immediate consequence of the Peter-Weyl theory.

Theorem 1 [16, pp. 152–153]. If T is an almost periodic representation of G on X, then X is a closed linear span of the irreducible finite-dimensional T-invariant subspaces.

Now define the adjoint representation T^* of G on X^* by $T_g^*\varphi = (T_{g-1})^*\varphi$, $\varphi \in X^*$. Of course, T^* is not (strongly) continuous in general.

Lemma 2. Assume that the set $\{T_g^*\varphi : g \in G\}$ is relatively norm compact in X^* , for every $\varphi \in X^*$. Then T^* is a continuous representation (consequently, T^* is an almost periodic representation).

Proof. Let $\varphi \in X^*$ be given. We have to show that the function $g \to T_g^* \varphi$ is continuous at g = 1, where 1 is the unit element of G. Let $(g_{\lambda})_{\lambda \in \lambda}$ be a net in G that converges to 1. Since $T_{g_{\lambda}}^* \varphi \to \varphi$ in the weak* topology, it follows that φ is the unique norm cluster point of the net $(T_{g_{\lambda}}^* \varphi)_{\lambda \in \lambda}$. On the other hand, the net $(T_{g_{\lambda}}^* \varphi)_{\lambda \in \lambda}$ is contained in a relatively norm compact set. This clearly implies that $T_{g_{\lambda}}^* \varphi \to \varphi$ for the norm topology. \Box

3. Almost periodic functionals on the image of group algebras. Before stating the main results of this section we shall need some notation. Let G be a locally compact group equipped with a left Haar measure dg and $L^1(G)$, the group algebra of G. For $g \in G$, the left and the right translations of $f \in L^1(G)$ are defined by ${}_gf(t) = f(g^{-1}t)$ and $f_g(t) = \Delta(g)f(tg)$, respectively, where $\Delta(g)$ is the modular function of G. Recall that ${}_g(f * h) = {}_gf * h$, $(f * h)_g = f * h_g$ and $f * {}_gh = f_{g-1} * h$ for all $f, h \in L^1(G)$ and all $g \in G$. One of the main results of this section is the following theorem.

Theorem 2. Let A be a Banach algebra. If there exists a continuous homomorphism $\theta : L^1(G) \to A$, with dense range, then

$$\operatorname{ap}(A) = \operatorname{\overline{span}} \{ (\ker \sigma)^{\perp} : \sigma \in \widehat{A}_c \}.$$

Proof. The inclusion $\overline{\text{span}} \{ (\ker \sigma)^{\perp} : \sigma \in \widehat{A}_c \} \subset \text{ap}(A) \text{ being clear}, we prove reverse inclusion only. Let us define the left and the right regular representations on <math>A$ as follows: Put $L_g\theta(f) = \theta(gf)$ and $R_g\theta(f) = \theta(f_g)$. Let $(e_i)_{i \in I}$ be a bounded (by one) approximate identity for $L^1(G)$. Since $\theta(ge_i)\theta(f) \to L_g\theta(f)$, we have $||L_g\theta(f)|| \leq$

$$\begin{split} \|\theta\| \, \|\theta(f)\|. \text{ Thus, since } \left\{\theta(f): f\in L^1(G)\right\} \text{ is dense in } A, L_g \text{ (similarly } R_g) \text{ can be extended (in a unique way) to } A \text{ as a bounded continuous representation. We will denote this extension again by } L_g \text{ (respectively by } R_g). We can see that <math>L_g(ab) = (L_ga)b, R_g(ab) = a(R_gb) \text{ and } a(L_gb) = (R_{g^{-1}}a)b \text{ for all } a, b\in A \text{ and all } g\in G. \text{ Let } T \text{ denote the Cartesian product of the representations } L \text{ and } R : T_{g,s}a = L_gR_sa, \text{ where } a\in A \text{ and } (g,s)\in G\times G. \end{split}$$

Clearly, $(\theta(e_i))_{i \in I}$ is a bounded approximate identity for A. As in the proof of the Lemma 2, we can see that if $\varphi \in \operatorname{ap}(A)$, then $\varphi \cdot \theta(e_i) \to \varphi$ and $\theta(e_i) \cdot \varphi \to \varphi$ in the norm topology. Since $\operatorname{ap}(A)$ is a Banach A-bimodule, by the Cohen-Hewitt factorization theorem [10, 32.22], $\operatorname{ap}(A) = A \cdot \operatorname{ap}(A) = \operatorname{ap}(A) \cdot A$. Consequently, every $\varphi \in \operatorname{ap}(A)$ can be represented as $\varphi = a \cdot \psi \cdot b$, for some $a, b \in A$ and $\psi \in \operatorname{ap}(A)$. We claim that

(3.1)
$$T_{q,s}^*\varphi = (L_s a) \cdot \psi \cdot (R_g b).$$

To see this, let $c \in A$ be given. Since

$$\begin{aligned} (R_g b) c(L_s a) &= b(L_{g^{-1}} c)(L_s a) = b(L_{g^{-1}} (c(L_s a))) \\ &= b(L_{q^{-1}} (R_{s^{-1}} c))a = b(T_{q^{-1}, s^{-1}} c)a, \end{aligned}$$

we have

$$\begin{split} \langle (L_s a) \cdot \psi \cdot (R_g b), c \rangle &= \langle \psi, (R_g b) c(L_s a) \rangle = \langle \psi, b(T_{g^{-1}, s^{-1}} c) a \rangle \\ &= \langle a \cdot \psi \cdot b, T_{g^{-1}, s^{-1}} c \rangle = \langle T_{a,s}^* \varphi, c \rangle. \end{split}$$

A standard "finite ε -mesh technique" shows that if $\varphi \in \operatorname{ap}(A)$, then the set $\{a \cdot \varphi \cdot b : a, b \in A_1\}$ is relatively norm compact in A^* . From this and from the equality (3.1), we deduce that $\operatorname{ap}(A)$ is an invariant subspace for T^* and moreover, the set $\{T^*_{g,s}\varphi : (g,s) \in G \times G\}$ is relatively norm compact in A^* for every $\varphi \in \operatorname{ap}(A)$. By Lemma 2, the restriction of T^* to $\operatorname{ap}(A)$ is an almost periodic representation. Hence by Theorem 1, $\operatorname{ap}(A)$ is a closed linear span of the irreducible finitedimensional T^* -invariant subspaces. Now, by Lemma 1, it remains to show that irreducible finite-dimensional T^* -invariant subspaces are exactly minimal finite-dimensional invariant subspaces of A^* . For this it is enough to show that finite-dimensional T^* -invariant subspaces are

exactly finite-dimensional invariant subspaces of A^* . Let E be a finitedimensional T^* -invariant subspace, and let $\varphi \in E$ be given. By the definition of the vector-valued integral

$$\int_{G\times G} \tilde{h}(g)k(s)T_{g,s}^*\,\varphi\,dg\,ds$$

is in E, where $\tilde{h}(g) = \Delta(g^{-1})h(g^{-1})$. A simple calculation shows that the last integral is equal to $\theta(h) \cdot \varphi \cdot \theta(k)$. Since $\{\theta(f) : f \in L^1(G)\}$ is dense in A, we have $a \cdot \varphi \cdot b \in E$ for all $a, b \in A$. Now let E be a finite-dimensional invariant subspace of A^* and $\varphi \in E$. Using the equality (3.1) again, we get that

$$T_{g,s}^*\varphi = \operatorname{weak}^* - \lim_i T_{g,s}^* \left(\theta(e_i) \cdot \varphi \cdot \theta(e_i)\right)$$
$$= \operatorname{weak}^* - \lim_i \left(\theta(se_i) \cdot \varphi \cdot \theta(e_i)_g\right).$$

Hence $T_{g,s}^* \varphi \in E$ for all $(g,s) \in G \times G$. This completes the proof.

The second main result of this section is the following theorem.

Theorem 3. Let A be an Arens regular Banach algebra. If there exists a continuous homomorphism $\theta : L^1(G) \to A^{**}$, with dense range, then

$$\operatorname{ap}(A) = \overline{\operatorname{span}}\left\{ (\ker \sigma)^{\perp} : \sigma \in A_c \right\}.$$

Proof. Let $(e_i)_{i\in I}$ be a bounded approximate identity for $L^1(G)$, and let $E_i = \theta(e_i)$. Then $(E_i)_{i\in I}$ is a bounded approximate identity for A^{**} . We may assume without loss of generality that the net $(E_i)_{i\in I}$ converges weak^{*} to some $E \in A^{**}$. Let us see that E is the identity for A^{**} . Let $F \in A^{**}$ be given. Weak^{*}-continuity of $H \to H \circ F$ implies that $E_i \circ F \to E \circ F$ in the weak^{*}-topology. Since $E_i \circ F \to F$ in the norm, we obtain $E \circ F = F$. On the other hand, since A is Arens regular, the mapping $H \to F \circ H$ is weak^{*}-weak^{*} continuous. It follows that $F \circ E_i \to F \circ E$ in the weak^{*}-topology and hence $F \circ E = F$.

Let L and R be the left and the right regular representations on A^{**} , respectively (see the proof of the Theorem 2). We recall that $L_g(F \circ H) = (L_gF) \circ H$, $R_g(F \circ H) = F \circ (R_gH)$ and $F \circ (L_gH) =$

 $(R_{g^{-1}}F) \circ H$ for all $F, H \in A^{**}$ and all $g \in G$. Denote by T, the Cartesian product of the representations L and R: $T_{q,s}F = L_q R_s F$, where $F \in A^{**}$ and $(g,s) \in G \times G$. $\varphi \in A^{*}$ and $F \in A^{**}$ are given. We can see that $\varphi = E \cdot \varphi$. On the other hand, since A is Arens regular, we have $\langle F, \varphi \cdot E \rangle = \langle E * F, \varphi \rangle = \langle E \circ F, \varphi \rangle = \langle F, \varphi \rangle$, so that $\varphi = \varphi \cdot E$. Hence φ can be represented as $\varphi = E \cdot \varphi \cdot E$. As in the proof of Theorem 2, we can see that $T^*_{g,s}\varphi = (L_sE)\cdot \varphi \cdot (R_gE)$. Now let $\varphi \in$ ap (A) be given. Since ap (A) is a Banach A^{**} -bimodule, it follows that ap (A) is an invariant subspace for T^* . Further, since $\{L_s E : s \in G\}$ and $\{R_q E : g \in G\}$ are bounded sets in A^{**} , from the last equality we can deduce that the set $\{T_{g,s}^*\varphi: (g,s)\in G\times G\}$ is relatively norm compact in A^* , for every $\varphi \in \operatorname{ap}(A)$. By Lemma 2, $T^*|_{\operatorname{ap}(A)}$, the restriction of T^* to ap (A), is an almost periodic representation. Hence, by Theorem 1, ap(A) is a closed linear span of the irreducible finite-dimensional $T^*|_{ap(A)}$ -invariant subspaces. As in the proof of Theorem 2, we can see that irreducible finite-dimensional $T^*|_{ap(A)}$ invariant subspaces are exactly minimal finite-dimensional invariant subspaces of A^* . Further, since A is Arens regular and A^{**} has a unit element, A has a bounded approximate identity [3, p. 147, Corollary 8]. Consequently, by Lemma 1, every finite-dimensional invariant subspace of A^* has the form $(\ker \sigma)^{\perp}$, for some $\sigma \in A_c$. This completes the proof.

For the next result we recall [1] that a closed subspace E of a Banach space X is said to be an L-ideal if there exists a projection $P: X \to E$ such that ||x|| = ||Px|| + ||x - Px||, for every $x \in X$. E is said to be an M-ideal if E^{\perp} is an L-ideal in X^* . Below we shall need the following result [1, Proposition 1.7]. Let E and F be two L-ideals, and let P_E and P_F be the associated projections, respectively. If $E \cap F = \{0\}$, then $P_E P_F = P_F P_E = 0$.

We shall also need the following notation. Let λ be a nonempty index set, and suppose $\{X_{\lambda} : \lambda \in \lambda\}$ is a collection of Banach spaces. By $X = [\sum_{\lambda \in \lambda} \oplus X_{\lambda}]_{\alpha}$ we mean the Banach space of all $\{x_{\lambda}\}$ such that $\{\|x_{\lambda}\|\}$ is in $c_0(\lambda)$ or $\ell_1(\lambda)$ or $\ell_{\infty}(\lambda)$ for the case $\alpha = c_0$ or $\alpha = \ell_1$ or $\alpha = \ell_{\infty}$, respectively, and $x_{\lambda} \in X_{\lambda}$ for each $\lambda \in \lambda$. The norm on Xis to be the norm of $\{\|x_{\lambda}\|\}$.

Theorem 4. Assume that the hypotheses of Theorem 2 (or the hypotheses of Theorem 3) are satisfied. Moreover, assume that for each $\sigma \in \hat{A}_c$, ker σ is an M-ideal. Then,

(3.2)
$$\operatorname{ap}(A) = \left(\sum_{\sigma \in A_c} \oplus (\ker \sigma)^{\perp}\right)_{l^1}.$$

Proof. For an arbitrary $\sigma \in \widehat{A}_c$, we put $E_{\sigma} = (\ker \sigma)^{\perp}$. Then E_{σ} is an *L*-ideal in A^* . Let P_{σ} be the associated projection. Let two distinct $\sigma', \sigma'' \in \widehat{A}_c$ be given. Since $E_{\sigma'}$ and $E_{\sigma''}$ are minimal invariant subspaces of A^* , we have $E_{\sigma'} \cap E_{\sigma''} = \{0\}$, and therefore $P_{\sigma'}P_{\sigma''} = P_{\sigma''}P_{\sigma'} = 0$. It follows that, if $\varphi_{\sigma_i} \in E_{\sigma_i}, i = 1, \ldots, n$, where $\sigma_i \neq \sigma_j (i \neq j)$, then

$$\begin{aligned} \|\varphi_{\sigma_1} + \dots + \varphi_{\sigma_n}\| &= \|P_{\sigma_1}(\varphi_{\sigma_1} + \dots + \varphi_{\sigma_n})\| \\ &+ \|\varphi_{\sigma_1} + \dots + \varphi_{\sigma_n} - P_{\sigma_1}(\varphi_{\sigma_1} + \dots + \varphi_{\sigma_n})\| \\ &= \|\varphi_{\sigma_1}\| + \|\varphi_{\sigma_2} + \dots + \varphi_{\sigma_n}\| \\ &= \dots = \|\varphi_{\sigma_1}\| + \dots + \|\varphi_{\sigma_n}\|. \end{aligned}$$

Let Y denote the right-hand side of (3.2), Y_c the linear subspace of Y consisting of all functions with finite support. By Theorem 2 (or Theorem 3), we have

$$\operatorname{ap}(A) = \overline{\operatorname{span}}\left\{ (\ker \sigma)^{\perp} : \sigma \in \widehat{A}_c \right\}.$$

From this and from the identity (3.3), we see that the linear operator $S: Y_c \to ap(A)$, defined by

$$S: (\varphi_j)_{j \in J} \longrightarrow \sum_{j \in J} \varphi_j,$$

is an isometry with dense range. Since Y_c is dense in Y, S extends by continuity to an isometric isomorphism of Y onto the ap (A). This completes the proof. \Box

Let A be an arbitrary Banach algebra. We put $A^* \cdot A = \{\varphi \cdot a : \varphi \in A^*, a \in A\}$. If A has a bounded approximate identity, then by the Cohen-Hewitt factorization theorem [10, 32.22], $A^* \cdot A$ is a norm closed linear

subspace of A^* . The following result is related to a result of Duncan and Ülger [7, Theorem 2.3].

Theorem 5. Let A be a semi-simple Banach algebra with a bounded approximate identity. Moreover, assume that the following conditions are satisfied.

a) Every irreducible representation of A is finite-dimensional.

b) For each $a \in A$, the left multiplication operator $L_a : A \to A$, defined by $L_a : b \to ab$ is weakly compact. Then,

$$\operatorname{ap}(A) = A^* \cdot A = \overline{\operatorname{span}} \left\{ (\ker \sigma)^{\perp} : \sigma \in \widehat{A}_c \right\}.$$

Proof. Obviously, we have

$$\overline{\operatorname{span}}\left\{\left(\ker\sigma\right)^{\perp}:\sigma\in\widehat{A}_{c}\right\}\subset\operatorname{ap}\left(A\right).$$

As in the proof of Theorem 2, we can see that

$$ap(A) = \{a \cdot \varphi : \varphi \in ap(A), a \in A\}.$$

Hence ap $(A) \subset A^* \cdot A$. Now it remains to show that

$$A^* \cdot A \subseteq \overline{\operatorname{span}} \left\{ (\ker \sigma)^{\perp} : \sigma \in \widehat{A}_c \right\}.$$

Assume that for some $\varphi \in A^*$ and $a \in A$,

$$\varphi \cdot a \notin \overline{\operatorname{span}} \left\{ (\ker \sigma)^{\perp} : \sigma \in \widehat{A}_c \right\}.$$

Then there is an F in A^{**} such that $\langle F, \varphi \cdot a \rangle \neq 0$ but $\langle F, \psi \rangle = 0$, for all $\psi \in (\ker \sigma)^{\perp}$ and all $\sigma \in \widehat{A}_c$. In particular, we have $\langle a \circ F, \psi \rangle = \langle F, \psi \cdot a \rangle = 0$, for all $\psi \in (\ker \sigma)^{\perp}$ and all $\sigma \in \widehat{A}_c$. We recall [6, Lemma 3] that A is a right ideal in A^{**} if and only if L_a is a weakly compact operator for each $a \in A$. Hence $a \circ F \in A$. From the last equality we see that $a \circ F \in \ker \sigma$, for all $\sigma \in \widehat{A}_c$. Since A is a semi-simple algebra, we have $a \circ F = 0$. This contradicts the fact that $\langle a \circ F, \varphi \rangle = \langle F, \varphi \cdot a \rangle \neq 0$. The proof is complete. \Box

These theorems have several corollaries. We first remark that a class of Banach algebras satisfying the hypotheses of Theorem 2 are sufficiently large. For example, let T be a continuous representation of G on a Banach space X. For $f \in L^1(G)$, the operator $T_f : X \to X$, defined by

$$T_f x = \int_G f(g) T_g x \, dg$$

is a bounded linear operator on X. Let $L_T(G)$ denote the closure of $\{T_f : f \in L^1(G)\}$ with respect to the uniform operator topology. Hence, Theorem 2 can be applied to the algebras $L_T(G)$. Let $X = L^p(G)$, 1 , and let T be the left regular representation on $<math>L^p(G)$. In this case, as in [9], $L_T(G)$ will be denoted by $PF_p(G)$. We can see that $PF_p(G)$ is the completion of $L^1(G)$ relative to the convolution operator norm:

$$|||f|||_{p} = \sup \{ ||f * h||_{p} : h \in L^{p}(G), ||h||_{p} \le 1 \}, f \in L^{1}(G).$$

Clearly, $|||f|||_p \leq ||f||_1$. We shall also need the following notation. By $C_0(G)$ we denote the space of continuous functions on G which are null at infinity. AP (G) denotes the space of almost periodic functions on G.

Corollary 1. ap $(PF_p(G)) = PF_p(G)^*$ if and only if G is compact.

Proof. For the compact group G the equality $\operatorname{ap}(PF_p(G)) =$ $PF_p(G)^*$ has been proved in [13, Corollary 8.7]. Now assume that ap $(PF_p(G)) = PF_p(G)^*$ and G is not compact. We see that id: $L^1(G) \to PF_p(G)$ is a continuous homomorphism with dense range. If $\varphi \in \operatorname{ap}(PF_p(G))$, then by Theorem 2, $id^*\varphi \in \operatorname{AP}(G)$. For $h \in L^p(G) - \{0\}$ and $k \in L^q(G) - \{0\}, (1/p + 1/q = 1)$, let $[h \otimes k]$ denote the functional on $PF_p(G)$, defined by $\langle [h \otimes k], f \rangle = \langle f * h, k \rangle$. It is easy to verify that $id^*[h \otimes k] = h * k^{\nu}$, where $k^{\nu}(g) = k(g^{-1})$. Hence we have $h * k^{\nu} \in AP(G)$. Because $h * k^{\nu} \in C_0(G)$, we obtain $h * k^{\nu} = 0$, since no nontrivial almost periodic function on a noncompact locally compact group can vanish at infinity [4, p. 41, Corollary 3.8]. Let (V) be a net of compact symmetric neighborhoods of 1 contracting to $\{1\}, e_V$, the nonnegative function on G supported by V and satisfying $e_V = e_V^{\nu}$ and $||e_V||_1 = 1$. Then $0 = h * e_V \to h$ in L^p -norm as $V \to \{1\}$. Hence, we have h = 0. This contradicts $h \neq 0$.

Below, we will assume that G is an abelian group. In this case, under the hypotheses of Theorem 2, A becomes a commutative Banach algebra. By Σ_A we will denote the structure space of A. A standard Banach algebra technique shows that θ^* is homeomorphic identified Σ_A with the hull (ker θ). We see that hull (ker θ) is a closed subset of \hat{G} , the dual group of G.

Corollary 2. Under the hypotheses of Theorem 2,

 $\operatorname{ap}(A) = \overline{\operatorname{span}} \Sigma_A.$

Corollary 3. Assume that the hypotheses of Theorem 2 are satisfied and J is a closed ideal of A. Then

$$\operatorname{ap}(A/J) = \overline{\operatorname{span}}\operatorname{hull}(J).$$

A subset K of \widehat{G} is strongly independent if, for every choice distinct points χ_1, \ldots, χ_k of K and integers n_1, \ldots, n_k , the equality $\chi_1^{n_1} \cdots \chi_k^{n_k} = 1$ implies $n_1 = \cdots = n_k = 0$ [2, p. 69]. Recall also that [20, p. 98], a subset K of \widehat{G} is a Kronecker set if K has the following property: to every continuous function f on K of absolute value one, and to every $\varepsilon > 0$, there is $g \in G$, such that $\sup_{\chi \in K} |f(\chi) - \chi(g)| < \varepsilon$.

Corollary 4. Assume that the hypotheses of Theorem 2 are satisfied and hull (ker θ) is a strongly independent subset of \widehat{G} . Then ap (A) is isomorphic to the space $\ell^1(\Sigma_A)$.

Proof. By Corollary 2, ap $(A) = \overline{\operatorname{span}} \Sigma_A$. Therefore, it is enough to show that, for every choice $\phi_1, \ldots, \phi_n \in \Sigma_A$ and $\lambda_1, \ldots, \lambda_n \in C - \{0\}$,

(3.4)
$$\left\|\sum_{i=1}^{n}\lambda_{i}\phi_{i}\right\|_{A^{*}} \geq \frac{1}{\|\theta\|}\sum_{i=1}^{n}|\lambda_{i}|.$$

~

Let $\theta^* \phi_i = \chi_i, i = 1, ..., n$, where $\chi_1, ..., \chi_n \in \text{hull}(\ker \theta)$. Then, we have

$$\left\|\sum_{i=1}^{n}\lambda_{i}\phi_{i}\right\|_{A^{*}} \geq \frac{1}{\|\theta^{*}\|} \left\|\theta^{*}\left(\sum_{i=1}^{n}\lambda_{i}\phi_{i}\right)\right\|_{\infty} = \frac{1}{\|\theta\|} \left\|\sum_{i=1}^{n}\lambda_{i}\chi_{i}\right\|_{\infty}.$$

Let f be the function on $\{\chi_1, \ldots, \chi_n\}$, defined by $f(\chi_i) = |\lambda_i| / \lambda_i$, $i = 1, \ldots, n$. Let an arbitrary ε be such that $0 < \varepsilon < 1$ be given. Since a finite strongly independent set is a Kronecker set [20, Theorem 5.1.3], there exists $g_0 \in G$, such that $\sup_i |f(\chi_i) - \chi_i(g_0)| < \varepsilon$.

Consequently, we have

$$\begin{split} \left\|\sum_{i=1}^{n} \lambda_{i} \chi_{i}\right\|_{\infty} &\geq \left|\sum_{i=1}^{n} \lambda_{i} \chi_{i}(g_{0})\right| \\ &\geq \left|\sum_{i=1}^{n} \lambda_{i} f(\chi_{i})\right| - \sum_{i=1}^{n} |\lambda_{i}| \left|f(\chi_{i}) - \chi_{i}(g_{0})\right| \\ &\geq (1 - \varepsilon) \sum_{i=1}^{n} |\lambda_{i}|. \end{split}$$

This completes the proof. $\hfill \Box$

Corollary 5. We have ap $(PF_p(G)) = \overline{\operatorname{span}} \widehat{G}$.

4. Herz algebras and the Schur property. Let G be a locally compact abelian group. For $1 , let <math>A_p(G)$ denote the linear subspace of $C_0(G)$ consisting of all functions of the form

$$f = \sum_{n=1}^{\infty} h_n * k_n^v$$

where $h'_n s$ are in $L^p(G)$, $k'_n s$ in $L^q(G)$, (1/p+1/q=1), $k^v_n(x)=k_n(x^{-1})$ and ∞

$$\sum_{n=1}^{\infty} \left\| h_n \right\|_p \left\| k_n \right\|_q < \infty.$$

The norm of f is the infimum of these sums over all such representations of f. Obviously we have $||f||_{\infty} \leq ||f||_{A_p}$ for all $f \in A_p(G)$. $A_p(G)$ is often called a Herz algebra. As is known [9], $A_p(G)$ is a commutative semi-simple regular Banach algebra. The structure space of $A_p(G)$ can be identified with a group G via Dirac measures $\delta_g(g \in G)$. Recall also that $L^1(\widehat{G})$ is isometric isomorphic to $A_2(G)$ via Fourier transform F. As functions which are continuous on G with a compact

support are dense in $L^p(G)$, $A_2(G)$ is dense in $A_p(G)$. It follows that $F: L^1(\widehat{G}) \to A_p(G)$ is a continuous homomorphism with dense range. Now applying Corollary 2, we have the following.

Corollary 6 [15, Theorem 4.8]. ap $(A_p(G)) = \overline{\text{span}} \{ \delta_g : g \in G \}.$

Let $PM_p(G)$ denote the algebra of all operators on $L^p(G)$ which commute with translation. As is known [9] $PM_p(G)$ can be identified with the dual space of $A_p(G)$. The elements of $PM_p(G)$ are called *p*-pseudomeasures. There is an obvious notion "support" for *p*-pseudomeasures. Let *K* be a compact subset of *G* and $PM_p(K)$, the space of *p*-pseudomeasures which are supported on *K*. Note that $PM_p(K)$ is the dual space of $A_p(G)/J_K$, where J_K is the smallest closed ideal in $A_p(G)$ whose hull is *K*.

Recall that a Banach space X has the Schur property, if every weakly convergent sequence in X is norm convergent. Lust-Piquard [15, Theorem 2.14] has shown that, if K is compact and dispersed (i.e. K has no nonempty perfect subset), then $PM_p(K)$ has the Schur property. Under a metrizability hypothesis on K, the converse of this fact was proved in [15, Theorem 2.8] and [14, Proposition 3]. However, we have the following.

Theorem 6. Let K be an arbitrary compact subset of G. If $PM_p(K)$ has the Schur property, then K is dispersed.

For the proof of this theorem we need the following lemma which is proved in [17]. We include a proof for completeness.

Lemma 3. Let A be an arbitrary Banach algebra. If the space A^* has the Schur property, then $\operatorname{ap}(A) = A^*$.

Proof. Suppose that A^* has the Schur property. Let φ be an element in A^* . We have to show that the operator $L_{\varphi} : A \to A^*$ defined by $L_{\varphi}(a) = \varphi \cdot a$ is compact. To prove this, let $(a_n)_{n \in N}$ be a sequence in A_1 . Since A^* has the Schur property, A does not contain an isomorphic copy of ℓ^1 [5, Theorem 3]. Hence, by Rosenthal's ℓ^1 -theorem [19], the

sequence $(a_n)_{n\in N}$ has a subsequence, denoted again $(a_n)_{n\in N}$, which is weakly Cauchy. It follows that the sequence $(L_{\varphi}(a_n))_{n\in N}$ is weakly Cauchy in A^* . As A^* has the Schur property, it is weakly sequentially complete. Consequently, the sequence $(L_{\varphi}(a_n))_{n\in N}$ converges weakly, so in norm in A^* . This proves that φ is almost periodic on A, so that $A^* = \operatorname{ap}(A)$. \Box

Proof of Theorem 6. Assume that $PM_p(K)$ has the Schur property. Since $PM_p(K)$ is the dual space of $A_p(G)/J_K$, by Lemma 3,

ap
$$(A_p(G)/J_K) = PM_p(K).$$

We have already noted that the Fourier transform F maps $L^1(\widehat{G})$ onto a dense subalgebra of $A_p(G)$. Now, applying Corollary 3, we get that

ap
$$(A_p(G)/J_K) = \overline{\operatorname{span}} \{ \delta_g : g \in K \}.$$

Hence, we have

(4.1)
$$PM_p(K) = \overline{\operatorname{span}} \left\{ \delta_g : g \in K \right\}.$$

Let μ be an arbitrary finite regular Borel measure on G. μ can be considered as an element of $PM_p(G)$ for the pairing

$$\langle \mu, f \rangle = \int_G f(g) \, d\mu(g), \quad f \in A_p(G).$$

We remark also that $\operatorname{supp} \mu$ in terms of the support of $PM_p(G)$ and $\operatorname{supp} \mu$ in usual terms are the same. Now we claim that $F^*\mu = \hat{\mu}(\chi)$, where $\hat{\mu}(\chi)$ is the Fourier-Stieltjes transform of μ . To see this let $f \in L^1(\widehat{G})$ be given. We can write

$$\begin{split} \int_{\widehat{G}} (F^*\mu) f(\chi) \, d\chi &= \langle \mu, F(f) \rangle = \int_G \widehat{f}(g) \, d\mu(g) \\ &= \int_G \left(\int_{\widehat{G}} f(\chi) \overline{\chi(g)} \, d\chi \right) d\mu(g) \\ &= \int_{\widehat{G}} \left(\int_G \overline{\chi(g)} \, d\mu(g) \right) f(\chi) \, d\chi = \int_{\widehat{G}} \widehat{\mu}(\chi) f(\chi) \, d\chi. \end{split}$$

This being true for all $f \in L^1(\widehat{G})$, we get that $F^*\mu = \hat{\mu}(\chi)$.

Now let μ be an arbitrary continuous regular Borel measure supported on K. To prove that K is dispersed, it is enough to show that μ is identically zero [12, p. 52, Theorem 10]. Since $\mu \in PM_p(K)$, it follows from the equality (4.1) that $F^*\mu$ can be approximated in the $\|\cdot\|_{\infty}$ -norm by the linear combinations of the characters $\{\overline{g(\chi)} : g \in K\}$. Hence, $\hat{\mu}(\chi^{-1})$ is an almost periodic function on \hat{G} . Let Φ be the invariant mean on AP (\hat{G}).

Since

$$\langle \Phi, g(\chi) \rangle = \begin{cases} 1 & g = 1 \\ 0 & g \neq 1 \end{cases}$$

and since μ is a continuous measure, we have

$$\left\langle \Phi, g(\chi) \,\hat{\mu}(\chi^{-1}) \right\rangle = \mu\{g\} = 0, \quad g \in K.$$

This shows that the Fourier-Bohr coefficients of $\hat{\mu}(\chi^{-1})$ are zero. By the uniqueness theorem we obtain that $\hat{\mu}(\chi^{-1}) \equiv 0$ and hence $\mu = 0$. This completes the proof. \Box

5. Almost periodic functionals on C^* -algebras. Recall that the following characterization of almost periodic functionals on C^* algebras is given by Quigg [18, Theorem 3.4]. Let π_{ap} be the direct sum of all the finite dimensional cyclic representations obtained from the application of the Gelfand-Naimark-Segal construction to the states of A, and denote the corresponding central projection by z_{ap} . Then ap $(A) = z_{ap} \cdot A^*$. However, we have the following.

Corollary 7. For an arbitrary C^* -algebra A,

$$\operatorname{ap}(A) = \left(\sum_{\sigma \in \widehat{A}_c} \oplus (\ker \sigma)^{\perp}\right)_{\ell^1}.$$

Proof. Let A be a C^* -algebra. It is well known that A is Arens regular and A^{**} can be identified with the enveloping von Neumann algebra of A. Let Γ be the unitary group in A^{**} endowed with the

discrete topology. It follows from the Russo-Dye theorem [3, p. 210], $id: L^1(\Gamma) \to A^{**}$ is a continuous homomorphism with dense range. On the other hand, the *M*-ideals in C^* -algebras are exactly the closed two-sided ideals [21]. Thus, the result now follows from Theorem 4.

Let M be a von Neumann algebra and M_* its predual. It is well known that M_* is a Banach M-bimodule. By $\operatorname{ap}_*(M)$ we denote the set of all σ -continuous almost periodic functionals on M. Clearly, $\operatorname{ap}_*(M)$ is an M-subbimodule of M_* . A closed subspace $E \subset M_*$ is called an invariant subspace of M_* , if $a \cdot \varphi \cdot b \in E$ for all $\varphi \in E$ and $a, b \in A$. An invariant subspace E of M_* is said to be minimal if E does not contain other nonzero invariant subspaces of M_* . As usual, we call a projection p in a von Neumann algebra M finite dimensional if the algebra pMpis finite dimensional. By $P_c(M)$ we shall denote the set of all minimal finite dimensional central projections of M.

Quigg [18, Theorem 2.8], has shown that $ap_*(M) = (M_{ap})_*$, where M_{ap} is the largest ideal of M which is a direct sum of matrix algebras. The following theorem gives another characterization of σ -continuous almost periodic functionals on von Neumann algebras.

Theorem 7. For an arbitrary von Neumann algebra M,

$$\operatorname{ap}_*(M) = \left(\sum_{p \in P_c(M)} \oplus p \cdot M_*\right)_{\ell^1}.$$

Proof. Let $\{E_i : i \in I\}$ be the family of all minimal finite-dimensional invariant subspaces of M_* . We first show that

(5.1)
$$\operatorname{ap}_*(M) = \overline{\operatorname{span}} \{ E_i : i \in I \}.$$

Since each E_i , $i \in I$, is a finite-dimensional invariant subspace of M_* , we have $E_i \subset \operatorname{ap}_*(M)$ and consequently span $\{E_i : i \in I\} \subset \operatorname{ap}_*(M)$. To show the reverse inclusion, let U denote the group of all unitary elements of M. Let us equip U with the discrete topology and define a representation T of $U \times U$ on M_* by $T(\gamma, s)\varphi = \gamma^{-1} \cdot \varphi \cdot s$, where $\gamma, s \in U$ and $\varphi \in M_*$. Clearly, $\operatorname{ap}_*(M)$ is an invariant

subspace for T. A standard "finite ε -mesh technique" shows that the set $\{\gamma^{-1} \cdot \varphi \cdot s : (\gamma, s) \in U \times U\}$ is relatively compact in M_* for all $\varphi \in \mathrm{ap}_*(M)$. Hence, the restriction of T to $\mathrm{ap}_*(M)$ is an almost periodic representation. By Theorem 1, $ap_*(M)$ is a closed linear span of the irreducible finite-dimensional T-invariant subspaces. However, since the linear span of U is dense in M, irreducible finite-dimensional T-invariant subspaces are exactly minimal finite-dimensional invariant subspaces of M_* . This proves (5.1). Further, if E is a minimal finitedimensional invariant subspace of M_* , then E^{\perp} is a maximal bi-ideal in M of finite codimension. It follows that there exists a minimal finitedimensional central projection $p \in M$ such that $E^{\perp} = (1-p)M$ and, consequently, $E = p \cdot M_*$. The converse is also true. If p is a minimal finite-dimensional central projection in M, then $p \cdot M_*$ is a minimal finite-dimensional invariant subspace of M_* . Let p_i be the associated projection of E_i , $i \in I$. Since $E_i \cap E_j = \{0\}, i \neq j$, it follows that the projections $\{p_i : i \in I\}$ are mutually orthogonal. Furthermore, the natural mapping

$$M \longrightarrow (p_i M \oplus (1 - p_i) M)_{\ell_{i-1}},$$

is clearly isometric, whence $\|\varphi\| = \|p_i \cdot \varphi\| + \|\varphi - p_i \cdot \varphi\|$, for all $\varphi \in M_*$ and $i \in I$. Consequently, for a given $\varphi_{i_1} \in E_{i_1}, \ldots, \varphi_{i_n} \in E_{i_n}$, since $p_{i_n} \cdot \varphi_{i_m} = 0, n \neq m$, we have

$$\begin{aligned} \|\varphi_{i_{1}} + \dots + \varphi_{i_{n}}\| \\ &= \|p_{i_{1}} \cdot (\varphi_{i_{1}} + \dots + \varphi_{i_{n}})\| + \|\varphi_{i_{1}} + \dots + \varphi_{i_{n}} - p_{i_{1}} \cdot (\varphi_{i_{1}} + \dots + \varphi_{i_{n}})\| \\ &= \|\varphi_{i_{1}}\| + \|\varphi_{i_{2}} + \dots + \varphi_{i_{n}}\| = \dots = \|\varphi_{i_{1}}\| + \|\varphi_{i_{2}}\| + \dots + \|\varphi_{i_{n}}\|. \end{aligned}$$

Now the proof is completed as in the proof of Theorem 4. \Box

This theorem also gives a characterization of almost periodic functionals on C^* -algebras.

Corollary 8. For an arbitrary C^* -algebra A,

$$\operatorname{ap}(A) = \left(\sum_{p \in P_c(A^{**})} \oplus p \cdot A^*\right)_{\ell^1}.$$

Proof. It is easy to see that $ap(A) = ap_*(A^{**})$. Thus, the result follows from Theorem 7. \Box

Remark 1. Let A be a C^* -algebra. As in the proof of Theorem 7, we can see that $\{p \cdot A^* : p \in P_c(A^{**})\}$ is exactly the set of all minimal finite-dimensional invariant subspaces of A^* . Since A has a bounded approximate identity, by Lemma 1, we have $\{p \cdot A^* : p \in P_c(A^{**})\} = \{(\ker \sigma)^{\perp} : \sigma \in \widehat{A}_c\}$. Hence, Corollary 8 is a reformulation of Corollary 7.

The following simple fact presents certain interest.

Proposition 1. Let H be a Hilbert space, and let A be a Banach algebra of compact operators on H. Then the following assertions are equivalent.

- a) ap $(A) = A^*$.
- b) A_1 is relatively compact in the strong operator topology.

Proof. a) \Rightarrow b). Note that A^* is (linearly isometric) $L^1(H)/A^{\perp}$, where $L^1(H)$ is the space of trace-class operators on H. For x, y in H, by $x \otimes y$ we denote the one-dimensional operator on H defined by $x \otimes y : z \to (z, y)x$. Now let $(T_n)_{n \in N}$ be an arbitrary sequence in A_1 . For given x, y in $H \setminus \{0\}$, since $x \otimes y + A^{\perp}$ is in ap $(A), (T_n)_{n \in N}$ has a subsequence denoted again by $(T_n)_{n \in N}$, such that the sequence $T_n \cdot (x \otimes y + A^{\perp}) = T_n x \otimes y$ converges in A^* . Consequently, we have

$$||T_n x \otimes y - T_m x \otimes y|| = ||T_n x - T_m x|| ||y|| \longrightarrow 0.$$

It follows that the sequence $(T_n x)_{n \in N}$ converges.

b) \Rightarrow a). Since the linear span of $\{x \otimes y + A^{\perp} : x, y \in H\}$ is dense in A^* , it is enough to show that $x \otimes y + A^{\perp}$ is in ap (A) for every x, y in H. To see this, let $(T_n)_{n \in N}$ be an arbitrary sequence in A_1 , and let $x \in H$. Since the set $(T_n x)_{n \in N}$ is relatively compact, it has a subsequence denoted again by $(T_n x)_{n \in N}$ such that $T_n x \to z$, for some $z \in H$. Hence

$$T_n \cdot \left(x \otimes y + A^{\perp} \right) = T_n x \otimes y \longrightarrow z \otimes y.$$

The proof is complete. \Box

Corollary 9. Let H be a Hilbert space, and let A be a C^* -algebra of compact operators on H. Then the following assertions are equivalent.

a) A_1 is relatively compact in the strong operator topology.

b) A is a c_0 -sum of finite dimensional C^{*}-algebras.

Proof. As shown in [13, Lemma 4.1], under the hypotheses of the corollary, ap $(A) = A^*$ if and only if A is a c_0 -sum of finite dimensional C^* -algebras. Thus the result follows from Proposition 1.

Now let A and B be two unital C^* -algebras and $A \widehat{\otimes} B$ their projective tensor product. Let U_A and U_B be the group of unitary elements of A and B, respectively. By the Russo-Dye theorem [3, p. 210], a.c.h. $U_A = A_1$ and a.c.h. $U_B = B_1$, where a.c.h. is the "absolute convex hull". Then $\Gamma = \{u \otimes v : u \in U_A, v \in U_B\}$ is a group in $A \widehat{\otimes} B$ and, by the definition of the projective tensor norm, a.c.h. $(\Gamma) = (A \widehat{\otimes} B)_1$. Let Γ be equipped with the discrete topology. Then the mapping id : $L^1(\Gamma) \to A \widehat{\otimes} B$ is a continuous homomorphism with dense range (it can be deduced even more: $A \widehat{\otimes} B$ is isomorphic to a quotient algebra of $L^1(\Gamma)$). Now, applying Theorem 2, we have the following.

Corollary 10. Let A and B be two unital C^* -algebras. Then ap $(A \widehat{\otimes} B) = \overline{\text{span}} \{ (\ker \sigma)^{\perp} : \sigma \in (A \widehat{\otimes} B)_c^{\wedge} \}.$

Let K and S be two compact Hausdorff spaces and $K \times S$ their Cartesian product.

Corollary 11. We have ap $(C(K) \widehat{\otimes} C(S)) = \ell^1(K \times S)$.

Proof. It is well known that the structure space of $C(K) \otimes C(S)$ can be identified canonically with $K \times S$ via the mapping $(x, y) \to \delta_x \otimes \delta_y (x \in K, y \in S)$, where $\delta_x \otimes \delta_y$ is defined by $\langle \delta_x \otimes \delta_y, f \otimes g \rangle = f(x)g(y), f \in C(K), g \in C(S)$. By Corollary 10, we have

ap
$$(C(K) \otimes C(S)) = \overline{\operatorname{span}} \{ \delta_x \otimes \delta_y : (x, y) \in K \times S \}.$$

On the other hand, we can see that, for every choice of $x_1, \ldots, x_n \in K$, $y_1, \ldots, y_n \in S$ and complex numbers $\lambda_1, \ldots, \lambda_n$,

 $\|\lambda_1 \delta_{x_1} \otimes \delta_{y_1} + \dots + \lambda_n \delta_{x_n} \otimes \delta_{y_n}\| = |\lambda_1| + \dots + |\lambda_n|.$

Now the proof is completed as in the proof of Theorem 4. \Box

Acknowledgment. I am very grateful to the referee for valuable remarks and suggestions.

REFERENCES

1. E. Behrends, *M*-Structure and the Banach-Stone theorem, Lecture Notes in Math., vol. 736, Springer, New York, 1979.

2. J. Benedetto, *Harmonic analysis on totally disconnected sets*, Lecture Notes in Math., vol. 202, Springer, New York, 1971.

3. F.F. Bonsall and J. Duncan, *Complete normed algebras*, Springer-Verlag, Heidelberg, 1973.

4. R.B. Burckel, *Weakly almost periodic functions on semigroups*, Gordon and Breach, New York, 1970.

5. J. Diestel, A survey of results related to the Dunford-Pettis property, Contemp. Math., vol. 2, Amer. Math. Soc., Providence, 1980, pp. 15–60.

6. J. Duncan and S.A.R. Housseniun, *The second dual of a Banach algebra*, Proc. Roy. Soc. Edinburgh **84** (1979), 309–325.

7. J. Duncan and A. Ülger, Almost periodic functionals of Banach algebras, Rocky Mountain J. Math. **22** (1992), 837–848.

8. C. Dunkl and D. Ramirez, Weakly almost periodic functionals on the Fourier algebra, Trans. Amer. Math. Soc. 185 (1973), 501–514.

9. C. Herz, *Harmonic synthesis for subgroups*, Ann. Inst. Fourier **23** (1973), 91–123.

10. E. Hewitt and K.R. Ross, *Abstract harmonic analysis* 2, Springer-Verlag, New York, 1970.

11. J.W. Kitchen, Jr., Normed modules and almost periodicity, Monatsh. Math. 70 (1966), 233–243.

12. H. Lasey, The isometric theory of classical Banach spaces, Springer-Verlag, New York, 1974.

13. A.T. Lau and A. Ülger, Some geometric properties on the Fourier-Stieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc. 337 (1993), 321–359.

14. F. Lust-Piquard, L'Espace des functions presque-periodiques dont le spectre ast contenu dans un ensemble compact denombrable a la properiete de Schur, Colloq. Math. 41 (1979), 273–284.

15. ----, Means on CVp(G)-subspaces of CVp(G) with RNP and Schur property, Ann. Inst. Fourier **39** (1989), 969–1006.

16. Y.I. Lyubich, Introduction to theory of Banach representations of groups, Birkhauser Verlag, Heidelberg, 1988.

17. H. Mustafayev and A. Ülger, A class of Banach algebras whose duals have the Schur property, Turkish J. Math. 23 (1999), 441-452.

18. J.C. Quigg, Approximately periodic functionals on C^* -algebras and von Neumann algebras, Canad. J. Math. 37 (1985), 769-784.

19. H. Rosenthal, A characterization of Banach spaces containing ℓ^1 , Proc. Nat. Acad. Sci. USA 71 (1974), 2411-2413.

20. W. Rudin, Fourier analysis on groups, Interscience, New York, 1973.

21. R.R. Smith and J.D. Ward, M-ideal structure in Banach algebras, J. Funct. Anal. 27 (1978), 337-349.

22. G.M. Takesaki, Theory of operator algebras I, Springer-Verlag, New York, 1979.

YUZUNCU YIL UNIVERSITY, FACULTY OF ARTS AND SCIENCES, DEPARTMENT OF MATHEMATICS, VAN, TURKEY

E-mail address: hsmustafayev@yahoo.com