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DERIVATIVES OF THE HYPERBOLIC DENSITY
NEAR AN ISOLATED BOUNDARY POINT

BRIAN T. GILL AND THOMAS H. MACGREGOR

ABSTRACT. Suppose that c is an isolated boundary point
of a hyperbolic domain Ω in the complex plane, and let λΩ

denote the density of the hyperbolic metric on Ω. We show
that for each pair of nonnegative integers n and m

lim
w→c

(w − c)n(w − c)
m |w − c| log

1

|w − c|
∂m+nλΩ(w)

∂wm∂wn

=
1

2
cncm,

where c0 = 1 and cn = ((−1)n/2n) 1 · 3 · 5 · · · (2n − 1)
for n = 1, 2, 3, . . . . Also we find the asymptotic limit of
∂m+nλΩ(w)/∂wm∂wn as w → ∞ when Ω is a hyperbolic
domain containing a neighborhood of ∞.

1. Introduction. Let Ω be a hyperbolic domain in the complex
plane C, and let λΩ denote the density of the hyperbolic metric on Ω
normalized so that the curvature is −4 . Suppose that c is an isolated
boundary point of Ω. In [4] Yamada proved that

(1) lim
w→c

|w − c| log
1

|w − c| λΩ(w) =
1
2
.

This also was shown by Yamashita in [5] and by Minda in [3] using
different arguments. Yamashita found the order of the growth of
(∂λΩ(w)/∂w), (∂2λΩ(w)/∂w2) and (∂2λΩ(w)/∂w∂w) as w → c. This
was improved by Minda who determined the asymptotic limits of these
three derivatives as w → c. For example, Minda proved that

(2) lim
w→c

(w − c)|w − c| log
1

|w − c|
∂λΩ(w)

∂w
= −1

4
.
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These results are extended in this paper to partial derivatives of all
orders. The main theorem asserts that

lim
w→c

(w − c)n(w − c)
m|w − c| log

1
|w − c|

∂m+nλΩ(w)
∂wm∂wn

= cn,m

for each pair of nonnegative integers n and m, where cn,m are explicit
constants. Similar asymptotic limits are obtained for derivatives of
λΩ(w) as w → ∞ when Ω is a hyperbolic domain containing a
neighborhood of ∞.

Our approach is the one used by Minda. It depends on a result of
Marden, Richards and Rodin in [2]. Namely, there exists an analytic
covering projection f from Δ0 = {z ∈ C : 0 < |z| < 1} onto Ω
which extends to an analytic function from Δ = {z ∈ C : |z| < 1}
onto Ω ∪ {c} with f(0) = c and f ′(0) �= 0. Further, the condition
f ′(0) > 0 determines a unique covering. The conformal invariance of
the hyperbolic metric implies that

(3) λΩ(w) =
λΔ0(z)
|f ′(z)| ,

where w = f(z) and z ∈ Δ0.

Equation (3) and

(4) λΔ0(z) =
1

2|z| log(1/|z|)

for z ∈ Δ0 form the starting point for our arguments. First we obtain
the asymptotic limits of derivatives of log λΩ(w) as w approaches an
isolated boundary point of Ω. Those limits are then used to derive
asymptotic limits of derivatives of λΩ. Finally, the asymptotic limits
at ∞ are deduced from the facts about limits at an isolated boundary
point.

2. Asymptotic limits at an isolated boundary point.

Lemma 2.1. Suppose that Ω is a hyperbolic domain and c is an
isolated boundary point of Ω. Let λ = λΩ. Then for all positive integers
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n and m

lim
w→c

(w − c)n ∂n log λ(w)
∂wn

=
(−1)n(n − 1)!

2
,(5)

lim
w→c

(w − c)n ∂n log λ(w)
∂wn =

(−1)n(n − 1)!
2

,(6)

and

lim
w→c

(w − c)n (w − c)m ∂n+m log λ(w)
∂wm∂wn

= 0.(7)

Proof. Let f be the unique analytic covering projection from Δ0 onto
Ω which extends analytically to Δ and satisfies f(0) = c and f ′(0) > 0.
Then (3) and (4) imply
(8)

log λ(w) +
1
2

log f ′(z) +
1
2

log f ′(z) = − log 2 − log |z| − log
(

log
1
|z|

)
where w = f(z) and 0 < |z| < 1. If we differentiate both sides of (8)
with respect to z and use ∂w/∂z = f ′(z), we obtain

(9)
∂ log λ(w)

∂w
=

1
zf ′(z)

{
− 1

2
− 1

2
zf ′′(z)
f ′(z)

+
1

2 log(1/|z|)
}

.

We claim that for each positive integer n,

(10)
∂n log λ(w)

∂wn
=

1
[zf ′(z)]n

n∑
j=0

gj,n(z)
1

[log(1/|z|)]j ,

where each function gj,n is analytic in Δ and

(11) g0,n(0) =
(−1)n(n − 1)!

2
.

When n = 1 this claim follows from (9) and the fact that f ′(z) �= 0
for |z| < 1. Suppose that (10) and (11) hold for some positive integer
n and each function gj,n is analytic in Δ. Differentiating (10) with
respect to z yields

(12)
∂n+1 log λ(w)

∂wn+1
=

1
[zf ′(z)]n+1

n+1∑
j=0

gj,n+1(z)
1

[log(1/|z|)]j ,
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where

(13) g0,n+1(z) = −n

[
1 +

zf ′′(z)
f ′(z)

]
g0,n(z) + zg′0,n(z),

(14) gj,n+1(z) = −n

[
1 +

zf ′′(z)
f ′(z)

]
gj,n(z)+ zg′j,n(z)+

j−1
2

gj−1,n(z),

for j = 1, 2, . . . , n, and

(15) gn+1,n+1(z) =
n

2
gn,n(z).

Since each function gj,n is analytic in Δ and f ′(z) �= 0 for |z| < 1,
equations (13), (14) and (15) show that each function gj,n+1 is well-
defined and analytic in Δ. Equations (13) and (11) yield g0,n+1(0) =
((−1)n+1n!)/2. This completes an inductive proof of our claim.

Equations (10) and (11) imply that

lim
w→c

(w − c)n ∂n log λ(w)
∂wn

= lim
z→0

⎧⎨⎩
[
f(z) − f(0)

zf ′(z)

]n n∑
j=0

gj,n(z)
1

[log(1/|z|)]j

⎫⎬⎭
= g0,n(0) =

(−1)n(n − 1)!
2

.

This proves (5).

Since log λ is real-valued and infinitely differentiable,

∂n log λ(w)
∂wn =

[
∂n log λ(w)

∂wn

]
for n = 1, 2, . . . . Hence (5) implies (6).

We claim that for each pair of positive integers m and n,

(16)
∂n+m log λ(w)

∂wm∂wn

=
1

[zf ′(z)]n
1

[zf ′(z)]m

n∑
j=0

m∑
k=1

hj,k,m(z) gj,n(z)
1

[log(1/|z|)]j+k
,
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where each function hj,k,m is analytic in Δ. To prove this we give an
inductive argument on m with n a fixed positive integer. Differentiation
of (10) with respect to z shows that

(17)
∂n+1 log λ(w)

∂w∂wn
=

1
[zf ′(z)]n

1
zf ′(z)

n∑
j=0

j

2
gj,n(z)

1

[log(1/|z|)]j+1
.

This verifies (16) in the case m = 1 with hj,1,1(z) = j/2. Suppose that
our claim holds for a positive integer m. Differentiation of (16) with
respect to z yields
(18)

∂n+m+1 log λ(w)
∂wm+1∂wn

=
1

[zf ′(z)]n
1

[zf ′(z)]m+1

n∑
j=0

m+1∑
k=1

hj,k,m+1(z) gj,n(z)

[log(1/|z|)]j+k
,

where

(19) hj,1,m+1(z) = −m

[
1 +

zf ′′(z)
f ′(z)

]
hj,1,m(z) + zh′

j,1,m(z),

(20)
hj,k,m+1(z) = −m

[
1 +

zf ′′(z)
f ′(z)

]
hj,k,m(z) + zh′

j,k,m(z)

+
j + k − 1

2
hj,k−1,m(z),

for k = 2, 3, . . . , m, and

(21) hj,m+1,m+1(z) =
j + m

2
hj,m,m(z).

The inductive hypothesis and f ′(z) �= 0 for |z| < 1 show that each
function hj,k,m+1, j = 0, 1, . . . , n, k = 1, 2, . . . , m + 1, is analytic in Δ.
This proves our claim.

Equation (16) implies that

lim
w→c

(w − c)n (w − c)m ∂n+m log λ(w)
∂wm∂wn

= lim
z→0

[
f(z) − f(0)

zf ′(z)

]n
[(

f(z) − f(0)
zf ′(z)

)]m n∑
j=0

m∑
k=1

hj,k,m(z) gj,n(z)

[log(1/|z|)]j+k
.

Because j + k � 1 each limit in the sum is zero. This proves (7).
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Theorem 2.2. Suppose that Ω is a hyperbolic domain and c is an
isolated boundary point of Ω. Let λ = λΩ. Then for each pair of
nonnegative integers m and n

(22) lim
w→c

(w − c)n(w − c)
m|w − c| log

1
|w − c|

∂m+nλ(w)
∂wm∂wn

=
1
2

cncm,

where

(23) cn =

{ 1 if n = 0
(−1)n

2n
1 · 3 · 5 · · · (2n − 1) if n = 1, 2, 3, . . . .

Proof. An inductive argument, depending only on the existence of
derivatives of λ and λ(w) �= 0, shows that

(24)
∂pλ(w)

∂wp
=

p∑
j=1

(
p − 1
j − 1

)
∂j log λ(w)

∂wj

∂p−jλ(w)
∂wp−j

for w ∈ Ω and for every positive integer p. The inductive step from p
to p + 1 is obtained by differentiation of (24) with respect to w, which
gives

∂p+1λ(w)
∂wp+1

=
p∑

j=1

(
p − 1
j − 1

) [
∂j log λ(w)

∂wj

∂p−j+1λ(w)
∂wp−j+1

+
∂j+1 log λ(w)

∂wj+1

∂p−jλ(w)
∂wp−j

]
=

∂ log λ(w)
∂w

∂pλ(w)
∂wp

+
∂p+1 log λ(w)

∂wp+1
λ(w)

+
p∑

j=2

{[(
p − 1
j − 1

)
+

(
p − 1
j − 2

)]
∂j log λ(w)

∂wj

∂p−j+1λ(w)
∂wp−j+1

}
.

Then we use
(
p−1
j−1

)
+

(
p−1
j−2

)
=

(
p

j−1

)
.

The case n = m = 0 of the theorem corresponds to (1). Assume that
m = 0 and (22) holds for n = 0, 1, 2, . . . , k where k is a nonnegative
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integer. From (5), (24) and our assumption, we obtain

lim
w→c

(w − c)k+1|w − c| log
1

|w − c|
∂k+1λ(w)

∂wk+1

=
k+1∑
j=1

{(
k

j−1

) [
lim
w→c

(w − c)j ∂j log λ(w)
∂wj

]

×
[

lim
w→c

(w − c)k+1−j|w − c| log
1

|w − c|
∂k+1−jλ(w)

∂wk+1−j

]}
=

k+1∑
j=1

(
k

j−1

)
(−1)j(j − 1)!

2
ck+1−j

2

=
1
4

k+1∑
j=1

k!
(k + 1 − j)!

(−1)jck+1−j .

A straightforward inductive argument shows that

(25)
l∑

j=1

(l − 1)!
(l − j)!

(−1)jcl−j = 2cl

for every positive integer l. Therefore

lim
w→c

(w − c)k+1|w − c| log
1

|w − c|
∂k+1λ(w)

∂wk+1
=

ck+1

2
.

This completes the inductive argument that (22) holds when m = 0
and n is any nonnegative integer.

If p is a positive integer and q is a nonnegative integer, then we will
show that

(26)
∂p+qλ(w)
∂wp∂wq

=
p∑

j=1

q∑
k=0

(
q

k

)(
p − 1
j − 1

)
∂j+k log λ(w)

∂wj∂wk

∂q−k+p−jλ(w)
∂wp−j∂wq−k

for w ∈ Ω. Since λ is real-valued and infinitely differentiable,

∂pλ(w)
∂wp =

(
∂pλ(w)

∂wp

)
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and hence (24) yields

∂pλ(w)
∂wp =

p∑
j=1

(
p − 1
j − 1

)
∂j log λ(w)

∂wj

∂p−jλ(w)
∂wp−j

for all positive integers p. This proves that (26) holds for all positive
integers p when q = 0. We complete the proof of (26) by induction on q
with p fixed. The inductive step from q to q+1 follows by differentiation
of (26) with respect to w. The remaining details are similar to those
used to prove (24).

Let n be a fixed nonnegative integer. For each nonnegative integer l
let Pl denote the statement that

lim
w→c

(w − c)r (w − c)l |w − c| log
1

|w − c|
∂r+lλ(w)
∂wl∂wr

=
1
2

crcl

for r = 0, 1, . . . , n. We already showed that P0 holds. Suppose that m
is a nonnegative integer and assume Pl for l = 0, 1, . . . , m. Let s be an
integer satisfying 0 � s � n. With q = s and p = m + 1, (26) yields

(w − c)s (w − c)m+1 |w − c| log
1

|w − c|
∂s+m+1λ(w)
∂wm+1∂ws

=
m+1∑
j=1

s∑
k=0

(
s

k

)(
m

j − 1

) {
(w − c)k (w − c)j ∂j+k log λ(w)

∂wj∂wk

}

×
{

(w − c)s−k (w − c)m+1−j |w − c| log
1

|w − c|
∂s−k+m+1−jλ(w)
∂wm+1−j∂ws−k

}
.

By using (7) and then (6) and our inductive assumption we obtain

lim
w→c

(w − c)s (w − c)m+1 |w − c| log
1

|w − c|
∂s+m+1λ(w)
∂wm+1∂ws

=
m+1∑
j=1

(
m

j − 1

)
(−1)j(j − 1)!

2
1
2

cscm+1−j

=
1
4

cs

m+1∑
j=1

m!
(m + 1 − j)!

(−1)jcm+1−j .
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Equation (25) implies that this last expression equals (1/2) cscm+1.
This yields the statement Pm+1. Therefore Pm holds for all nonnegative
integers m.

3. Asymptotic limits at infinity.

Lemma 3.1. Suppose that Ω is a hyperbolic domain and w0 ∈ C \Ω.
For w ∈ Ω let g(w) = 1/(w − w0). Let λ = λΩ, Ω̃ = g(Ω), and λ̃ = λ

Ω̃
.

Then, for each pair of nonnegative integers m and n,

(27)
∂n+mλ(w)
∂wm∂wn

= (−1)n+m
n∑

k=0

m∑
j=0

(
n

k

)
n!
k!

(
m

j

)
m!
j!

ζn+k+1 ζ
m+j+1 ∂j+kλ̃(ζ)

∂ζ
j
∂ζk

,

where ζ = 1/(w − w0) and w ∈ Ω.

Proof. Since g maps open sets onto open sets and connected sets onto
connected sets, Ω̃ is a domain. Because Ω is hyperbolic, there exists
w1 such that w1 ∈ C \ Ω and w1 �= w0. Thus 1/(w1 − w0) ∈ C \ Ω̃ and
0 ∈ C \ Ω̃ and therefore Ω̃ is hyperbolic.

The conformal invariance of the hyperbolic metric implies λ(w) =
|g′(w)|λ̃(g(w)). Let ζ = g(w). Then (∂ζ/∂w) = −ζ2 and hence
λ(w) = ζζλ̃(ζ). This verifies (27) when n = m = 0. Assume that
(27) holds when m = 0 and n is some nonnegative integer. Since
(∂n+1λ(w))/(∂wn+1) = − ζ2(∂/∂ζ)(∂nλ(w)/∂wn), this yields

∂n+1λ(w)
∂wn+1

= (−1)n+1

{
(n + 1)!ζn+2ζλ̃(ζ)

+
n∑

k=1

[(
n

k

)
n!
k!

(n + k + 1) +
(

n

k−1

)
n!

(k−1)!

]

× ζn+k+2 ζ
∂kλ̃(ζ)

∂ζk
+ ζ2n+3 ζ

∂n+1λ̃(ζ)
∂ζn+1

}
.

Because
(
n
k

)
n!/k!(n+k+1)+

(
n

k−1

)
n!/(k − 1)! = (n + 1)!/k!

(
n+1

k

)
, this

gives (27) with m = 0 and n replaced by n + 1. Thus (27) holds when
m = 0 and n is any nonnegative integer.
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Let n be a fixed nonnegative integer. Assume that (27) holds for
some nonnegative integer m. Differentiating (27) with respect to w we
find that

∂m+n+1λ(w)
∂wm+1∂wn

= (−1)n+m+1
n∑

k=0

(
n

k

)
n!
k!

ζn+k+1

{
(m + 1)! ζ

m+2 ∂kλ̃(ζ)
∂ζk

+
m∑

j=1

[(
m

j

)
m!
j!

(m + 1 + j) +
(

m

j−1

)
m!

(j−1)!

]

× ζ
m+j+2 ∂j+kλ̃(ζ)

∂ζ
j
∂ζk

+ ζ
2m+3 ∂k+m+1λ̃(ζ)

∂ζ
m+1

∂ζk

}

= (−1)n+m+1
n∑

k=0

(
n

k

)
n!
k!

ζn+k+1

×
m+1∑
j=0

(
m + 1

j

)
(m + 1)!

j!
ζ

m+j+2 ∂j+kλ̃(ζ)

∂ζ
j
∂ζk

.

This provides the inductive step.

Lemma 3.2. Let cn be defined by (23). For each nonnegative integer
n,

(28)
n∑

k=0

(
n

k

)
1
k!

ck =
(−1)n

n!
cn.

Proof. Let Γ denote the Gamma function. Then Γ(z + 1) = zΓ(z)
implies that Γ (k + (1/2)) = (k − (1/2)) (k − (3/2)) · · · (3/2) · (1/2) ·
Γ (1/2) for each nonnegative integer k. Hence (23) can be expressed

(29) ck = (−1)k Γ(k + (1/2))
Γ(1/2)

for k = 0, 1, 2, . . . . The Beta function is defined by B(z, w) =∫ 1

0
tz−1(1 − t)w−1 dt for Rz > 0 and Rw > 0. Then B(z, w) =
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(Γ(z)Γ(w))/(Γ(z + w)) [1, p. 213] and B(z, w) = B(w, z). Hence (29)
yields ck = ((−1)kk!)/(Γ2 (1/2))B (k + (1/2), (1/2)). Therefore

n∑
k=0

(
n

k

)
1
k!

ck =
n∑

k=0

(
n

k

)
(−1)k

Γ2 (1/2)

∫ 1

0

tk−1/2(1 − t)−1/2 dt

=
1

Γ2 (1/2)

∫ 1

0

{
n∑

k=0

(
n

k

)
(−t)k

}
t−1/2(1 − t)−1/2 dt

=
1

Γ2 (1/2)

∫ 1

0

(1 − t)nt−1/2(1 − t)−1/2 dt

=
1

Γ2 (1/2)
B ((1/2), n + (1/2))

=
1

Γ2 (1/2)
B (n + (1/2), (1/2)) =

(−1)n

n!
cn.

Theorem 3.3. Suppose that Ω is a hyperbolic domain which contains
a neighborhood of ∞. Let λ = λΩ. Then, for each pair of nonnegative
integers m and n,

(30) lim
w→∞wnwm|w| log |w| ∂n+mλ(w)

∂wm∂wn
=

1
2

cncm,

where the sequence {cn} is defined by (23).

Proof. Choose w0 ∈ C\Ω. Let ζ = g(w) = 1/(w − w0) and Ω̃ = g(Ω).
Then Ω̃ is a hyperbolic domain and 0 is an isolated boundary point of
Ω̃. Lemma 3.1 yields

wnwm|w| log |w| ∂n+mλ(w)
∂wm∂wn

= (−1)n+m
n∑

k=0

m∑
j=0

(
n

k

)
n!
k!

(
m

j

)
m!
j!

[1 + w0ζ]n [1 + w0ζ]m

×
∣∣∣∣1ζ (1 + w0ζ)

∣∣∣∣ log
∣∣∣∣1ζ (1 + w0ζ)

∣∣∣∣ ζk+1 ζ
j+1 ∂j+kλ̃(ζ)

∂ζ
j
∂ζk

.
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Since ζ → 0 as w → ∞, an application of Theorem 2.2 to Ω̃ with c = 0
implies that

lim
w→∞ wnwm|w| log |w| ∂n+mλ(w)

∂wm∂wn

= (−1)n+m
n∑

k=0

m∑
j=0

(
n

k

)
n!
k!

(
m

j

)
m!
j!

{
lim
ζ→0

ζkζ
j |ζ| log

1
|ζ|

∂j+kλ̃(ζ)

∂ζ
j
∂ζk

}

= (−1)n+m
n∑

k=0

m∑
j=0

(
n

k

)
n!
k!

(
m

j

)
m!
j!

1
2

ckcj

=
1
2

{
n!(−1)n

n∑
k=0

(
n

k

)
1
k!

ck

}⎧⎨⎩m!(−1)m
m∑

j=0

(
m

j

)
1
j!

cj

⎫⎬⎭ .

Lemma 3.2 yields (30).

Acknowledgment. The authors thank Richard O’Neil for useful
suggestions about this paper.
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