QUADRATIC RESIDUES OF CERTAIN TYPES

ALEXANDRU GICA

Abstract

The main purpose of the paper is to show that if p is a prime different from $2,3,5,7,13,37$, then there exists a prime number q smaller than $p, q \equiv 1(\bmod 4)$, which is a quadratic residue modulo p. Also, it is shown that if p is a prime number which is not $2,3,5,7,17$, then there exists a prime number $q \equiv 3(\bmod 4), q<p$, which is a quadratic residue modulo p.

1. Introduction. In [2] it is shown that any $n \in \mathbf{N}, n>3$, could be written as

$$
n=a+b
$$

a, b being positive integers such that $\Omega(a b)$ is an even number. If $m \in \mathbf{N}, m \geq 2$, has the standard decomposition $m=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ then the length of m is $\Omega(m)=\sum_{i=1}^{n} a_{i}$. We put $\Omega(1)=0$. In connection with the above quoted result, the following open problem naturally arises.

Open problem. What numbers n can be written as $n=a^{2}+b$, where a, b are positive integers, the length of b being an even number?

Trying to solve this problem was the starting point for the main result of this paper.

Theorem 1. Let p be a prime number $p \neq 2,3,5,7,13,37$. There exists a prime number q such that $q<p, q \equiv 1(\bmod 4)$ and $(q / p)=1$.

We will prove also a similar result which has, however, an elementary proof:

[^0]Theorem 2. If p is a prime not equal to $2,3,5,7,17$, then there exists a quadratic residue modulo p, where $q<p$ and $q \equiv 3(\bmod 4)$.

We have to mention that finding the properties of $n^{\prime}(p)$, the least prime number which is quadratic residue modulo a prime p, is a classical problem. We quote here [6] where it is shown that

$$
n^{\prime}(p)=O\left(p^{\alpha}\right)
$$

where α is a fixed real number for which $\alpha>1 / 4 e^{-1 / 2}$.
2. The elementary cases. We will use below the following obvious

Lemma. If x and y are positive integers, $x \neq y$, then $x^{2}+y^{2}$ has a prime factor $q=4 k+1, k \in \mathbf{N}$.

We will prove now the main statement of the paper

Theorem 1. Let p be a prime number not equal to $2,3,5,7,13,37$. Then there exists a prime number q such that $q<p, q \equiv 1(\bmod 4)$ and $(q / p)=1$.

We divide the proof of the theorem in several cases, depending on the class of p modulo 8 . In this section we will treat the cases which have elementary proofs.

1. $p \equiv 1,3(\bmod 8), p>3$. In this case $p=x^{2}+2 y^{2}$, where x and y are positive integers, $x \neq y$ (since $p>3$). According to the lemma, there exists a prime divisor $q \equiv 1(\bmod 4)$ of the number $x^{2}+y^{2}$. We have that $p \equiv y^{2}(\bmod q)$ and therefore $(q / p)=(p / q)=\left(y^{2} / q\right)=1$. Since obviously $q<p$, the statement is true in this case.
2. $p \equiv 7(\bmod 8), p>7$. We divide this case in two subcases, according to the class of p modulo 3 .

2a. $p \equiv 1(\bmod 3)$. In this situation we know that $p=x^{2}+3 y^{2}$, x and y being positive integers. It is obvious that $(x, y)=1, y$ is odd and $x=2 t$, where t is an odd number. Since $p>7$, we have $y \neq t$, and according to the lemma there is a prime $q \equiv 1$
$(\bmod 4)$ which divides $t^{2}+y^{2}$. We infer that $p \equiv-y^{2}(\bmod q)$ and $(q / p)=(p / q)=\left(-y^{2} / q\right)=(-1 / q)=1$.

2b. $p \equiv 2(\bmod 3)$. In this case $(3 / p)=1$ and there exists $m \in \mathbf{Z}$ such that $m^{2} \equiv 3(\bmod p)$. The element p is not prime in the norm Euclidean ring $\mathbf{Z}[\sqrt{3}]$ since $p \mid m^{2}-3=(m-\sqrt{3})(m+\sqrt{3})$ but p does not divide $m \pm \sqrt{3}$. Therefore $p=\alpha \beta$, with $\alpha, \beta \in \mathbf{Z}[\sqrt{3}]$, not units. If $\alpha=x+y \sqrt{3}, x, y \in \mathbf{Z}$, one gets that $x^{2}-3 y^{2}= \pm p$. Since $p \equiv 2$ $(\bmod 3)$, one obtains that $x^{2}-3 y^{2}=-p$. Considering the positive integers x, y such that $x^{2}-3 y^{2}=-p$ with x minimal and tacking into account that $(|2 x-3 y|,|2 y-x|)$ is also a solution of the above equation (we multiplied $x-y \sqrt{3}$ with $2+\sqrt{3}$, the fundamental unit of $\mathbf{Z}[\sqrt{3}]$), we immediately get that $|2 x-3 y| \geq x$. If $2 x-3 y \geq x$ one gets $x \geq 3 y$, while $-p=x^{2}-3 y^{2} \geq 6 y^{2}$ gives a contradiction. So it must be the case that $3 y-2 x \geq x$ and $y \geq x$. Therefore $-p=x^{2}-3 y^{2} \leq-2 y^{2}, y^{2} \leq p / 2$ and further $x^{2}=3 y^{2}-p \leq(3 p / 2)-p=p / 2$. The fact that the last two inequalities are strict follows since p is odd. Therefore x, y are positive integers such that $x^{2}-3 y^{2}=-p$ and $x^{2}<p / 2, y^{2}<p / 2$. Since $x \neq y$, then, according to the lemma, there exists a prime $q \equiv 1(\bmod 4)$ such that q divides $x^{2}+y^{2}$. Obviously, $q \leq x^{2}+y^{2}<p / 2+p / 2=p$ and $p \equiv(2 y)^{2}(\bmod q)$. We proved Theorem 1 in this case.
3. The difficult case. We will solve in this section the case $p \equiv 5$ $(\bmod 8), p>37$. In [4] Schinzel shows that a positive integer n could be written as $n=x^{2}+y^{2}+z^{2}$, where x, y, z are positive integers such that $(x, y, z)=1$ if and only if
i) $n \not \equiv 0,4,7(\bmod 8)$ and
ii) n is divisible by a prime $\equiv 3(\bmod 4)$ or is not a "numerus idoneus."

Euler called a number n"numerus idoneus" (convenient number) if it satisfies the following criterion:

Let m be an odd number such that $m=x^{2}+n y^{2}, x, y \in \mathbf{Z},(x, y)=1$. If the equation $m=x^{2}+n y^{2}$ has only one solution with $x \geq 0, y \geq 0$, then m is a prime number.

Gauss gave a list of 65 numbers n with this property and Weinberger [7] showed that besides these values, there exists at most one convenient number.

We apply Schinzel's result to $n=p$. The only possibility for p to not be written as $p=x^{2}+y^{2}+z^{2}$, with x, y, z positive integers, is to be a "numerus idoneus." Since $p \equiv 1(\bmod 4)$ is prime and "numerus idoneus," we then infer that the ideal class group of the field $\mathbf{Q}(\sqrt{-p})$ has 2^{r} elements, where r is the number of odd prime divisors of p, see [1, Theorem 3.22, Proposition 3.11] for a proof of these results. We have $r=1$ and therefore the ideal class group of the field $\mathbf{Q}(\sqrt{-p})$ has two elements. The list of the quadratic imaginary fields of discriminant d for which $h(d)=2$ is given in $[\mathbf{3}, \mathbf{5}]$. The list of the numbers d is the following:

$$
-d=15,20,24,35,40,51,52,88,91,115,123,148,187,232,235,267,403,427
$$

We observe that in our case $d=-4 p$, where $p \equiv 5(\bmod 8)$ is a prime number. The only values of p which fit in the above list are $p=5$, $p=13, p=37$ (corresponding to $d=-4 p=-20,-52,-148$). But $p>37$ and we arrive at a contradiction. Therefore, there exist the positive integers x, y, z such that $p=x^{2}+y^{2}+z^{2}$. Two of the above three numbers are different; let us suppose that $x \neq y$.

Applying the lemma we obtain that there exists a prime divisor $q \equiv 1$ $(\bmod 4)$ of the number $x^{2}+y^{2}$. The prime number q has the desired properties since $q<p, q \equiv 1(\bmod 4),(q / p)=1$.
4. A final remark. We give now a similar result to Theorem 1 but with an elementary proof.

Theorem 2. If p is a prime not equal to $2,3,5,7,17$, then there exists a quadratic residue modulo p, where $q<p$ and $q \equiv 3(\bmod 4)$.

We divide the proof again into four cases.

1. $p \equiv 3(\bmod 8), p>3$. We have $(p+9) / 4<p$ and $(p+1) / 4 \geq 3$. One of the consecutive odd numbers $(p+1) / 4$ and $(p+9) / 4$ has the form $4 h+3 \geq 3$ and has therefore a prime divisor $q, q \equiv 3(\bmod 4)$. We have that $q \leq(p+9) / 4<p, p \equiv-1(\bmod q)$ or $p \equiv-9(\bmod q)$. In both cases we have $(q / p)=-(p / q)=-(-1)=1$.
2. $p \equiv 5(\bmod 8), p>5$. The proof follows as above considering the numbers $(p-1) / 4$ and $(p-9) / 4$.
3. $p \equiv 7(\bmod 8), p>7$. Let us consider the numbers $a=(p+1) / 8$, $a+1=(p+9) / 8, a+3=(p+25) / 8, a+6=(p+49) / 8<p$. These four positive integers represent all the classes modulo 4 and therefore one of these numbers has a prime divisor $q \equiv 3(\bmod 4)$. We have $p \equiv-1$ $(\bmod q)$ or $p \equiv-9(\bmod q)$ or $p \equiv-25(\bmod q)$ or $p \equiv-49(\bmod q)$. In all four cases we have $(p / q)=-1$ and $(q / p)=-(p / q)=-(-1)=1$.
4. $p \equiv 1(\bmod 8), p>17$. Since $(23 / 41)=(41 / 23)=(18 / 23)=$ $(2 / 23)=1$, we can suppose that $p \geq 73$. The proof follows now as in the previous case considering the numbers $(p-1) / 8,(p-9) / 8,(p-25) / 8$, $(p-49) / 8>0$.

Acknowledgment. I thank the anonymous referee for his hints which helped me improve the exposition of the paper.

REFERENCES

1. D.A. Cox, Primes of the form $x^{2}+n y^{2}$: Fermat, classified theory and complex multiplication, John Wiley \& Sons, New York, 1989.
2. A. Gica, The proof of a conjecture of additive number theory, J. Number Theory 94 (2002), 80-89.
3. H.L. Montgomery and P.J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1973/74), 529-542.
4. A. Schinzel, Sur les sommes de trois carrés, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astr. Phys. 7 (1959), 307-309.
5. H.M. Stark, On complex quadratic fields with class-number two, Math. Comp. 29 (1975), 289-302.
6. A.I. Vinogradov and Y.V. Linnik, Hypoelliptical curves and the least prime quadratic residue, Dokl. Akad. Nauk SSSR 168 (1966), 259-261.
7. P.J. Weinberger, Exponents of the class groups of complex quadratic fields, Acta Arith. 22 (1973), 117-124.

Department of Mathematics, University of Bucharest, Str. Academiei
14, RO-010014 Bucharest 1, Romania
E-mail address: alex@al.math.unibuc.ro

[^0]: 2000 AMS Mathematics Subject Classification. Primary 11A15, 11E25, 11R29.
 Key words and phrases. Quadratic residue, length, numerus idoneus.
 Received by the editors on March 22, 2004, and in revised form on April 9, 2004.

