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THE SQUARE OF A MAP, SYMBOLIC DYNAMICS
AND THE CONLEY INDEX

JIM WISEMAN

ABSTRACT. We consider a map f from a locally compact
metric space to itself, and use the discrete Conley index to
study the difference between the local dynamics of f and f2.
In particular, we present a method, based on work by Mis-
chaikow, Szymczak, et al., for detecting positive entropy sym-
bolic dynamics by measuring the difference between Conley
indices for f and f2.

1. Introduction. Let f : X → X be a continuous map of a
locally compact metric space and N a compact subset of X. Any point
that stays in N under all forward and backward iterates of f certainly
does so for f2 as well, but the converse is not true; thus, the maximal
invariant set in N under f2 contains the corresponding set under f , see
Section 2 for exact definitions. In this paper we use the discrete Conley
index to study the extent to which the two sets differ.

In particular, we present a method, based on work by Mischaikow,
Szymczak, et al. [2, 16], for detecting symbolic dynamics by measuring
the difference between Conley indices for f and f2. We see that the
nonnilpotence of certain products of the induced maps on homology
corresponds to the existence of positive entropy renewal systems. A
consequence is that if an invariant set satisfies certain decomposabil-
ity assumptions and a homology map on the Conley index for f has
a nonzero eigenvalue whose square is not an eigenvalue for the corre-
sponding map for f2, then f has positive topological entropy.

Sections 2 and 3 contain background information, Section 2 on the
Conley index and Section 3 on renewal systems. In Section 4 we discuss
some basic results on the differences between the local dynamics for
f and f2. Finally, in Section 5 we discuss the method for detecting
symbolic dynamics.
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2. The discrete Conley index. The discrete Conley index is
a powerful topological tool for studying isolated invariant sets of a
given map f . Roughly speaking, it assigns to each such set a pointed
space P and a base-point preserving map fP , which is defined up to
an equivalence relation. By studying the simpler map fP we can draw
conclusions about the original map f .

The Conley index was originally developed for flows, see [3, 15], and
was later extended to the discrete-time case [4, 11, 13, 17]. See [7]
for a good introduction to the Conley index and its history.

An important feature of the discrete Conley index is that, under suit-
able hypotheses, if two maps f and g are C0-close to each other, then
they have the same index. Thus we can use it to obtain rigorous re-
sults from numerical approximations of, for example, Poincaré sections
of flows arising from ODE’s. (See [8 10, 12, 22].)

Our discussion of the discrete Conley index is based on that in [4],
where one can find more details and proofs of the theorems below.

Let U be an open subset of a locally compact metric space X.

Definition 1. For any set N ⊂ U and any continuous map
f : U → X we define Inv (N, f), the maximal f-invariant subset, to
be the set of x ∈ N such that there exists an f -orbit {xn}n∈Z ⊂ N
with x0 = x and f(xn) = xn+1 for all n. A compact set N is called
an f-isolating neighborhood if Inv (N, f) ⊂ Int N . A set S is called an
isolated f-invariant set if there exists an f -isolating neighborhood N
with S = Inv (N, f). If N is an f -isolating neighborhood, we define the
f-exit set of N to be

N−(f) := {x ∈ N : f(x) /∈ Int N}.

A compact set N is an f-isolating block if f−1(N)∩N ∩f(N) ⊂ Int N .
Every neighborhood of an isolated f -invariant set S contains an f -
isolating block N with Inv (N, f) = S.

Definition 2. Let S be an isolated f -invariant set and suppose
L ⊂ K is a compact pair contained in the interior of the domain of f .
The pair (K, L) is called an f-filtration pair for S provided K and L
are each the closures of their interiors and
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(1) cl (K\L) is an f -isolating neighborhood of S,

(2) L is a neighborhood of K−(f) in K, and

(3) f(L) ∩ cl (K\L) = ∅.

Theorem 3. Let S be an isolated f-invariant set. For every
neighborhood V of S, there exists an f-filtration pair (K, L) for S with
L ⊂ K ⊂ V . Moreover there is a neighborhood of f in the C0 topology
such that, for any f̃ in this neighborhood, S̃ = Inv (K \ L, f̃) is an
isolated f̃-invariant set and (K, L) is an f̃-filtration pair for S̃.

Theorem 4. Let P = (K, L) be an f-filtration pair for f , and let KL

denote the quotient space K/L where the collapsed set L is denoted [L]
and is taken as the base-point. Then f induces a continuous base-point
preserving map fP : KL → KL with the property [L] ⊂ Int fP

−1([L]).

Given a point x ∈ K, we denote by [x] its image in KL.

Remark 5. Observe that we can identify the set Inv (KL \ {[L]}, fP )
with S = Inv (cl (K \ L), f).

Theorem 3 tells us that we can find an f -filtration pair for any isolated
f -invariant set S. Our choice of filtration pairs is not unique, even up to
homotopy equivalence. Any two f -filtration pairs for S will, however,
be shift equivalent, as we now discuss.

Suppose K is a category. Let X, X ′ be objects in K and f : X → X,
g : X ′ → X ′ be endomorphisms. We say that (X, f) and (X ′, g) are
shift equivalent [19], or write f ∼s g, if there exist m ∈ Z+, r : X → X ′

and s : X ′ → X such that the diagrams

X �

f

�

r

X

�

r

X ′
�

g

�

s

X ′

�

s

X ′
�

g
X ′ X �

f
X

commute and r ◦ s = gm and s ◦ r = fm. The integer m is called the
lag.
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Again, see [4] for proofs of the theorems in this section.

Theorem 6. Suppose P = (K, L) and P ′ = (K ′, L′) are f-filtration
pairs for S. Then the induced maps, fP and fP ′ , on the corresponding
pointed spaces, are shift equivalent.

Let S be an isolated f -invariant set, and consider the homotopy class
of base-point preserving maps on KL with fP as a representative. We
let hP (S) denote this collection, and [[fP ]] the shift equivalence class of
hP (S). We may now make the following definition.

Definition 7. Let S be an isolated f -invariant set for a continuous
map f . Then define the discrete homotopy Conley index of S, Con(S),
to be [[fP ]], the shift equivalence class of hP (S), where P = (K, L) is
an f -filtration pair for S. We apply the singular homology functor (for
the purposes of this paper, we will consider only real coefficients, i.e.,
in what follows H∗(−) = H∗(−; R)) to obtain the homological Conley
index, Con∗(S). In other words, Con∗(S) is the shift equivalence class of
(fP )∗ : H∗(KL, [L]) → H∗(KL, [L]) where P = (K, L) is an f -filtration
pair for S.

3. Renewal systems. Let α = (α0, α1, . . . , αk) ∈ {0, 1}k+1 and
β = (β0, β1, . . . , βl) ∈ {0, 1}l+1 be two finite words, and define Γ(α, β),
the renewal system generated by α and β, to be the subshift of (Σ+

2 , σ)
(the full one-sided shift on the symbols 0 and 1) generated by all infinite
concatenations of the words α and β. For example, Γ((0), (1)) is the full
shift, and Γ((0), (1, 1)) is the even shift. (In general, a renewal system
(a generalization of subshifts of finite type introduced by Adler) can
have more than two generating words, see [6, Section 13.1], but we will
be concerned primarily with those generated by only two).

We are interested in the entropy of Γ(α, β). We first make the
following definitions.

Definition 8. Define the finite word α ∗ β by setting

α ∗ β := (α0, . . . , αk, β0, . . . , βl).

For n a positive integer, define n · α by setting 1 · α = α and



SQUARE OF A MAP AND SYMBOLIC DYNAMICS 331

� � ��

�� ��

� � �

�� ��

FIGURE 1. Quadratic map.

n · α = α ∗ ((n − 1) · α). We say that two finite words ω1 and ω2

are independent if there do not exist a word α and positive integers n1

and n2 such that ω1 = n1 · α and ω2 = n2 · α.

It can be difficult in general to compute the entropy of a subshift,
as it involves finding the roots of the characteristic polynomial of a
(possibly large) related matrix. For a renewal system, however, it is
much easier. (Thanks to Micha�l Misiurewicz for bringing the following
to my attention.)

Theorem 9. Let α = (α0, α1, . . . , αk) and β = (β0, β1, . . . , βl)
be two independent words. The topological entropy of Γ(α, β) is equal
to the log of the absolute value of the largest root of the polynomial
X l+k+1 − X l − Xk.

Proof. This follows from the fact that the entropy is equal to the
log of the spectral radius of a (suitably chosen) adjacency matrix, see
[6, Chapter 4], and from the very useful formula for the characteristic
polynomial of such a matrix given in [1, Theorem 4.4.14].
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If we don’t want to go to the trouble of computing the entropy exactly,
we can get an easy estimate by noting that, if α and β are independent,
then the Nth power of Γ(α, β) (where N is the least common multiple
of k and l) contains the full shift, so the entropy is at least (log 2)/N .
(Of course, if α and β are not independent, then the entropy is zero.)

4. Invariant sets under f and f2. We are interested generally
in the differences between the dynamics of f and f2 on invariant sets.
We begin with the following observations.

Proposition 10. Let f : X → X be a continuous map of a locally
compact metric space.

(1) Any f2-isolating neighborhood is an f-isolating neighborhood.

(2) Any isolated f-invariant set is also an isolated f2-invariant set.

(3) If S2 is an isolated f2-invariant set, then S2 ∪ f(S2) is f-
invariant, but not necessarily isolated under f .

(4) If f is a homeomorphism, then for any set N , Inv (f(N), f2) =
f(Inv (N, f2)).

(5) Let N be an attracting neighborhood for f2, i.e., f2(N) ⊂ Int N ,
with S2 = Inv (N, f2), and let M be a small compact neighborhood
of f(N). Then N ∪ M is an attracting neighborhood for f , and
Inv (N ∪ M, f) = S2 ∪ f(S2).

Proof. (1) Let N be an f2-isolating neighborhood. Since Inv (N, f) ⊂
Inv (N, f2), and Inv (N, f2) ⊂ Int N , N is an f -isolating neighborhood.

(2) Let N be an f -isolating neighborhood for S. It is easy to verify
that N ∩ f−1(N) is an f2-isolating neighborhood for S.

(3) It is clear that S2 ∪ f(S2) is f -invariant. To see that it is not
necessarily f -isolated, let f : R → R be the quadratic map whose
graph is pictured in Figure 1, with the intervals N0 and N1 as marked
(we can ignore the subsets K0, K1, and L for now). It is well known, see
[14], for example, that Inv (N0∪N1, f) is a Cantor set and f restricted
to Inv (N0 ∪ N1, f) is topologically conjugate to (Σ+

2 , σ), the full one-
sided shift on the symbols 0 and 1; let h : Σ+

2 → Inv (N0 ∪ N1, f) be
the conjugacy homeomorphism. Then S = Inv (N0, f) is the (fixed)
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singleton set h({0, 0, 0, . . . }) and S2 = Inv (N0, f
2) is the set

S2 = h({(0, α1, 0, α2, 0, α3, . . . ) : αi ∈ {0, 1} ∀ i}).

Thus the set S2 ∪ f(S2) is

S2 ∪ f(S2) = h({(0, α1, 0, α2, 0, α3, . . . ) : αi ∈ {0, 1} ∀i}
∪ {(β1, 0, β2, 0, β3, 0, . . . ) : βi ∈ {0, 1} ∀i}),

which is not isolated under f . (For any positive ε, there exists a positive
integer n such that the point

h((

2n times︷ ︸︸ ︷
0, 0, . . . , 0, 1,

2n times︷ ︸︸ ︷
0, 0, . . . , 0, 1, 0, 0, . . . )),

which is not in S2∪f(S2), stays within ε of S2∪f(S2) under all iterates
of f .)

(4) It is clear that f(Inv (N, f2)) is contained in Inv (f(N), f2).
Conversely, let x be an element of Inv (f(N), f2). This means that there
exists an f2-orbit {xn}n∈Z ⊂ f(N) with x0 = x and f2(xn) = xn+1 for
all n. Then the f2-orbit {f−1(xn)}n∈Z is contained in N , so f−1(x) is
in Inv (N, f2).

(5) We assume that M is small enough that f(M) ⊂ Int N . Let x
be a point in N ∪ M . If x is in N , then f(x) is in Int M , by definition
of M , and if x is in M , then f(x) is in Int N . Thus f(N ∪ M) is in
Int (N ∪ M), i.e., N ∪ M is an attracting neighborhood for f .

Observe further that M is an attracting neighborhood for f2. Let x be
a point in Inv (N ∪M, f), so that there is an f -orbit {xn}n∈Z ⊂ N ∪M
with x0 = x. Of the elements of the set {x−2j}∞j=1, either infinitely
many are in N , or infinitely many are in M . Assume the former. Since
N is an f2-attracting neighborhood, if x2n is in N , then x2m is in N
as well for all m ≥ n. Thus x2n is in N for every n ∈ Z, so x is in
Inv (N, f2).

Similarly, if infinitely many elements of the set {x−2j}∞j=1 are in M ,
then x is in Inv (M, f2) = Inv (f(N), f2). Since N is an f2-attractor,
we have that Inv (f(N), f2) = f(Inv (N, f2), so we have shown that
Inv (N ∪ M, f) ⊂ S2 ∪ f(S2). Since Inv (N ∪ M, f) clearly contains
S2 ∪ f(S2), we are done.
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Remark 11. The converse of Proposition 10.1 is not true. Consider
the map f : R → R defined by f(x) = −x. Then the interval N = [1, 2]
is an f -isolating neighborhood (Inv (N, f) = ∅), but Inv (N, f2) = N .

The converse of Proposition 10.2 is also false. To see this, consider
again the set S2 = h({(0, α1, 0, α2, 0, α3, . . . ) : αi ∈ {0, 1} ∀ i}) from
the quadratic map pictured in Figure 1. This set is clearly not invariant
under f .

Finally, Proposition 10.4 is not true if f is only a continuous map
instead of a homeomorphism. Consider the map f : R → R defined
by f(x) = 0. Then Inv ([1, 2], f2) = ∅, but Inv (f([1, 2]), f2) =
Inv ({0}, f2) = {0}.

We want to use the discrete Conley index to detect differences in the
dynamics of f and f2. The following proposition allows us to make a
fairly coarse comparison.

Definition 12. Let S be an isolated f -invariant set. Define
(Con(f, S))2 to be [[(fP )2]], where P = (K, L) is an f -filtration pair
for S and fP : KL → KL is the induced map.

Proposition 13. Let S be an isolated f-invariant set, and thus also
an isolated f2-invariant set. Then Con(S, f2) = (Con(S, f))2.

Proof. Let P = (K, L) be an f -filtration pair for S and fP : KL →
KL the induced map. Let B ⊂ KL be a compact set contained
in Int (fP

−1([L])) and containing the base-point [L] in its interior.
Then cl (KL\B) is an (fP )2-isolating neighborhood for S (where we
are identifying Inv (KL \ {[L]}, fP ) with S). Let L′ be a compact
set containing (fP )−2(B) in its interior and sufficiently small that
(fP )3(L′) = [L]. Then P ′ = (KL, L′) is an (fP )2-filtration pair
for S. Let (f2)P ′ : KL/L′ → KL/L′ be the induced map, so that
Con(S, (fP )2) = [[(f2)P ′ ]].

First, we note that the action of (fP )2 on a neighborhood of S
in KL is the same as that of f2 on a neighborhood of S in X, so
Con(S, (fP )2) = Con(S, f2). Therefore, to complete the proof we need
to show that (f2)P ′ is shift equivalent to (fP )2.
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We construct the shift equivalence as follows. Define the map r :
KL → KL/L′ to be the projection induced by the inclusion of the pair
(K, L) into (K, L′). Define the map s : KL/L′ → KL by setting

s([x]) =
{

[L] if [x] = [L′],
(fP )4([x]) if [x] ∈ KL\L′.

(This is continuous because (fP )4(L′) = [L].) Then r and s give a shift
equivalence of lag two between (fP )2 and (f2)P ′ , completing the proof.

Corollary 14. Let f : X → X be a continuous map of a locally
compact metric space, and N an f2-isolating neighborhood. If

Con(Inv (N, f2), f2) �= (Con(Inv (N, f), f))2,

then Inv (N, f2) is strictly larger than Inv (N, f).

5. Symbolic dynamics. In this section we try to measure more
precisely how Inv (N, f2) differs from Inv (N, f), in order to detect
interesting symbolic dynamics associated to f . To make this work,
we need to assume that S2 has an f2-isolating neighborhood N0 with
certain properties. Specifically, we will assume that N0 is such that
there exists a compact set N1, disjoint from N0, such that f(S2) is
contained in N0 ∪N1. (This is equivalent to the condition that the set
f(S2) ∩ ∂N0 is empty.) We will get our symbolic dynamics by keeping
track of where the iterates of each point in S2 lie, N0 or N1.

Our method will not work on every isolated f2-invariant set. First of
all, note that N1 could be empty (for example, if N0 is an attracting
neighborhood for f). In that case, we will of course be unable to
detect any symbolic dynamics by studying N0 and N1. More seriously,
S2 may have no isolating neighborhood N0 meeting our requirements.
The following property characterizes such invariant sets.

Proposition 15. Let S2 be an isolated f2-invariant set. Assume
that S2 has no f2-isolating neighborhood N0 with the property that
f(S2)∩ ∂N0 is empty. Then for every sufficiently small ε > 0, there is
a point x of f(S2) with dist (x, S2) = ε. Furthermore, no f2-isolating
neighborhood for S2 is an f-isolating block.
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Proof. By hypothesis, for every f2-isolating neighborhood N0 for S2,
there is a point of f(S2) which lies in ∂N0. Since every sufficiently
small neighborhood of S2 is an f2-isolating neighborhood, this proves
the first assertion. Since any point of S2 lies in N0 ∩ f−2(N0), this also
shows that f−1(N0) ∩ N0 ∩ f(N0) is not contained in Int N0, i.e., that
N0 is not an f -isolating block.

Let S2 be an isolated f2-invariant set. For the rest of this paper we
will assume that there does exist an f2-isolating neighborhood N0 for
S2 with the property that f(S2) is disjoint from ∂N0. Let N1 be a
compact set disjoint from N0 and containing the set f(S2)∩cl (X\N0).
Then let K be an f2-isolating block for S2 contained in N0 and
sufficiently small that f(K) is contained in N0 ∪ N1 (such a K exists
by Theorem 3).

Now, if L is a sufficiently small neighborhood of the f2-exit set of K,
then by [4, Theorem 3.6] P = (K, L) is an f2-filtration pair for S2, and
Con(S2, f2) = [[(f2)P ]], where (f2)P is the map induced by f2 on KL.

Since N0 is an f2-isolating neighborhood, it is a fortiori an f -isolating
neighborhood. Let S = Inv (N0, f), and note that S is contained in
N0 ∩ f−1(N0). We wish to construct a map (f2

00)P : KL → KL with
the property that [[(f2

00)P ]] = (Con(f, S))2. (Unfortunately f does not,
in general, induce a continuous map on KL, or this would be easy.).
By measuring the difference between (f2)P and (f2

00)P , we can measure
the difference between S2 and S and perhaps thereby detect symbolic
dynamics. To this end, define K0 to be the set K ∩f−1(N0) and K1 to
be K∩f−1(N1) and observe that K is the disjoint union of K0 and K1.
Similarly, L is the disjoint union of L0 and L1, where Li = L∩f−1(Ni)
for i = 0, 1.

Now the pointed space KL is the one-point union of the pointed
spaces (K0)L0 and (K1)L1 . Define maps ei : (Ki)Li

→ KL and ri :
KL → (Ki)Li

, i = 0, 1, to be inclusion and projection, respectively, and
define the map (f2

00)P : KL → KL to be the composition (f2)P ◦ i0 ◦r0.
That is, (f2

00)P collapses points in (K1)L1 to the base-point before
applying (f2)P , so that any point not sent to the base-point must lie
in [N0 ∪ f−1(N0)]. Since K1 is the set of points in K that are mapped
out of N0 by f , we expect that (f2

00)P should give information about
S and not S2, which may contain points of K1.
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Similarly, define the map (f2
10)P : KL → KL to be the composition

(f2)P ◦i1◦r1, and note that (f2
10)P sends any point not in [N0∪f−1(N1)]

to the base-point. Thus (f2
10)P is giving information about points of

S2 that are not in S.

The following proposition will be useful.

Proposition 16. [[(f2
00)P ]] = (Con(S, f))2.

Proof. Lemma 3.1 of [18] tells us that the shift equivalence class of
(f2

00)P is equal to Con(Inv (K0, f
2), f2). We observe that Inv (K0, f

2)
is equal to S. (Prove by double inclusion: S = Inv (N0, f) = Inv (K, f)
is clearly contained in Inv (K ∩ f−1(N0), f2) = Inv (K0, f

2). Con-
versely, Inv (K ∩ f−1(N0), f2) is clearly contained in Inv (K, f).) Thus
[[(f2

00)P ]] = Con(Inv (K0, f
2), f2) = Con(S, f2) = (Con(S, f))2.

We can associate a symbolic dynamical system to the map f restricted
to S2∪f(S2). We define, see [2], a continuous map Θ : N0∪N1 → {0, 1}
by setting

Θ(x) =
{

0 if x ∈ N0,
1 if x ∈ N1.

Recall that (Σ+
2 , σ) is the full one-sided shift on the symbols 0 and 1.

We relate the dynamics of f on S2 ∪ f(S2) to symbolic dynamics via
the itinerary map ρ : S2 ∪ f(S2) → Σ+

2 defined by

ρ(x) = (Θ(x), Θ(f(x)), Θ(f2(x)), . . . ).

It is clear that ρ is continuous and that σ ◦ ρ = ρ ◦ f .

We will use information from the Conley index maps (f2
00)P and

(f2
10)P (more specifically, the homology maps that they induce) to

detect interesting subshifts of the image shift ρ(S2 ∪ f(S2)).

Assume that, for some positive integer q, Hq((Ki)Li
) is nontrivial

and finite-dimensional for both i = 1, 2. For notational convenience,
let A, A00 and A10 denote the induced homology maps ((f2)P )q :
Hq(KL) → Hq(KL), ((f2

00)P )q : Hq(KL) → Hq(KL), and ((f2
10)P )q :

Hq(KL) → Hq(KL), respectively. Thus the shift equivalence class
of A is Conq(S2, f2) and, by the definitions of (f2

00)P and (f2
10)P ,

A = A00 + A10.
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We will need some more notation. Given a word

α = (α0, α1, . . . , α2k, α2k+1) ∈ {(0, 0), (0, 1)}k+1

(here we are considering {(0, 0), (0, 1)}k+1 as a subset of {0, 1}2k+2),
define the map Aα : Hq(KL) → Hq(KL) by setting

Aα = Aα2k+1α2k
◦ Aα2k−1α2k−2 ◦ · · · ◦ Aα1α0 ,

and define (f2
α)P : KL → KL similarly.

Proposition 17. If Aα is nonnilpotent, then there is a point x in
S2 whose itinerary ρ(x) is

(α, α, α, . . . ) = (α0, α1, . . . , α2k, α2k+1, α0, . . . , α2k+1, α0, . . . ).

Proof. (This proposition is similar to Theorem 4.4 of [16] but requires
a different proof since we are not assuming that N0 ∪N1 is an isolating
neighborhood for f .)

Assume that there is no such point x in S2. Then, by compactness,
there exists a positive integer M such that

M⋂
j=0

2k+1⋂
i=0

f−((2k+2)j+i)(Nαi
)

is empty. But this implies that (f2
α)P

M ([x]) is the base-point [L] for
every [x] in KL, which in turn implies that (Aα)M is the zero map,
contradicting the assumption that Aα is nonnilpotent.

Theorem 18. Let α ∈ {(0, 0), (0, 1)}k+1 and β ∈ {(0, 0), (0, 1)}l+1

be two words such that any finite product of Aα and Aβ is nonnilpotent.
Then ρ(S2 ∪ f(S2)) contains the renewal system Γ(α, β). Thus, if α
and β are independent, then htop(f) ≥ (log 2)/n, where n is the least
common multiple of 2k + 2 and 2l + 2.

Proof. Let ω = (ω0, ω1, . . . ) ∈ {0, 1}+∞ be an element of Γ(α, β). We
must show that there exists a point x in S2 ∪ f(S2) with ρ(x) = ω.
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First assume that ω is in {(0, 0), (0, 1)}+∞, so that ω is a concatena-
tion of the words α and β. For every positive integer k, define the finite
word ωk to be (ω0, . . . , ω2k−1). By hypothesis, Aωk is nonnilpotent for
all k, so Proposition 17 tells us that there exists an element xk of S2

such that ρ(xk) = (ωk, ωk, ωk, . . . ). Any limit point x of the sequence
x1, x2, x3, . . . has the property that ρ(x) = ω.

If ω is not in {(0, 0), (0, 1)}+∞, then the word ω′ = (0, ω0, ω1, . . . ) is.
Let x′ be a point of S2 with ρ(x′) = ω′, and take x to be f(x′).

Thus we have reduced the problem of detecting positive-entropy
renewal systems to that of detecting two words with the above property.
Methods for determining the existence of such words are discussed in
[2, 21]; methods for finding them explicitly are discussed in [20]. The
space of all nonnilpotent words for a given pair of matrices is an example
of a cocyclic subshift [5].

We need the following result, which is part of [2, Proposition 3.4].

Lemma 19 [2]. Let M , M00, and M10 be linear self-maps of a
finite-dimensional vector space with M = M00 + M11. If M00 has a
nonzero eigenvalue that is not an eigenvalue of M , then there exist
independent words α and β such that any finite product of Mα and Mβ

is nonnilpotent.

Corollary 20. If Conq(S, f) has a nonzero eigenvalue λ such that
λ2 is not an eigenvalue of Conq(S2, f2), then there exists a positive
integer n such that (ρ(S2 ∪ f(S2)), σn) contains the full two shift Σ+

2 .

Proof. Proposition 16 tells us that the shift equivalence class of
A00 is (Conq(S, f))2. Since shift equivalent linear maps have the
same nonzero spectrum [2, Proposition 2.3], the nonzero eigenvalues
of A00 are exactly the squares of the nonzero eigenvalues of Conq(S, f).
Therefore, since A = A00 + A10, the previous lemma tells us that there
exist independent words α and β such that any finite product of Aα

and Aβ is nonnilpotent. The result now follows from Theorem 18.
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Example 21. We again consider the quadratic map f : R → R
whose graph is pictured in Figure 1. Let the sets N0, N1, K0, K1,
and L be as marked. Here KL is homotopy equivalent to the one-point
union of two circles, and H1(KL, [L]) = R2. Using the obvious basis,
we have that A =

(
1 −1

1 −1

)
, A00 =

(
1 0

1 0

)
and A10 =

(
0 −1

0 −1

)
. Any

finite product of A00 and A10 is nonnilpotent, so Theorem 18 tells us
that ρ(S2∪f(S2)) contains the renewal system generated by (0, 0) and
(0, 1). Thus (log 2)/2 is a lower bound for the topological entropy of f
restricted to S2∪f(S2), which is itself a lower bound for the topological
entropy of f .

We can also observe that 1 is an eigenvalue of A00, while A has
no nonzero eigenvalues, so Corollary 20 tells us that some power of f
restricted to S2∪f(S2) factors onto the full two-shift. Note that neither
Theorem 18 nor Corollary 20 can detect that in fact it is the first power
of f restricted to S2 ∪ f(S2) that factors onto the full two-shift.

6. Conclusion. The method that we have studied for detecting
symbolic dynamics is based on those in [2] and [16]. The key difference
is that they consider only the map f and the case that N0 ∪ N1 is an
f -isolating neighborhood, which is a stronger assumption than we need.

Finally, we observe that there are several ways to generalize our
results. First of all, there is no mathematical reason that we had
to compare f and f2, rather than f and fn for some other n. This
generalization is straightforward; we restricted our attention here to
f2 for the sole reason that doing so greatly simplified the notation
and shortened the exposition. It is possible that we can obtain more
information about f by combining the results of the comparisons of f
and fn for a number of different n’s, perhaps getting symbolic dynamics
on more than two symbols. Another potentially fruitful generalization
is to compare the maps fp and fq for relatively prime p and q. Again,
combining several of these comparisons might yield useful information
about f .
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