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ON DIFFERENCES OF TWO SQUARES
IN SOME QUADRATIC FIELDS

ANDREJ DUJELLA AND ZRINKA FRANUŠIĆ

ABSTRACT. In this paper, we study the problem of de-
termining the elements in the rings of integers of quadratic

fields Q(
√

d) which are representable as a difference of two
squares. The complete solution of the problem is obtained for
integers d which satisfy conditions given in terms of solvability
of certain Pellian equations.

1. Introduction. It is well known that an integer n can be
represented as a difference of squares of two integers if and only if n �≡ 2
(mod 4). A similar result holds in the ring Z[i] of Gaussian integers.
Namely, a Gaussian integer z = a+bi is representable as a difference of
squares of two Gaussian integers if and only if b is even and not both a
and b are congruent to 2 modulo 4, see [14], [16, p. 449]. Actually, the
result for Gaussian integers is usually stated in terms of sums of two
squares, but since −1 is a square in Z[i], these two problems in Z[i] are
identical. However, it seems that in more general rings, the problem
of representability as a sum of two squares is much better studied. In
particular, in [14] this problem was completely solved for integers in
quadratic fields.

It this paper, we will consider the problem of representability as a
difference of two squares in the rings of integers of quadratic fields
Q(

√
d). Let d �= 1 be a square-free integer. If d ≡ 2, 3 (mod 4),

then algebraic integers of the quadratic field Q(
√

d) form the ring Z[d]
while, if d ≡ 1 (mod 4), then they form the ring Z[(1 +

√
d)/2]. Since

the square-free assumption is not essential for our investigation, we will
consider the problem of representability as a difference of two squares
in rings Z[

√
d] for nonsquare integers d and in rings Z[(1 +

√
d)/2]

for nonsquare integers d ≡ 1 (mod 4). Some of our results are valid
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for all such integers d, but the complete solution of the problem is
obtained only for integers which satisfy some additional conditions.
These conditions are given in terms of solvability of certain Pellian
equations.

Theorem 1. If d ≡ 3 (mod 4) and the equation x2 − dy2 = ±2 is
solvable, then z ∈ Z[

√
d] is representable as a difference of two squares

in Z[
√

d] if and only if z has one the following forms

2m + 1 + 2n
√

d, 4m + 4n
√

d, 4m + (4n + 2)
√

d, 4m + 2 + 4n
√

d.

If d ≡ 0 (mod 4) and the equation x2 − dy2 = ±4 is solvable with
odd y, then z ∈ Z[

√
d] is representable as a difference of two squares in

Z[
√

d] if and only if z has one the following forms

2m + 1 + 2n
√

d, 4m + 4n
√

d, 4m + (4n + 2)
√

d.

If d ≡ 2 (mod 4) and the equation x2 − dy2 = ±2 is solvable, then
z ∈ Z[

√
d] is representable as a difference of two squares in Z[

√
d] if

and only if z has one the following forms

2m+1+2n
√

d, 4m+4n
√

d, 4m+2+4n
√

d, 4m+2+(4n+2)
√

d.

If d ≡ 5 (mod 8) and the equation x2 − dy2 = ±4 is solvable in odd
integers x and y, then z ∈ Z[

√
d] is representable as a difference of two

squares in Z[
√

d] if and only if z has one of the following forms

2m + 1 + 2n
√

d, 4m + 4n
√

d, 4m + 2 + (4n + 2)
√

d.

If d ≡ 1 (mod 8) and the equation x2 − dy2 = ±8 is solvable, then
z ∈ Z[

√
d] is representable as a difference of two squares in Z[

√
d] if

and only if z has one the following forms

2m + 1 + 2n
√

d, 4m + 4n
√

d,

16m + l + (16n + l − δ)
√

d, 16m + l + (16n − l + δ)
√

d,

where l ∈ {2, 6, 10, 14} and δ = 0 if d ≡ 1 (mod 16), δ = 8 if d ≡ 9
(mod 16).
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Let us note that d = −1 is the only negative integer d ≡ 3 (mod 4)
which satisfies the conditions of Theorem 1. In that way, the above
mentioned result on Gaussian integers becomes an immediate corollary
of Theorem 1.

Theorem 2. If d ≡ 5 (mod 8) and the equation x2 − dy2 = ±4 is
solvable in odd integers x and y, then z ∈ Z[(1 +

√
d)/2] is representable

as a difference of two squares in Z[(1 +
√

d)/2] if and only if z has one
the following forms

2m + 1 + 2n
√

d, 2m + (2n + 1)
√

d,

4m + 4n
√

d, 4m + 2 + (4n + 2)
√

d,

2m + 1
2

+
2n + 1

2

√
d.

One motivation for studying the problem of determination of elements
which are representable as a difference of two squares comes from
its close connection with the problem of the existence of Diophantine
quadruples.

Let n be a given nonzero integer. A set of m positive integers
{a1, a2, . . . , am} is called a D(n)-m-tuple, or a Diophantine m-tuple
with the property D(n), if aiaj +n is a perfect square for all 1 ≤ i < j ≤
m. Diophantus himself found the D(256)-quadruple {1, 33, 68, 105},
while the first D(1)-quadruple, {1, 3, 8, 120}, was found by Fermat,
see [3, Volume 2, pp. 513 520]. Using the theory on linear forms
in logarithms of algebraic numbers and a reduction method based on
continued fractions, Baker and Davenport [1] proved that this Fermat’s
set cannot be extended to a D(1)-quintuple. A famous conjecture is
that there does not exist a D(1)-quintuple. The first author proved
recently that there does not exist a D(1)-sextuple and that there are
only finitely many, effectively computable, D(1)-quintuples, see [6].
Furthermore, the first author and C. Fuchs proved that there does
not exist a D(−1)-quintuple, see [7].

Considering congruences modulo 4, it is easy to prove that, if
n ≡ 2 (mod 4), then there does not exist a D(n)-quadruple, see
[2, 8, 12]. On the other hand, if n �≡ 2 (mod 4) and n /∈
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{−4, −3, −1, 3, 5, 8, 12, 20}, then there exists at least one D(n)-
quadruple, see [4]. These results were generalized to Gaussian integers
in [5]. It was proved that if b is odd or a ≡ b ≡ 2 (mod 4), then there
does not exist a D(a + bi)-quadruple, and if a + bi is not of the above
form and a + bi /∈ {2,−2, 1 + 2i, −1 − 2i, 4i,−4i}, then there exists
at least one D(a + bi)-quadruple. We see that in Z and Z[i], the ele-
ments n for which there exist a D(n)-quadruple are exactly (up to at
most finitely many exceptions) the elements which are representable as
a difference of two squares.

Our goal is to investigate whether this analogy between differences of
two squares and existence of Diophantine quadruples is valid in some
other situations, e.g., in the rings of integers of (some) quadratic fields.
Therefore, the results of this paper can be viewed as the first step in
that direction.

2. Differences of two squares in the ring Z[
√

d]. Let d be an
integer which is not a perfect square, and let

Z[
√

d] = {x + y
√

d : x, y ∈ Z}.

In this section, we will prove Theorem 1, i.e., we will describe a set of
all elements of the ring Z[

√
d] that can be represented as the difference

of squares of two elements of Z[
√

d], for integers d which satisfy the
conditions from Theorem 1. We start with some results which are
valid for all nonsquare integers d.

Proposition 1. If b is odd, then z = a + b
√

d is not representable
as a difference of two squares in Z[

√
d].

Proof. Assume that z is a difference of two squares in Z[
√

d]. Then
there exist x1 + y1

√
d, x2 + y2

√
d ∈ Z[

√
d] such that

a + b
√

d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2.

This gives b = 2(x1y1 − x2y2), a contradiction.

Proposition 2. If a is odd and b is even, then z = a + b
√

d can be
represented as a difference of two squares in Z[

√
d].
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Proof. Let z = 2m + 1 + 2n
√

d, where m, n ∈ Z. The statement
follows from

z = (m + 1 + n
√

d)2 − (m + n
√

d)2.

Proposition 3. If z ∈ Z[
√

d] is of the form 4m + 4n
√

d, then z can
be represented as a difference of two squares in Z[

√
d].

Proof. We have

z = 4m + 4n
√

d = (m + 1 + n
√

d)2 − (m − 1 + n
√

d)2.

If z ∈ Z[
√

d] has one of the following forms:

4m + (4n + 2)
√

d, (4m + 2) + 4n
√

d, (4m + 2) + (4n + 2)
√

d,

then we cannot give a simple general answer about representability
of z as a difference of two squares. The representability depends on
properties of the number d, which is not the case in Propositions 1, 2
and 3.

Suppose that a number z of the form 4m + (4n + 2)
√

d can be
represented as a difference of two squares. Then there exist zi =
xi + yi

√
d ∈ Z[

√
d], i = 1, 2, such that

z = (x1 + y1

√
d)2 − (x2 + y2

√
d)2.

It follows that

4m = x2
1 − x2

2 + (y2
1 − y2

2)d,(1)
2n + 1 = x1y1 − x2y2.(2)

We conclude from (2) that x1 and y1 are odd, and at least one of the
numbers x2 and y2 is even or, conversely, x2 and y2 are odd, and at
least one of the numbers x1 and y1 is even. Further, (1) gives us the
following two sets of conditions:

(3)
x1 ≡ y1 ≡ 1 (mod 2), x2 ≡ y2 ≡ 0 (mod 2),

d ≡ 3 (mod 4),
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or

(4)
x1 ≡ y1 ≡ 1 (mod 2), x2 ≡ 1 (mod 2), y2 ≡ 0 (mod 2),

d ≡ 0 (mod 4)

(up to the order of numbers z1 and z2).

Unfortunately, the condition d ≡ 0 or 3 (mod 4) is not sufficient so
that all numbers of the form 4m + (4n + 2)

√
d are differences of two

squares. The following proposition gives us necessary and sufficient
conditions.

Proposition 4. All numbers of the form z = 4m + (4n + 2)
√

d are
representable as a difference of two squares in Z[

√
d] if and only if one

of the following conditions is satisfied :

(i) d ≡ 3 (mod 4) and the equation x2 − dy2 = ±2 is solvable,

(ii) d ≡ 0 (mod 4) and the equation x2 − dy2 = ±4 has a solution
with odd y.

Proof. Assume that all numbers of the form 4m + (4n + 2)
√

d are
representable as a difference of two squares. Thus, for all m, n ∈ Z,
there exist x1, y1, x2, y2 ∈ Z satisfying equations (1) and (2). Now, the
proof naturally falls into two parts, according to which set of conditions,
(3) or (4), is valid.

(i) Assume that conditions (3) are valid. If we make the substi-
tutions x1 = x2 + α and y1 = y2 + β in equations (1) and (2), we
obtain

(5) αx2 + dβy2 = 2m − α2 + dβ2

2
,

βx2 + αy2 = 2n + 1 − αβ,

which we will consider as a linear system in two unknowns x2 and y2.
Solutions of the system (5) are given by

(6)
x2 =

((
2m − α2 + dβ2

2

)
α − (2n + 1 − αβ)dβ

)/
(α2 − dβ2),

y2 =
(

(2n + 1 − αβ)α −
(

2m − α2 + dβ2

2

)
β

)/
(α2 − dβ2).
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According to the assumption that xi, yi ∈ Z for i = 1, 2, this system
must have integral solutions for all m, n ∈ Z. Thus, the determinant
of the system, α2 − dβ2, divides the numerators in (6). In fact, the
following conditions must be satisfied

(7)
α2 − dβ2 | 4mα − 2(2n + 1)dβ,

α2 − dβ2 | 4mβ − 2(2n + 1)α.

Specially, for m, n = 0 we obtain that there exist integers α0 and β0

such that

α0
2 − dβ0

2 | 2α0 and α0
2 − dβ0

2 | 2dβ0.

If g = gcd (α0, dβ0), then

(8) α0
2 − dβ0

2 | 2g.

On the other hand, g2 | dα0
2 − d2β0

2 implies g2 | 2dg. Conditions (3)
imply that α0 and β0 are odd. Hence, g is also odd and thus g | d. So,
there exist two odd integers δ, a such that d = gδ and α0 = ga. From
(8) we get that ga2 − δβ0

2 | 2. Since ga2 − δβ0
2 is even, we conclude

that

(9) ga2 − δβ0
2 = ±2.

Multiplying equation (9) by ga2, we obtain:

(ga2 ∓ 1)2 − d(β0a)2 = 1,

which means that we have found a solution of the Pell equation
s2 − dt2 = 1 in even s and odd t.

Let now m, n ∈ Z be such that

(10) (2m)2 − d(2n + 1)2 = 1.

For corresponding α and β, defined as before, relations (7) are satisfied.
Specially, the determinant α2−dβ2 must divide the following expression

(2α(2n + 1) − 4βm) d(2n + 1) + (2dβ(2n + 1) − 4αm)2m.



436 A. DUJELLA AND Z. FRANUŠIĆ

Since equation (10) holds, we get that α2−dβ2 | 2α. Similarly, we show
that α2−dβ2 | 2β. Therefore, α2−dβ2 | 2q, where q = gcd (α, β). Since
q2 | α2−dβ2, it follows that q2 | 2q. But q is an odd integer (because α
and β are odd), and we conclude that q = 1. This immediately implies
that α2 − dβ2 = ±2.

(ii) In this case we assume that conditions (4) are valid. Integers α
and β are defined as in the previous case and conditions (4) imply that
α is even and β is odd. The relation (7) implies that

α2 − dβ2 | 2((2m)2 − d(2n + 1)2)α,

α2 − dβ2 | 2((2m)2 − d(2n + 1)2)β.

Note that (2m)2 − d(2n + 1)2 ≡ 0 (mod 4). Let s be the smallest
positive integer s such that

(2m0)2 − d(2n0 + 1)2 = ±4s,

for some m0, n0 ∈ Z. It follows immediately that 2m0 and 2n0 + 1
are relatively prime. Numbers α0 and β0, corresponding to m0 and n0,
satisfy the relations α0

2 − dβ0
2 | 8sα0, α0

2 − dβ0
2 | 8sβ0. Equation (5)

implies that integers α0 and β0 are also relatively prime. Hence, we
obtain that

α0
2 − dβ0

2 | 8s.

By the minimality of s, it follows that we have only two possibilities:

(a) α0
2 − dβ0

2 = ±8s, or

(b) α0
2 − dβ0

2 = ±4s.

Now, let us define rational numbers x and y by the formula

x + y
√

d =
2m0 + (2n0 + 1)

√
d

α0 + β0

√
d

.

We have

x =
2m0α0 − (2n0 + 1)dβ0

α0
2 − dβ0

2 , y =
(2n0 + 1)α0 − 2m0β0

α0
2 − dβ0

2 ,

and

(11) x2 − dy2 =
(2m0)2 − d(2n0 + 1)2

α0
2 − dβ0

2 .
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Since (6) implies that

α0
2 − dβ0

2 |x(α0
2 − dβ0

2) − α0
2 − dβ0

2

2
α0,

α0
2 − dβ0

2 | y(α0
2 − dβ0

2) − α0
2 − dβ0

2

2
β0,

we conclude that x − (α0/2) and y − (β0/2) are integers. We define
x1 = 2x, y1 = 2y. Obviously, x1 is even and y1 is odd, since α0 is even
and β0 is odd. If case (a) is valid, then the right-hand side of equation
(11) is equal to ±1/2. Therefore x1

2 − dy1
2 = ±2, which contradicts

the fact that x1
2 − dy1

2 ≡ 0 (mod 4).

Suppose that case (b) is valid. Since the right-hand side of (11) is
equal to ±1, it follows that x1

2 − dy1
2 = ±4, and that is what we

needed to prove.

Now, we will show the converse. Suppose that α and β are odd
integers satisfying α2 − dβ2 = ±2. We will show that system (5) has
integral solutions x2 and y2. Indeed, the numerators in (6) are even
integers:

(12)
(

2m − α2+dβ2

2

)
α − (2n+1 − αβ)dβ ≡ 2α − 2dβ ≡ 0 (mod 2),

(13) (2n +1 − αβ)α −
(

2m − α2 + dβ2

2

)
β ≡ 2β − 2α ≡ 0 (mod 2).

Let x1 + y1

√
d = x2 +α+(y2 +β)

√
d. Then it follows that 4m+(4n+

2)
√

d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2.

Similarly, if the equation α2 − dβ2 = ±4 is solvable with α even and
β odd, then it can be easily verified that the numerators in (6) are
divisible by 4. Thus, we obtain again that solutions x2, y2 of system
(5) are integers, which implies that 4m + (4n + 2)

√
d is representable

as a difference of two squares.

Proposition 5. All numbers of the form z = 4m + 2 + 4n
√

d can
be represented as a difference of two squares if and only if the equation
x2 − dy2 = ±2 is solvable.

Proof. Assume that there exist x1, y1, x2, y2 ∈ Z such that

4m + 2 + 4n
√

d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2,
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i.e.,

4m + 2 = x2
1 − x2

2 + (y2
1 − y2

2)d,(14)
2n = x1y1 − x2y2.(15)

From these equations we get the following conditions:

(16)
x1 ≡ y1 ≡ 0 (mod 2), x2 ≡ 0 (mod 2), y2 ≡ 1 (mod 2),

d ≡ 2 (mod 4),

or

(17)
x1 ≡ 0 (mod 2), y1 ≡ 1 (mod 2),

x2 ≡ 1 (mod 2), y2 ≡ 0 (mod 2), d ≡ 3 (mod 4)

(up to the order of numbers x1 + y1

√
d and x2 + y2

√
d).

As in the proof of Proposition 4, let x1 = x2 + α, y1 = y2 + β.
Equations (14) and (15) can be written in the following form

(18) αx2 + dβy2 = 2m + 1 − α2 + dβ2

2
,

βx2 + αy2 = 2n − αβ.

Solutions x2, y2 of system (18) are given by

(19)
x2 =

((
2m + 1 − α2 + dβ2

2

)
α − (2n − αβ)dβ

)/
(α2 − dβ2),

y2 =
(

(2n − αβ)α −
(

2m + 1 − α2 + dβ2

2

)
β

)/
(α2 − dβ2).

Since α is even, β is odd and d ≡ 2 (mod 4) (if condition (16) is valid)
or α, β are odd and d ≡ 3 (mod 4) (if condition (17) is valid), the
determinant of system (18), α2 − dβ2, is even. It remains to show that
there exist integers α and β such that the determinant is equal to 2 or
−2. Formulas (19) imply

α2 − dβ2 | 2(2m + 1)α − 4dnβ,

α2 − dβ2 | 4nα − 2(2m + 1)β.
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Specially, for m = n = 0 we obtain integers α0 and β0 such that
α0

2 − dβ0
2 | 2α0 and α0

2 − dβ0
2 | 2β0. Let g = gcd (α0, β0). Then

α0
2 − dβ0

2 | 2g. On the other hand, we have g2 | α0
2 − dβ0

2. So, it
follows that g2 | 2g. Since g is odd, we have g = 1 and we obtain that
α0

2 − dβ0
2 = ±2.

The converse of the statement can be shown in the same manner as
in the proof of Proposition 4.

It remains to consider the case z = 4m+2+(4n+2)
√

d. Suppose that
this number is representable as a difference of squares of two elements
in Z[

√
d], i.e.,

(20) 4m + 2 + (4n + 2)
√

d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2.

Then the numbers x1, y1, x2, y2 and d satisfy one of the following
conditions:

(21)
x1 ≡ y1 ≡ 1 (mod 2), x2 ≡ y2 ≡ 0 (mod 2),

d ≡ 1 (mod 4),

or

(22)
x1 ≡ y1 ≡ 1 (mod 2), x2 ≡ 1 (mod 2),

y2 ≡ 0 (mod 2), d ≡ 2 (mod 4).

As in the proofs of Propositions 4 and 5, let α = x1 − x2, β = y1 − y2.
In case (21), we obtain

α ≡ 1 (mod 2), β ≡ 1 (mod 2) and α2 − dβ2 ≡ 0 (mod 4),

and in case (22), we obtain

α ≡ 0 (mod 2), β ≡ 1 (mod 2) and α2 − dβ2 ≡ 2 (mod 4).

Proposition 6. All numbers of the form 4m + 2 + (4n + 2)
√

d are
representable as a difference of two squares if and only if one of the
following conditions is satisfied :
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(i) d ≡ 1 (mod 4) and the equation x2−dy2 = ±4 is solvable in odd
integers x, y,

(ii) d ≡ 2 (mod 4) and the equation x2 − dy2 = ±2 is solvable.

Proof. First, we show that the conditions are necessary.

(i) Assume that (21) is satisfied. From (20) we obtain the following
system

(23) αx2 + dβy2 = 2m + 1 − α2 + dβ2

2
,

βx2 + αy2 = 2n + 1 − αβ.

The solutions are
(24)

x2 =
((

2m + 1 − α2 + dβ2

2

)
α − (2n + 1 − αβ)dβ

)/
(α2 − dβ2)

y2 =
(

(2n + 1 − αβ)α −
(

2m + 1 − α2 + dβ2

2

)
β

)/
(α2 − dβ2).

Since x2 and y2 are integers, we have that

α2 − dβ2 | 2(2m + 1)α − 2(2n + 1)dβ,(25)
α2 − dβ2 | 2(2n + 1)α − 2(2m + 1)β.(26)

Multiplying the right-hand sides of (25) and (26) by 2m + 1 and
d(2n + 1), respectively, and then adding the results, we get

(27) α2 − dβ2 | 2α((2m + 1)2 − d(2n + 1)2).

Similarly, we obtain

(28) α2 − dβ2 | 2β((2m + 1)2 − d(2n + 1)2).

Now, the proof falls into two parts depending on whether d ≡ 5
(mod 8) or d ≡ 1 (mod 8).

(a) Suppose that d ≡ 5 (mod 8). Then (2m + 1)2 − d(2n + 1)2 ≡ 4
(mod 8), for all m, n ∈ Z. Let s be the smallest positive integer with
the property that there exist m, n ∈ Z such that

(2m + 1)2 − d(2n + 1)2 = ±4s.
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Obviously, s must be odd. According to the minimality of s, numbers
2m+1 and 2n+1 are relatively prime. Thus, from (23), it follows that
corresponding α and β are also relatively prime. Relations (27) and
(28) imply that

α2 − dβ2 | 2((2m + 1)2 − d(2n + 1)2),

i.e., α2 − dβ2 | 8s. From the minimality of s, we conclude that

α2 − dβ2 = ±4s.

Let us define rational numbers x and y by

(29) x + y
√

d =
2m + 1 + (2n + 1)

√
d

α + β
√

d
,

i.e.,

x =
(2m + 1)α − (2n + 1)dβ

α2 − dβ2
, y =

(2n + 1)α − (2m + 1)β
α2 − dβ2

.

Then we have

(30) x2 − dy2 =
(2m + 1)2 − d(2n + 1)2

α2 − dβ2
=

±4s

±4s
= ±1.

Since x2 and y2 are integers, from (24) it follows that

α2 − dβ2 | x(α2 − dβ2) − α2 − dβ2

2
α,

α2 − dβ2 | y(α2 − dβ2) − α2 − dβ2

2
β.

Therefore, the numbers x − (α/2) and y − (β/2) are also integers.
Let x1 = 2x, y1 = 2y. It is obvious that x1 and y1 are odd and
x1

2 − dy1
2 = ±4, which proves our assertion.

(b) Assume now that d ≡ 1 (mod 8). Then (2m+1)2−d(2n+1)2 ≡ 0
(mod 8), for all m, n ∈ Z. Moreover, we can choose m, n ∈ Z such that

(2m + 1)2 − d(2n + 1)2 ≡ 8 (mod 16).
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Indeed, if d ≡ 1 (mod 16), then the above relation is satisfied for m ≡ 1
(mod 4) and n ≡ 0 (mod 4), and if d ≡ 9 (mod 16), then it is satisfied
for m ≡ n ≡ 0 (mod 4). Let s be the smallest positive integer such
that there exist m, n ∈ Z which satisfy the equation

(2m + 1)2 − d(2n + 1)2 = ±8s.

Numbers 2m + 1 and 2n + 1 are relatively prime and so are the corre-
sponding numbers α and β, according to (23). From the minimality of
s, as in case (a), we easily obtain that

α2 − dβ2 = ±8s or α2 − dβ2 = ±16s.

Now, let us define rational numbers x and y by formula (29). Analo-
gously as in case (a), we obtain that odd integers x1 = 2x and y1 = 2y
satisfy one of the following equations:

x1
2 − dy1

2 = ±4 or x1
2 − dy1

2 = ±2.

So, we obtain a contradiction with the fact that x1
2−dy1

2 ≡ 0 (mod 8).
Hence, we have shown that if d ≡ 1 (mod 8), then there exist numbers
of the form 4m + 2 + (4n + 2)

√
d which are not representable as a

difference of two squares.

(ii) Assume now that conditions (22) are satisfied.

Let m, n ∈ Z be such that

(2m + 1)2 − d(2n + 1)2 = p,

where p is a prime. Such m and n exist according to a fact, announced
by Dirichlet and proved by Meyer and Mertens, which says that among
the primes represented by the quadratic form ax2 + 2bxy + cy2, where
gcd (a, 2b, c) = 1, infinitely many of them are representable by any given
linear form Mx + N , with gcd (M, N) = 1, where a, b, c, M, N are such
that the linear and quadratic forms can represent the same number [3,
Volume I, pp. 417 418]. In our case, we can conclude that, for d ≡ 2
(mod 4), there are infinitely many primes of the form x2 − dy2 which
also have the form 4k + 3. Obviously, if p = x2 − dy2 ≡ 3 (mod 4) and
d ≡ 2 (mod 4), then x and y are odd.
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Further, it is clear that numbers 2m + 1 and 2n + 1 are relatively
prime, and so are the corresponding numbers α and β. Relations (27)
and (28) imply that α2 − dβ2 | 2p. Hence, we have two possibilities:

α2 − dβ2 = ±2 or α2 − dβ2 = ±2p.

If the second possibility is fulfilled, then we can define rational numbers
x and y by formula (29). Relation (30) implies that

x2 − dy2 = ± p

2p
= ±1

2
.

Similarly, as in case (i), we conclude that numbers x − (α/2) and
y − (β/2) are integers. It implies that x1 = 2x is even and y1 = 2y
is odd. Obviously, integers x1 and y1 satisfy the desired equation
x2

1 − dy2
1 = ±2.

It remains to prove that the conditions are sufficient. In order to do
this, we will show that numbers x2 and y2 defined in (24) are integral
(under the assumption that α and β are solutions of the corresponding
Pellian equation). First, let us write the formulas from (24) in the more
appropriate form

x2 =
(2m + 1)α − (2n + 1)dβ

α2 − dβ2
− α

2
,(31)

y2 =
(2n + 1)α − (2m + 1)β

α2 − dβ2
− β

2
.(32)

Assume that α2 − dβ2 = ±2, where α is even, β is odd and d ≡ 2
(mod 4). Now, it can be easily checked that x2 and y2 are integers.

Assume that α, β are odd integers such that α2 − dβ2 = ±4. Then
we have d ≡ 5 (mod 8). Consider the case that the numbers 2m + 1
and 2n + 1 are congruent to 1 modulo 4. Then the numbers x2 and
y2 are integers if and only if (2m + 1)α− (2n + 1)dβ ≡ 2 (mod 4) and
(2n + 1)α − (2m + 1)β ≡ 2 (mod 4). Evidently, those relations are
fulfilled if and only if α ≡ 1 (mod 4), β ≡ 3 (mod 4), or vice versa,
and this can be always achieved (if, e.g., α ≡ β ≡ 1 (mod 4) then
numbers α and −β are also the solutions of the same equation and
−β ≡ 3 (mod 4)).
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In the same way, we can deal with the remaining cases: 2m + 1 ≡
−(2n + 1) (mod 4) or 2m + 1 ≡ 2n + 1 ≡ 3 (mod 4).

Let us discuss the case (i)(b) from the proof of Proposition 6. We
will describe numbers of the form z = 4m + 2 + (4n + 2)

√
d which

can be represented as a difference of two squares in the case d ≡ 1
(mod 8). We will restrict our attention to the integers d which satisfy
the condition that the equation

(33) α2 − dβ2 = ±8

is solvable in odd integers α and β. We have to find conditions on
m, n ∈ Z such that the numbers x2 and y2 defined by formulas (31)
and (32) are integers. These conditions will depend on the form of
solutions of equation (33). Obviously, x2 and y2 are integers if the
following relations are satisfied

(2m + 1)α − (2n + 1)dβ ≡ 4 (mod 8),(34)
(2n + 1)α − (2m + 1)β ≡ 4 (mod 8)(35)

(under the assumption (33)). Moreover, it is enough that one of these
two conditions is fulfilled. Indeed, relation (35) multiplied by α gives
relation (34). So, let us assume that condition (35) is satisfied. Since
α and β are odd, one of the following congruences is valid: α ≡ β
(mod 8), α ≡ β+4 (mod 8), α ≡ −β (mod 8) or α ≡ −β+4 (mod 8).
We will find conditions on m and n in each of these cases. First, if
α ≡ β (mod 8), then (35) implies (2n + 1) − (2m + 1) ≡ 4 (mod 8),
i.e., n − m ≡ 2 (mod 4). If α ≡ β + 4 (mod 8), then (35) implies

(2n + 1) − (2m + 1) + 4(2m + 1) ≡ 2(m − n) + 4 ≡ 4 (mod 8),

i.e., n − m ≡ 0 (mod 4). Similarly, if α + β ≡ 4 (mod 8), then
m + n ≡ 3 (mod 4), and if α + β ≡ 0 (mod 8), then m + n ≡ 1
(mod 4). Further, it can be shown that the form of solutions α, β
of equation (33) is completely determined by d. To be more precise:
α ≡ β (mod 8) or α + β ≡ 0 (mod 8) if and only if d ≡ 9 (mod 16),
and α + β ≡ 4 (mod 8) or α − β ≡ 4 (mod 8) if and only if d ≡ 1
(mod 16). Those results follow easily if equation (33) is rearranged in
the form (α2 − β2) − (d − 1)β2 = ±8.
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Therefore, we proved the sufficiency part of the following proposition.

Proposition 7. Let d ≡ 1 (mod 8) and assume the equation
x2 − dy2 = ±8 is solvable.

(i) If d ≡ 1 (mod 16), then the number z = 4m+2+(4n+2)
√

d can
be represented as a difference of two squares if and only if m − n ≡ 0
(mod 4) or m + n ≡ 3 (mod 4).

(ii) If d ≡ 9 (mod 16), then the number z = 4m + 2 + (4n + 2)
√

d
can be represented as a difference of two squares if and only m−n ≡ 2
(mod 4) or m + n ≡ 1 (mod 4).

Proof. We have to prove that the conditions are necessary. We will
consider only the case d ≡ 1 (mod 16). The case d ≡ 9 (mod 16) can
be handled in the same way.

Let us assume that m, n ∈ Z are such that m − n �≡ 0 (mod 4),
m + n �≡ 3 (mod 4) and z = 4m + 2 + (4n + 2)

√
d is representable as a

difference of two squares. Then we obtain

(2m + 1)2 − d(2n + 1)2 ≡ 4(m − n)(m + n + 1) ≡ 8 (mod 16).

Indeed, if m−n ≡ 1 (mod 4) or m−n ≡ 3 (mod 4), than m+n+1 ≡ 2
(mod 4), since m + n �≡ 3 (mod 4). On the other hand, if m − n ≡ 2
(mod 4), then m + n + 1 is odd.

Now, let s be an odd positive integer such that

(2m + 1)2 − d(2n + 1)2 = ±8s.

Corresponding (odd) numbers α and β satisfy relations (27) and (28),
i.e., α2 − dβ2 | 16sα and α2 − dβ2 | 16sβ. If we put g = gcd (α, β), we
get g2 | 16sg. Hence, g | s. Let us denote α = α1g, β = β1g, s = s′g.
Since α1 and β1 are relatively prime, we obtain α1

2−dβ1
2 | 16s′. Since

α1
2 − dβ1

2 ≡ 0 (mod 8), there are only two possibilities

α1
2 − dβ1

2 = ±8s1 or α1
2 − dβ1

2 = ±16s1,

where s1 divides s, i.e., s = s1s2. Now, similarly as in the proof of
Proposition 6, it can be shown that x1 = 2x and y1 = 2y, where x and
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y are defined by formula (29), satisfy one of the following equations:
x1

2 − dy1
2 = ±4s2 or x1

2 − dy1
2 = ±2s2. Since both equations are

impossible (because x1 and y1 are odd and x1
2 − dy1

2 ≡ 0 (mod 8)),
we obtain a contradiction.

3. Differences of two squares in the ring Z[(1 +
√

d)/2]. In
this section we will prove Theorem 2. Therefore, we assume that d is
a nonsquare integer such that d ≡ 1 (mod 4). Only in one result in
this section (Proposition 11) will we also use the assumption that the
equation x2 − dy2 = ±4 is solvable in odd integers. Let

Z
[
1 +

√
d

2

]
=

{
x + y

√
d

2
: x, y ∈ Z, x ≡ y (mod 2)

}
.

We will describe a set of all elements of the ring Z[(1 +
√

d)/2] that
can be represented as a difference of squares of two elements of
Z[(1 +

√
d)/2].

In the previous section, we have shown that elements of the ring
Z[
√

d], where d ≡ 1 (mod 4), which can be represented as a difference
of two squares, are elements of the form 2m + 1 + 2n

√
d, 4m + 4n

√
d

or 4m + 2 + (4n + 2)
√

d. (The last one under the assumption that the
equation x2 − dy2 = ±4 is solvable in odd x and y.) It remains to
examine which numbers of the form a + b

√
d can be represented as a

difference of squares of two elements in Z[(1 +
√

d)/2]\Z[
√

d]. Also, we
have to consider a representability of numbers of the form (a + b

√
d)/2,

where a and b are odd.

Let x1, y1, x2, y2 be odd integers. Then

(36)
(

x1

2
+

y1

2

√
d

)2

−
(

x2

2
+

y2

2

√
d

)2

= a + b
√

d,

where a, b ∈ Z. Moreover, a is even.

Proposition 8. All numbers of the form 2m + (2n + 1)
√

d, m, n ∈
Z, are representable as a difference of squares of two elements of
Z[(1 +

√
d)/2].

Proof. From the proof of Proposition 3, we have

4a + 4b
√

d = (a + 1 + b
√

d)2 − (a − 1 + b
√

d)2.
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Specially, for a = 2m i b = 2n + 1, we obtain

2m+(2n+1)
√

d =
(

2m+1
2

+
2n+1

2

√
d

)2

−
(

2m−1
2

+
2n+1

2

√
d

)2

.

By Proposition 6, all numbers of the form 4m + 2 + (4n + 2)
√

d
are representable as a difference of squares in Z[

√
d] if and only if the

equation x2−dy2 = ±4 is solvable in odd integers. The next proposition
shows that in Z[(1 +

√
d)/2], numbers 4m + 2 + (4n + 2)

√
d are always

representable as a difference of two squares, i.e., no condition is required
on d.

Proposition 9. All numbers of the form 4m+2+(4n+2)
√

d, m, n ∈
Z, are representable as a difference of two squares in Z[(1 +

√
d)/2].

Proof. We have

8a + 8b
√

d = (a + 2 + b
√

d)2 − (a − 2 + b
√

2)2

for all a, b ∈ Z. Specially, for a = 2m + 1 and b = 2n + 1 we get

4m + 2 + (4n + 2)
√

d =
(

2m + 3
2

+
2n + 1

2

√
d

)2

−
(

2m − 1
2

+
2n + 1

2

√
d

)2

.

Proposition 10. If z is of the form 4m + (4n + 2)
√

d or 4m + 2 +
4n

√
d, then z cannot be represented as a difference of two squares in

Z[(1 +
√

d)/2].

Proof. Suppose that a+b
√

d = 4m+(4n+2)
√

d = z2
1−z2

2 . If z1 and z2

belong to Z[
√

d], then by relations (3) and (4) we have d ≡ 0 (mod 4)
or d ≡ 3 (mod 4), a contradiction. Now, suppose that zi is of the form
(xi + yi

√
d)/2, where xi and yi are odd, for i = 1, 2, i.e., suppose that

equality (36) is valid. Then we obtain that x2
1 −x2

2 + y2
1d− y2

2d = 16m.
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Thus, x1 ≡ ±x2 (mod 8) and y1 ≡ ±y2 (mod 8), or x1 ≡ ±x2 + 4
(mod 8) and y1 ≡ ±y2 + 4 (mod 8). It follows that x1y1 − x2y2 ≡ 0
(mod 8) or x1y1−x2y2 ≡ 2 (mod 4), which implies that b ≡ 0 (mod 4)
or b ≡ 1 (mod 2), a contradiction.

Similarly, relations (16) and (17) imply that if 4m + 2 + 4n
√

d is
a difference of two squares in Z[

√
d], then d ≡ 2 (mod 4) or d ≡ 3

(mod 4), which is a contradiction. Hence, relation (36) is valid, and
it implies that x1 ≡ ±x2 (mod 8) and y1 ≡ ±y2 + 4 (mod 8) (or vice
versa: x1 ≡ ±x2 + 4 (mod 8) and y1 ≡ ±y2 (mod 8)). Now, we have
x1y1 − x2y2 ≡ 4 (mod 8) or x1y1 − x2y2 ≡ 2 (mod 4). So, b ≡ 2
(mod 4) or b ≡ 1 (mod 2), and we obtain a contradiction again.

Proposition 11. All numbers of the form (2m+1)/2+((2n+1)/2)
√

d
can be represented as a difference of two squares in Z[(1 +

√
d)/2] if and

only if the equation x2 − dy2 = ±4 is solvable in odd x and y.

Proof. Assume that the equation x2 − dy2 = ±4 is solvable in odd
integers. Then by Proposition 6, all numbers of the form 4m + 2 +
(4n + 2)

√
d can be represented as a difference of two squares in Z[

√
d].

Suppose that x1, y1, x2, y2 ∈ Z satisfy

(37) 4m + 2 + (4n + 2)
√

d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2.

Then, x1 and y1 are odd, and x2 and y2 are even, or vice versa. Dividing
the equality (37) by 4, we obtain

2m + 1
2

+
2n + 1

2

√
d =

(
2ξ1 + 1

2
+

2η1 + 1
2

√
d

)2

− (ξ2 + η2

√
d)2,

where x1 = 2ξ1 + 1, y1 = 2η1 + 1, x2 = 2ξ2 and y2 = 2η2.

In order to prove the converse statement, suppose that (2m + 1)/2 +
((2n + 1)/2)

√
d can be represented as a difference of two squares in

Z[(1 +
√

d)/2] for all m, n ∈ Z, i.e.,

2m + 1
2

+
2n + 1

2

√
d = (x1 + y1

√
d)2 − (x2 + y2

√
d)2.

Obviously, 4m + 2 + (4n + 2)
√

d = (2x1 + 2y1

√
d)2 − (2x2 + 2y2

√
d)2.

Thus, 4m+2+(4n+2)
√

d is a difference of two squares in Z[
√

d] for all
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m, n ∈ Z. Now, Proposition 6 implies that the equation x2 − dy2 = ±4
is solvable in odd x and y.

Proposition 12. Numbers 2m+1+(2n+1)
√

d are not representable
as a difference of two squares in Z[(1 +

√
d)/2].

Proof. By Proposition 1, a + b
√

d = 2m + 1 + (2n + 1)
√

d is not
representable as a difference of two squares in Z[

√
d]. If a + b

√
d

satisfies the relation (36), then a must be even. Finally, if a + b
√

d =
(x1/2 + (y1/2)

√
d)2 − (x2 + y2

√
d)2, then a /∈ Z. Hence, a + b

√
d is not

representable as a difference of two squares in Z[(1 +
√

d)/2].

4. Certain Pellian equations. As we saw in the previous two
sections, the representability of certain integers in quadratic fields
Q(

√
d) as a difference of two squares is closely connected to the

solvability of Pellian equations of the form

(38) x2 − dy2 = c,

where c = ±2,±4,±8. In this section we give some information on the
solvability of these equations. For an interpretation of the connection
between these equations and continued fractions, see [13].

First, observe that equation (38) is obviously solvable for d = n2 − c,
n ∈ Z. Therefore, all our conditions are satisfied by infinitely many
integers d.

The condition that the equation

(39) x2 − dy2 = ±2

is solvable appeared in Propositions 4, 5 and 6, when we considered
integers d such that d ≡ 2 or 3 (mod 4). It is well known, see [10] or
[15, Section 28], that

• if p is a prime and p ≡ 3 (mod 8), then x2 − py2 = −2 and
x2 − 2py2 = −2 are solvable,

• if p is a prime and p ≡ 7 (mod 8), then x2 − py2 = 2 and
x2 − 2py2 = 2 are solvable.
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We list all positive integers d ≡ 2 (mod 4) up to 200 for which
equation (39) is solvable:

2±, 6−, 14+, 18−, 22−, 34+, 38−, 46+, 54−, 62+, 66−, 86−, 94+, 98+,

102−, 114−, 118−, 134−, 146−, 158+, 162−, 166−, 170−, 178−, 194+, 198−.

Here the superscript + indicates that the equation x2 − dy2 = 2 is
solvable, while the superscript − indicates that the equation x2−dy2 =
−2 is solvable.

Positive integers d ≡ 3 (mod 4) less than 200 for which equation (39)
is solvable are:

3−, 7+, 11−, 19−, 23+, 27−, 31+, 43−, 51−, 59−, 67−,

71+, 79+, 83−, 103+, 107−, 119+, 123−, 127+, 131−,

143+, 151+, 163−, 167+, 179−, 187−, 191+, 199+.

The condition that equation

(40) x2 − dy2 = ±4,

is solvable in odd integers appeared in Propositions 6 and 11. The
problem of finding an a priori criterion for deciding whether equation
(40), where d ≡ 5 (mod 8), is solvable in odd integers is known as
Eisenstein’s problem. A solvability criterion in the terms of the period-
length of continued fraction of

√
d was given in [9]. Some empirical

results in [17] indicate that (40) is solvable in odd integers for about
2/3 of the values of square-free d ≡ 5 (mod 8). Let us note that it
suffices to consider the solvability of the equation x2 −dy2 = 4, since if
u any v are odd integers satisfying u2−dv2 = −4, then x = (u2+dv2)/2
and y = uv are odd integers satisfying x2 − dy2 = 4.

Positive integer d ≡ 5 (mod 8) less than 200 for which equation (40)
is solvable in odd integers are:

5±, 13±, 21+, 29±, 45+, 53±, 61±, 69+, 77+, 85±, 93+,

109±, 117+, 125±, 133+, 149±, 157+, 165+, 173±, 181±.

In Proposition 4 we had the condition that, for d ≡ 0 (mod 4),
equation (40) has a solution with odd y. Our condition is equivalent



ON DIFFERENCES OF TWO SQUARES 451

to solvability of the equation x2 − (d/4)y2 = ±1 with odd y. Although
a solution of Pell equation

(41) x2 − Dy2 = 1

always exists, we cannot be sure that there is a solution of such parity.
It is easy to see that such a solution exists if and only if in the minimal
solution (u, v) of (41) the integer v is odd. This implies that if D is
a prime and D ≡ 3 (mod 4), then equation (41) has a solution with
odd y. Indeed, if (u, v) is the minimal solution of (41) and v is even,
then from u2 − 1 = Dv2 we obtain u ± 1 = 2Dt2, u ∓ 1 = 2s2 and
s2 −Dt2 = ∓1. But, the minimality of (u, v) implies that + sign is not
possible, while the assumption D ≡ 3 (mod 4) implies that the − sign
is not possible. We conclude that for d = 4p, where p is a prime such
that p ≡ 3 (mod 4), equation (40) has a solution with odd y.

On the other hand, if the equation x2−(d/4)y2 = −1 is solvable, then
y is necessarily odd. Thus, we are interested in solvability conditions
for the equation

(42) x2 − Dy2 = − 1.

It is well known, see [10], that equation (42) is solvable if

• D = p, where p is a prime and p ≡ 1 (mod 4),

• D = 2p, where p is a prime and p ≡ 5 (mod 8),

• D = pq, where p, q are primes, p, q ≡ 1 (mod 4) and (p/q) = − 1,

• D = 2pq, where p, q are primes and p, q ≡ 5 (mod 8).

Positive integers d ≡ 0 (mod 4), 4 < d < 200, for which equation
(40) is solvable with odd y are:

8−, 12+, 20−, 28+, 32+, 40−, 44+, 52−, 60+, 68−, 76+, 92+, 96+, 104−,

108+, 116−, 124+, 128+, 140+, 148−, 160+, 164−, 172+, 188+, 192+.

Finally, very little is known about the solvability of equation

(43) x2 − dy2 = ±8

for d ≡ 1 (mod 8), which appeared in our Proposition 7. Since,
equation (39) is not solvable for such d, it follows that x and y have
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to be odd. In [11], in studying a classical correspondence between
algebraic K3 surfaces, the conditions that d ≡ 1 (mod 8) and (43)
is solvable also appeared. The authors gave the list of all positive
integers d ≤ 2009 which satisfy these conditions. We list here only
such nonsquare integers less than 200:

17±, 33−, 41±, 57−, 73±, 89±, 97±,

113±, 129−, 137±, 153−, 161+, 177−, 193±.

Here we may notice that there exist integers d for which both equations
x2 − dy2 = 8 and x2 − dy2 = − 8 are solvable.
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