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A CENTRAL LIMIT THEOREM FOR GENERAL
WEIGHTED SUMS OF LNQD RANDOM
VARIABLES AND ITS APPLICATION

MI-HWA KO, DAE-HEE RYU, TAE-SUNG KIM AND YONG-KAB CHOI

ABSTRACT. In this paper we derive the central limit the-
orem for

∑n

i=1
ani ξi, where {ani, 1 ≤ i ≤ n} is a triangular

array of nonnegative numbers such that supn

∑n

i=1
a2

ni < ∞,

max1≤i≤n ani → 0 as n → ∞ and ξi’s are a linearly negative
quadrant dependent sequence. We also apply this result to
consider a central limit theorem for a partial sum of a gener-
alized linear process of the form Xn =

∑∞
j=−∞ ak+j ξj .

1. Introduction and results. Lehmann [8] introduced a simple
and natural definition of positive (negative) dependence: A sequence
{ξi, 1 ≤ i ≤ n} of random variables is said to be pairwise positive
(negative) quadrant dependent (pairwise PQD (NQD)) if, for any real
αi, αj and i �= j P (ξi > αi, ξj > αj) ≥ (≤)P (ξi > αi)P (ξj > αj).
Much stronger dependent concepts than PQD and NQD were consid-
ered by Esary, Proschan and Walkup [4] and Joag-Dev and Proschan
[6], respectively. A sequence {ξi, 1 ≤ i ≤ n} of random vari-
ables is said to be associated if, for any real coordinatewise increas-
ing functions f, g on Rn, Cov (f(ξ1, . . . , ξn), g(ξ1, . . . , ξn)) ≥ 0 and
{ξi, 1 ≤ i ≤ n} is said to be negatively associated if, for any disjoint
subsets, A, B ⊂ {1, 2, . . . , n} and any real coordinatewise increasing
functions f on RA and g on RB, Cov (f(ξi, i ∈ A), g(ξi ∈ B)) ≤ 0.

Instead of association (negative association) Newman’s [10] central
limit theorem requires only that positive linear combinations of the
random variables are PQD (NQD). The definition of positive (negative)
dependence introduced by Newman [10] is the following: A sequence
{ξi, 1 ≤ i ≤ n} of random variables is said to be linearly positive
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(negative) quadrant dependent (LPQD (LNQD)) if, for every pair of
disjoint subsets A, B ⊂ {1, 2, . . . n} and positive rj ’s

(1.1)
∑
i∈A

ri ξi and
∑
j∈B

rj ξj are PQD(NQD).

Let us remark that LPQD (LNQD) is between pairwise PQD (NQD)
and association (negative association) and it is well known, see, for
example, [10, p. 131] that association (negative association) implies
LPQD (LNQD) and LPQD (LNQD) implies PQD (NQD).

Newman [10] established the central limit theorem for a strictly
stationary LPQD (LNQD) process and Birkel [2] also obtained a
functional central limit theorem for LPQD processes which can be used
to obtain the functional central limit theorem for LNQD processes. Kim
and Baek [7] extended this result to a stationary linear process of the
form Xk =

∑∞
j=0 aj ξk−j , where {aj} is a sequence of real numbers

with
∑∞

j=0 |aj | < ∞ and {ξk} is a strict stationary LPQD process with
E ξi = 0, 0 < E ξ2

i < ∞; this result can be extended to the LNQD case
by a similar method.

In this paper we derive a central limit theorem for a linearly negative
quadrant dependent sequence in a double array, replacing the strict
stationarity assumption with uniform integrability, see Theorem 1.1
below. We apply this result to obtain a central limit theorem for
a partial sum of a linear process of the form Xn =

∑∞
j=−∞ ak+j ξj

generated by linearly negative quadrant dependent sequence {ξj}, see
Theorem 1.2 below.

Theorem 1.1. Let {ani, 1 ≤ i ≤ n} be a triangular array of
nonnegative numbers such that

sup
n

n∑
i=1

a2
ni < ∞(1.2)

and

max
1≤i≤n

ani −→ 0 as n → ∞(1.3)
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Let {ξi} be a centered sequence of linearly negative quadrant dependent
random variables such that

{ξ2
i } is a uniformly integrable family,(1.4)

Var
( n∑

i=1

ani ξi

)
= 1(1.5)

and

∑
j:|i−j|≥u

Cov (ξi, ξj)− −→ 0 as u → ∞ uniformly in i ≥ 1,

(1.6)

see [3]. Then

n∑
i=1

ani ξi
D−→ N(0, 1) as n → ∞.

Remark. Theorem 1.1 extends Newman’s [10] central limit theorem
for strictly stationary LNQD sequences from equal weights to general
weights, while at the same time weakening the assumption of station-
arity.

Corollary 1.1. Let {ξi} be a centered sequence of linearly negative
quadrant dependent random variables such that {ξ2

i } is a uniformly
integrable family, and let {ani, 1 ≤ i ≤ n} be a triangular array of
nonnegative numbers such that

sup
n

n∑
i=1

a2
ni

σ2
n

< ∞,(1.7)

max
1≤i≤n

ani

σn
−→ 0 as n → ∞,(1.8)

where σ2
n = Var (

∑n
i=1 ani ξi). If (1.6) holds, then as n → ∞,

(1.9)
1
σn

n∑
i=1

ani ξi
D−→ N(0, 1).
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Theorem 1.2. Let {aj , j ∈ Z} be a sequence of nonnegative num-
bers such that

∑
j aj < ∞, and let {ξj , j ∈ Z} be a centered sequence

of linearly negative quadrant dependent random variables which is uni-
formly integrable in L2 and satisfying (1.6). Let

Xk =
∞∑

j=−∞
ak+j ξj and Sn =

n∑
i=1

Xi.

Assume

(1.10) inf
n≥1

n−1σ2
n > 0

where σ2
n = Var (Sn). Then

(1.11)
Sn

σn

D−→ N(0, 1) as n → ∞.

This result extends Theorem 18.6.5 in [5] from the i.i.d. case to the
linearly negative quadrant dependence case by adding condition (1.6)
and improves the central limit theorem of Kim and Baek [7] for linear
processes generated by LNQD sequences.

2. Proofs. We start with the following lemma.

Lemma 2.1 [9]. Let {Zi, 1 ≤ i ≤ n} be a sequence of linearly nega-
tive quadrant dependent random variables with finite second moments.
Then

∣∣∣E exp
(

it
n∑

j=1

Zj

)
−

n∏
j=1

E exp(itZj)
∣∣∣

≤ Ct2
∣∣∣ Var

( n∑
j=1

Zj

)
−

n∑
j=1

Var (Zj)
∣∣∣

for all t ∈ R, where C > 0 is an arbitrary constant, not depending on
n.
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Proof of Theorem 1.1. Without loss of generality, we assume that
ani = 0 for all i > n and supn≥1 E ξ2

n = M < ∞. For every
1 ≤ a < b ≤ n and 1 ≤ u ≤ b − a, we have, after some manipulations,

(2.1)

0 ≤
b−u∑
i=a

ani

b∑
j=i+u

anj Cov (ξi, ξj)−

≤ sup
k

( ∑
j:|k−j|≥u

Cov (ξk, ξj)−
)( b∑

i=a

a2
ni

)
.

By the definition of LNQD, we also have, for every 1 ≤ a ≤ b ≤ n,

Var
( b∑

i=a

ani ξi

)
≤ M

b∑
i=a

a2
ni.

We shall construct now a triangular array of random variables {Zni, 1 ≤
i ≤ n} for which we shall make use of Lemma 2.1. Fix a small positive
ε and find a positive integer u = uε such that, for every n ≥ u + 1,

(2.2)
0 ≤

( n−u∑
i=1

ani

n∑
j=i+u

anj Cov (ξi, ξj)−
)

≤ ε.

This is possible because of (2.1) and (1.6). Denote by [x] the integer
part of x, and define

K =
[
1
ε

]
;

Ynj =
u(j+1)∑
i=uj+1

ani ξi, j = 0, 1, . . . ,

Aj =
{

i : 2Kj ≤ i < 2Kj+K, Cov (Yni, Yn,i+1)− ≤ 2
K

2Kj+K∑
i=2Kj

Var (Yni)
}

.

Since 2Cov (Yni, Yn,i+1)− ≤ Var (Yni) + Var (Yn,i+1), we get that
for every j the set Aj is not empty. Now we define the integers
m1, m2, . . . , mn, recursively. Let m0 = 0 and

mj+1 = min{m : m > mj , m ∈ Aj}
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and define

Znj =
mj+1∑

i=mj+1

Yni, j = 0, 1, . . . ,

Dj = {u(mj + 1) + 1, . . . , u(mj+1 + 1)}.

We observe that

Znj =
∑

k∈Dj

ank ξk, j = 0, 1, . . . .

By the definition of LNQD the random variables {Znj} are LNQD.
From the fact that mj ≥ 2K(j − 1) and mj+1 ≤ K(2j + 1) every
set Dj contains no more than 3 Ku elements and mj+1/mj → 1 as
j → ∞. Hence, for every fixed positive ε by (1.2) (1.5) the array
{Zni : i = 0, 1, . . . , n; n ≥ 1} satisfies the Lindeberg condition, see
Petrov [11, Theorem 22, p. 100], that is, {Znj} satisfies

(2.3) σ−1
n

n∑
j=1

EZ2
njI(|Znj | > εσn) −→ 0 as n → ∞

where σ2
n = Var (

∑n
j=1 Znj).

We can observe that, by Lemma 2.1 and the construction,

∣∣∣∣E exp
(

it

n∑
j=1

Znj

)
−

n∏
j=1

E exp(itZnj)
∣∣∣∣

(2.4)

≤ Ct2
∣∣∣∣{Var

( n∑
j=1

Znj

)
−

n∑
j=1

Var (Znj)
}∣∣∣∣

≤ Ct2
{

2
( n∑

i=1

Cov (Zni, Zn,i+1)−
)

+ 2
( n−2∑

i=1

n∑
j=i+2

Cov (Zni, Znj)−
)}
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≤ Ct2
[{

2
n∑

j=1

Cov (Yn,mj
, Yn,mj+1)

− +2
n−u∑
i=1

ani

n∑
j=i+u

anjCov (ξi, ξj)−
}

+
{

2
n−u∑
i=1

ani

n∑
j=i+u

anjCov (ξi, ξj)−
}]

= Ct2
{

4
n−u∑
i=1

ani

n∑
j=i+u

anjCov (ξi, ξj)− +2
n∑

j=1

Cov (Yn,mj
, Yn,mj+1)−

}

≤ Ct2
{

4ε +
8
K

n∑
i=1

Var (Yni)
}

= Ct2
{

4ε +
8
K

n∑
j=1

Var
( u(j+1)∑

i=uj+1

ani
ξi

)}

≤ Ct2
{

4ε +
8M

K

n∑
j=1

u(j+1)∑
i=uj+1

ani
ξi

}

≤ C1t
2ε

{
1 + sup

n

n∑
i=1

a2
ni

}

≤ C2t
2ε for every positive ε.

Therefore the problem is now reduced to the study of the central
limit theorem of a decoupled sequence {Z̃nj} of independent random
variables such that, for each n and j, the variable Z̃nj is distributed as
Znj .

By (2.3) {Z̃nj} also satisfies the Lindeberg condition, that is, {Z̃nj}
satisfies σ̃−1

n

∑n
j=1 EZ̃2

njI(|Z̃nj | > εσ̃n) → 0 as n → ∞ where σ̃2
n =

Var (
∑n

j=1 Z̃nj), and hence by [1, Theorem 7.2]

(2.5) σ̃−1
n

n∑
j=1

Z̃nj
D−→ N(0, 1) as n → ∞

where σ̃2
n = Var (

∑n
j=1 Z̃nj). It follows from (2.3), (2.4) and (2.5) that

(2.6) σ−1
n

n∑
j=1

Znj
D−→ N(0, 1) as n → ∞
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where σ2
n = Var (

∑n
j=1 Znj), and now the proof is complete by (2.5),

(2.6) and [1, Theorem 4.2].

Proof of Corollary 1.1. Let Ani = ani/σn. Then we have

max
1≤i≤n

Ani −→ 0 as n → ∞,

sup
n

n∑
i=1

A2
ni < ∞,

Var
( n∑

i=1

Ani ξi

)
= 1.

Hence, by Theorem 1.1 the desired result (1.11) follows.

Proof of Theorem 1.2. First note that
∑

j a2
j < ∞ and, without loss

of generality, we can assume sup E ξ2
k = 1. Let

Sn =
n∑

k=1

Xk =
∞∑

j=−∞

( n∑
k=1

ak+j

)
ξj .

In order to apply Theorem 1.1, fix Wn such that
∑

|j|>Wn
a2

j < n−3,
and take kn = Wn + n. Then

Sn

σn
=

∑
|j|≤kn

( n∑
k=1

ak+j

)
ξj

σn
+

∑
|j|>kn

( n∑
k=1

ak+j

)
ξj

σn
= Tn + Un.

By the Cauchy-Schwarz inequality and the assumptions we have the
following estimate

Var (Un) ≤
∑

|j|>kn

Var
( n∑

k=1

ak+j
ξj

σn

)

≤
∑

|j|>kn

( n∑
k=1

ak+j/σn

)2

E ξ2
j ≤ nσ−2

n

∑
|j|>kn

( n∑
k=1

a2
k+j

)

≤ n2σ−2
n

∑
|j|>kn−n

a2
j ≤ n2σ−2

n

∑
|j|>Wn

a2
j

≤ n−1σ−2
n −→ 0 as n → ∞
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which yields

(2.7) Un −→ 0 in probability as n → ∞.

By [1, Theorem 4.1], it remains to prove that Tn
D→ N(0, 1). Put

(2.8) ank =

∑n
j=1 ak+j

σn
.

From the assumption
∑

j aj < ∞ (aj > 0), (1.10) and (2.8) we obtain

sup−∞<k<∞
∑n

j=1 ak+j

σn
−→ 0 as n → ∞,

max
1≤k≤n

ank
−→ 0 as n → ∞,

sup
n

n∑
k=1

a2
nk < ∞.

Hence, by Theorem 1.1,

(2.9) Tn
D−→ N(0, 1)

and from (2.7) and (2.9) the desired result (1.10) follows.

REFERENCES

1. P. Billingsley, Convergence of probability measures, Wiley, New York, 1968.

2. T. Birkel, A functional central limit theorem for positively dependent random
variables, J. Multivariate Anal. 44 (1993), 314 320.

3. J.T. Cox and G. Grimmett, Central limit theorems for associated random
variables and the percolation model, Ann. Probab. 12 (1984), 514 528.

4. J. Esary, F. Proschan and D. Walkup, Association of random variables with
applications, Ann. Math. Statist. 38 (1967), 1466 1474.

5. I.A. Ibragimov and Yu.V. Linnik, Independent and stationary sequences of
random variables, Volters, Groningen, 1971.

6. K. Joag-Dev and F. Proschan, Negative association of random variables with
applications, Ann. Statist. 11 (1983), 1037 1041.

7. T.S. Kim and J.L. Baek, A central limit theorem for stationary linear processes
generated by linearly positive quadrant dependent process, Statist. Prob. Letters 5
(2001), 299 305.



268 M.H. KO, D.H. RYU, T.S. KIM AND Y.K. CHOI

8. E.L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966),
1137 1153.

9. C.M. Newman, Normal fluctuations and the FKG inequalities, Comm. Math.
Phys. 91 (1980), 75 80.

10. , Asymptotic independence and limit theorems for positively and
negatively dependent random variables, in Stochastics and probability (Y.L. Tong,
ed.), vol. 5, Inst. Math. Statist., Hayward, CA, 1984, pp. 127 140.

11. V.V. Petrov, Sums of independent random variables, Berlin, 1975.

Department of Mathematics and Institute of Basic Science, WonKwang
University, Jeonbuk, 570-749, Korea
E-mail address: songhack@wonkwang.ac.kr

Department of Computer Science, ChungWoon University, Chungnam,
351-701, Korea
E-mail address: rdh@mail.chungwoon.ac.kr

Department of Mathematics and Institute of Basic Science, WonKwang
University, Jeonbuk, 570-749, Korea
E-mail address: starkim@wonkwang.ac.kr

Department of Mathematics, Gyeongsang University, Kyungnam, 660-
701, Korea
E-mail address: mathykc@nongae.gsnu.ac.kr


