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Lp improving multilinear
Radon-like transforms

Betsy Stovall

Abstract

We characterize (up to endpoints) the k-tuples (p1, . . . , pk) for
which certain k-linear generalized Radon transforms map the product
Lp1 × · · · × Lpk boundedly into R. This generalizes a result of Tao
and Wright.

1. Introduction

Let n ≥ 2, k ≥ 2, and for 1 ≤ j ≤ k, let πj : R
n → R

n−1 be a smooth
submersion (i.e. Dπj has maximal rank at each point). Without loss of
generality, πj(0) = 0, 1 ≤ j ≤ k. We define an operator S, acting on
k-tuples of functions on R

n−1 by

(1.1) S(f1, . . . , fk) :=

∫
Rn

k∏
j=1

fj ◦ πj(x)a(x) dx.

Here a ∈ C∞
0 (Rn) is a cutoff function with a(0) �= 0 whose support will be

contained in a small neighborhood V of 0. We are interested in k-tuples
(p1, . . . , pk) for which S satisfies

(1.2)
∣∣S(f1, . . . , fk)

∣∣ ≤ C

k∏
j=1

‖fj‖Lpj (Rn−1),

where C is a finite constant which depends on the πj , the pj, and a, but not
on the fj.

This issue has been resolved (or resolved up to endpoints) in some special
cases.
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First, when k = 2, Tao and Wright in [22] characterized up to endpoints
the pairs (p1, p2) such that (1.2) is satisfied. These bounds were reproved
by Christ in [4] using partially alternative techniques. More recently, in [8],
Gressman used the techniques in [22] and [4] and several new ideas to estab-
lish restricted weak-type bounds at the endpoint when the fibers of the πj

are polynomial curves.

Second, when k = n and the kernels of the differentials dπ1, . . . , dπn

span the tangent space to R
n at every point, the bound (1.2) holds with

pj = n − 1, 1 ≤ j ≤ n. When the πj are linear, this is the Loomis–
Whitney inequality ([12]). When the πj are not linear, the bound was proved
by Bennett, Carbery, and Wright in [3] (when the πj are in C3(Rn)). An
alternative proof, using induction on scales, has recently been given in [1]
by Bejenaru, Herr, and Tataru (perturbed Loomis–Whitney in dimension 3)
and as a special case of the result in [2] by Bennett and Bez. The advantage
of these two more recent results is that they give more quantitative bounds
and treat a lower regularity case (πj ∈ C1,β(Rn)) than [3].

There is a significant gap between the special cases treated in [22] and [3].
In the first case, curvature of the fibers of the πj plays a role in determining
the Lp bounds, but the theory is restricted to bilinear operators. In the
second case, multilinear operators are allowed, but curvature plays no role.
Our goal in this article is to fill in this gap by characterizing (up to endpoints)
the k-tuples (p1, . . . , pk) such that the bound (1.2) holds for all values of k
and smooth submersions π1, . . . , πk : R

n → R
n−1. Our techniques are an

adaptation of the method of refinements developed by Christ in [5] and later
applied in [22], [4], and [3] as well as many other articles. In particular, many
of our arguments are adapted from [4] and [22], though some new details
are needed for the multilinear case. To the extent possible, we have tried to
follow the outline from those two works.

Notation. The notation we will employ is relatively standard, and in par-
ticular largely matches that in [22] and [4]. As has become common in the
harmonic analysis literature, we will hide constants in two types of sym-
bols. If A and B are two non-negative real numbers, then A � B if there
exists a (large) constant C such that A ≤ CB, and A 	 B if there exists
a (small) constant c such that A ≤ cB. The chief difference between the
symbols is in their use, � typically appearing in the conclusion and 	 in
the hypothesis of a statement. For instance, the statement, “If A 	 B,
then f(A) � f(B),” may be read as, “There exist constants c and C such
that whenever A ≤ cB, we have f(A) ≤ Cf(B).” Finally, A ∼ B if A � B
and B � A. The dependence of the implicit constants will be specified as
needed.
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2. Restricted weak type inequalities and Lp-improving
operators

We start by making some preliminary reductions in the k-tuples (p1, . . . , pk)
under consideration. For the purposes of this section, all implicit constants
depend on a, the πj , and the pj .

Suppose that
∑k

j=1 p−1
j ≤ 1. Let V be a bounded set which contains

supp(a). Then by Hölder’s inequality,

|S(f1, . . . , fk)| �
k∏

j=1

‖fj ◦ πj · χV ‖Lpj (Rn) �
k∏

j=1

‖fj‖Lpj (Rn−1),

where the last inequality follows from our assumption that πj is a submersion
and by the boundedness of V .

Now suppose that pi < 1 for some 1 ≤ i ≤ k. For 0 < δ 	 1, let fi = fδ

be the characteristic function of the ball of radius δ centered at 0 in R
n−1.

For j �= i, let fj be the characteristic function of the ball of radius 1 centered
at 0 in R

n−1. Then since a(0) �= 0, and since πj is a submersion,

|S(f1, . . . , fk)| ∼ δn−1

and
k∏

j=1

‖fj‖Lpj ∼ δ(n−1)/pi .

Letting δ → 0, (1.2) cannot hold.
Henceforth, we will consider only those k-tuples p = (p1, . . . , pk) satisfy-

ing

k∑
j=1

p−1
j > 1 and 1 ≤ pj ≤ ∞ for 1 ≤ j ≤ k.(2.1)

We say that S is Lp-improving if it satisfies (1.2) for some k-tuple p satis-
fying (2.1). This terminology is motivated by the case when k = 2 and the
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fibers of π1 and π2 are transverse near 0. In this case, (1.2) is equivalent to
boundedness of the operator T defined by

Tf(x) =

∫
π−1
2 {x}

f(y) a(y) dσx(y)

from Lp1(Rn) to Lp′2(Rn). (Here dσx is equal to arclength measure on
π−1

2 {x}.) Additionally, (2.1) is equivalent to p′2 > p1, and since Lp′2(V ) ⊂
Lp1(V ) for V bounded, we think of Tf as lying in a better space than f .

We will focus on establishing restricted weak type inequalities, i.e. in
proving (1.2) in the case when each fj is the characteristic function of a
Borel set. We note that in order to prove that S is of restricted weak type
(p1, . . . , pk), it is enough to show that whenever Ω ⊂ R

n is a Borel set,
we have ∫

χΩ(x) a(x) dx � |π1(Ω)|1/p1 · · · |πk(Ω)|1/pk ,(2.2)

with the implicit constant independent of Ω. This can be reformulated as
a lower bound on Ω as follows. We assume that Ω ⊂ supp(a), and for
1 ≤ j ≤ k, we define

αj :=
|Ω|

|πj(Ω)| .(2.3)

We observe that by the coarea formula, αj is approximately equal to the
average size (in terms of euclidean arclength) of the intersection of the fibers
of πj with Ω. Additionally, under the assumption (2.1), (2.2) is equivalent
to the inequality

αb := αb1
1 · · ·αbk

k � |Ω|,(2.4)

where b = b(p) = (b1, . . . , bk) is defined by

bi =
p−1

i∑k
j=1 p−1

j − 1
, 1 ≤ i ≤ k.(2.5)

It is this inequality that we will try to prove.

3. Vector fields and statement of results

Associated to each of the submersions is a (nonunique) C∞ vector field Xj

on R
n which is nonvanishing and tangent to the fibers of πj .

In [6], Christ, Nagel, Stein, and Wainger proved that if k = 2, then S is
Lp-improving if and only if the Xj and their iterated Lie brackets span the
tangent space to R

n at each point where a �= 0. In Section 5, we will prove
the necessity portion of this theorem for k > 2:
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Theorem 1. If S is Lp-improving, then the Xj and their iterated Lie brack-
ets span the tangent space to R

n at each point where a �= 0.

The spanning of the tangent space by the iterated Lie brackets is known
as the Hörmander condition.

The results of [6] characterized Lp-improving operators but did not show
for which pairs (p1, p2) the inequality (1.2) holds. In [22] Tao and Wright
determined, up to endpoints, which pairs (p1, p2) as in (2.1) satisfy (1.2). A
later proof of this theorem, along the lines of [22] but with some simplifi-
cations, is due to Christ in [4]. The bulk of this article will be devoted to
showing that the result of Tao and Wright extends to the case k ≥ 2.

To state the result, we review a few definitions from [22], generalized to
the multilinear setting.

A word is a d-tuple w ∈ {1, . . . , k}d for some d ≥ 1, and W denotes the
set of all words. If w ∈ W , its degree is the k-tuple whose j-th component
is the number of entries of w which equal j. Finally, to each w ∈ W is
associated a vector field Xw, defined by the recursive equation

X(w,j) := [Xw, Xj].

For example, if k ≥ 3,

X(1,2) = [X1, X2] X(1,2,3) = [[X1, X2], X3].

Crucially, by antisymmetry and the Jacobi identity, each iterated Lie
bracket of the Xj may be written as a linear combination (with constant
coefficients) of vector fields Xw (cf. [9, Lemma 4.4]). For instance,

[[X1, X2], [X3, X4]] = −X(1,2,4,3) + X(1,2,3,4).

Therefore the Hörmander condition is equivalent to the statement that the
vector fields Xw, with w ∈ W , span the tangent space to R

n at each point
where a �= 0.

Given an n-tuple I = (w1, . . . , wn) of words, we denote by λI the deter-
minant

λI(x) := det(Xw1(x), . . . , Xwn(x)),

and by deg(I) the k-tuple

deg(I) := deg(w1) + · · ·+ deg(wn).

Finally, we recall one more definition before stating the main theorems. The
Newton polytope P of the vector fields X1, . . . , Xk is the closed convex hull
of the set of points

{
(b1, . . . , bk) ≥ deg(I) : I ∈ W n and λI(0) �= 0

}
.
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Here (b′1, . . . , b
′
k) ≥ (b1, . . . , bk) if b′i ≥ bi for each 1 ≤ i ≤ k. Hence if

P �= ∅, then P has nonempty interior. Recall the definition (2.5) of b(p) for
p = (p1, . . . , pk) satisfying (2.1). The next theorem sharpens Theorem 1.

Theorem 2. If p ∈ [1,∞]k satisfies (2.1), and b(p) does not lie in P , then S
is not even of restricted weak-type (p1, . . . , pk).

The above theorem and the next one almost completely characterize
those k-tuples p for which S satisfies (1.2).

Theorem 3. If p ∈ [1,∞]k satisfies (2.1) and b(p) lies in the interior of P ,
then, provided supp(a) is contained in a sufficiently small neighborhood of 0,
S satisfies (1.2), i.e. S is of strong-type (p1, . . . , pk).

We have as a corollary to Theorems 1, 2, and 3 the following.

Corollary. The operator S is Lp-improving if and only if the iterated Lie
brackets of the Xj span the tangent space to R

n at each point where a �= 0.

We will give a more geometric formulation of Theorem 3 later; see The-
orem 4.

4. Related work

There is an extensive bibliography in [22] to which we direct the interested
reader. We will focus here on some more recent results.

Endpoint bounds

The main theorems here and in [22] and [4] do not establish boundedness
of the operator T at the Lebesgue endpoints (the points p = (p1, . . . , pk)
with b(p) equal to a vertex of the Newton polytope). At least in the case of
real analytic πj , it is likely that the proof and not the operator is at fault
for this omission. See remarks in [4, Section 11] for some conjectures and
remarks related to endpoint bounds in the case k = 2.

In a few special cases of the Tao–Wright theorem, strong-type endpoint
bounds are known. When k = 2, one example of our operator is S(f1, f2) :=
〈Tf1, f2〉, where

Tf(x) :=

∫
f(x − γ(t)) a(x, t) dt.

Here γ : R → R
n is a parametrized curve. When γ(t) = (t, . . . , tn), the

author has proven endpoint bounds for T in high dimensions in [19], sharp-
ening the restricted weak-type result due to Christ in [5] and extending
lower dimensional results of Littman in [11], and Oberlin in [14], [15], [16].
In another recent article [7], Dendrinos, Laghi, and Wright have established
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strong-type endpoint bounds for convolution with affine arclength measure
along polynomial curves γ in dimension 3, extending work of Oberlin in [17],
and this result was generalized to higher dimensions by the author in [20].
The work [10] of Laghi is in a similar vein.

Finally, in [8] Gressman has settled the question of restricted weak-type
boundedness at the endpoint in the polynomial case of the Tao–Wright theo-
rem. The arguments in [8] extend to the multilinear setting with no difficulty.

Another multilinear operator

In [3], Bennett, Carbery and Wright have proved the following non-linear
generalization of the Loomis–Whitney inequality: If k = n and the vector
spaces X1, . . . , Xn span the tangent space to R

n at 0, then for a having suf-
ficiently small support (containing 0), |S(f1, . . . , fn)| �

∏n
j=1 ‖fj‖Ln−1(Rn−1).

The articles [2] and [1] contain proofs of this generalization by induction
on scales and establish the generalization of the Loomis–Whitney inequal-
ity under much lower regularity assumptions (though [2] is more general,
addressing for instance certain cases wherein the fibers have unequal di-
mensions). Our result gives a partial generalization of this bound (in the
perturbed Loomis–Whitney case). On the one hand, our methods cannot
be used to obtain the endpoint (n − 1, . . . , n − 1) as this corresponds to
b = (1, . . . , 1). On the other hand, even in the case k = n, our theorem
establishes new bounds for certain π1, . . . , πn.

Multi-parameter Carnot–Carathéodory Balls

Independently of this work, in [21] Street has generalized the work of Nagel–
Stein–Wainger and Proposition 4.1 of [22] for multi-parameter Carnot–Cara-
théodory balls, as well as analyzing the situation when the iterated Lie
brackets span a proper subspace of R

n. This work does not however address
certain issues which we use to bound the multilinear operator.

5. Proof of Theorem 1

In [6], Christ, Nagel, Stein, and Wainger consider an operator defined as
in (1.1) when k = 2 and the πj are codimension m submersions with
0 < m < n. It is rather simple to adapt the arguments in [6] to our cir-
cumstances to produce a short, relatively self-contained proof of Theorem 1.
We record this proof here both for the convenience of the reader and to
provide some useful geometric intuition for later on.
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Proof. Let V be the vector space spanned by {Xw(0) : w ∈ W}, and let r
be its dimension. Since each Xj is nonzero, we have that r ≥ 1, and for the
proof of the proposition, we may assume that r < n. Let w1, . . . , wr ∈ W be
chosen so {Xw1(0), . . . , Xwr(0)} is linearly independent, and let Yj = Xwj

.

For t ∈ R
r, define

t · Y :=

r∑
j=1

tjYj, Γ(t) := exp(t · Y )(0).

Then Γ has rank r at 0, so it is an embedding of a small neighborhood of 0
in R

r onto an r-dimensional submanifold 0 ∈ M ⊂ R
n. Heuristically, the Xj

lie along M , so considering a δ-neighborhood Mδ of M , for each 1 ≤ j ≤ k,
πj(Mδ) is of size δn−r, which is proportional to the size of Mδ. Letting δ tend
to 0, we obtain the requirement

∑
p−1

j ≤ 1. Unfortunately, this heuristic is
misleading, since we only have information about the Lie brackets of the Xj

at 0, and we will have to use the techniques of [6] to obtain more quantitative
information; in the terminology of [6], the submanifold M will be invariant
under the Xj to infinite order at 0.

We will use a quantitative version of the Baker–Campbell–Hausdorff for-
mula, which is stated in [6] (for instance). Let V1, . . . , Vm and W1, . . . , Wm be
smooth vector fields on R

n. Then for v, w ∈ R
m, if we define v ·V :=

∑
vjVj

and w · W analogously, then

exp(v · V ) exp(w · W )(0) = exp
( N∑

k=1

ck(v · V, w · W )
)

+ O(|v|N+1+ |w|N+1).

Here each ck is a homogeneous Lie polynomial of degree k.

For s′ ∈ R
r and s′′ ∈ R sufficiently close to 0 and 1 ≤ j ≤ k, we

define Gj(s) = Gj(s
′, s′′) = exp(s′′Xj)Γ(s′). Since {Xw(0) : w ∈ W} ⊂

span{Y1, . . .Yr}, we may write

N∑
k=1

ck(s
′ · Y, s′′Xj) = P j

1 (s) · Y +

N∑
|β|=1

sβW j
β,1,

where P j
1 is a vector-valued polynomial with P j

1 (0) = 0 and each W j
β,1 is in

the span of {Xw : w ∈ W} and satisfies W j
β,1(0) = 0.

We assume inductively that

Gj(s) = exp(P j
m(s) · Y +

N∑
|β|=m

sβW j
β,m)(0) + O(|s|N+1),
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where P j
m is a vector-valued polynomial, P j

m(0) = 0, each W j
β,m is in the

span of {Xw : w ∈ W}, and W j
β,m(0) = 0. The implicit constants in the O(·)

notation are allowed to depend on N (via the CN norms of the Xj). Since
W j

β,m(0) = 0 for each β, m,

Gj(s) = exp
(
P j

m(s) ·Y +

N∑
|β|=m

sβW j
β,m

)
◦exp

(
−

N∑
|β|=m

sβW j
β,m

)
(0)+O(|s|N+1).

We apply the Baker–Campbell–Hausdorff formula and our inductive assump-
tion P j

m(0) = 0 to see that the right side equals the exponentiation of

P j
m(s) · Y +

N∑
k=2

ck

(
P j

m(s) · Y +

N∑
|β|=m

sβW j
β,m,−

N∑
|β|=m

sβW j
β,m

)
=

= P j
m(s) · Y +

N∑
|β|=m+1

sβW̃ j
β,m+1 + O(|s|N+1).

Here the W̃ j
β,m+1 are in the span of {Xw : w ∈ W} but do not necessarily

vanish at zero. We can add the “error” in the W̃ j
β,m+1 (the part that does

not vanish at 0) to P j
m(s) · Y and write

Gj(s) = exp(P j
m+1(s) · Y +

N∑
|β|=m+1

sβW j
β,m+1)(0) + O(|s|N+1),

where P j
m+1 is a vector-valued polynomial satisfying P j

m+1(0) = 0 and the

W j
β,m+1 are in the span of {Xw : w ∈ W} and satisfy W j

β,m+1(0) = 0.
Proceeding by induction,

Gj(s) = exp(P j
N+1(s) · Y ) + O(|s|N+1),

where P j
N+1(0)=0, and we may assume that P j

N+1 is of degree less than N+1.
Consider coordinates x = (x′, x′′) ∈ R

r × R
n−r on a neighborhood of 0

in R
n so that M = {x′′ = 0}. Define γj(x, t) := etXj (x). We will also write

γj = (γ′
j , γ

′′
j ) in the above coordinates.

Let N be a fixed positive integer. Since Γ is a local parametrization of
M , and since x′′ gives the distance from the point x to M , we have shown
that for each x′, t sufficiently close to 0 and each 1 ≤ j ≤ k,

γ′′
j (x′, 0′′, t) = O(|x′|N+1 + |t|N+1).

More generally, since γj(x, 0) = x,

γj(x, t) =
(
x′ + O(|t|), x′′ + O(|t||x′′|) + ON(|t|(|x′|N + |t|N))

)
.
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Let δ > 0. Let Mδ,N = {(x′, x′′) : |x′| < δ, |x′′| < CNδN}. Then if
x ∈ Mδ,N , and |t| < cδ, γj(x, t) ∈ M2δ,N . Therefore δ|πj(Mδ,N)| � |M2δ,N |,
i.e., |πj(Mδ,N)| � CNδr−1δN(n−r). On the other hand, supposing

∑
p−1

j > 1,

we can find N so that r + N(n − r) < (
∑

p−1
j )((r − 1) + N(n − r)), and

letting δ → 0 (with this N fixed), |Mδ,N | �
∏ |πj(Mδ,N)|1/pj cannot hold

with a constant independent of δ. �

6. Multi-parameter Carnot–Carathéodory Balls I

We will spend much of Sections 6 and 8 reviewing properties of multi-
parameter Carnot–Carathéodory balls which can be readily deduced from
the work of Tao–Wright and Nagel–Stein–Wainger, though some new details
will be needed. An independent and far more in-depth discussion of these
objects may be found in [21].

If δ1, . . . , δk are sufficiently small positive numbers, and x ∈ R
n is suffi-

ciently close to 0, then we define the multi-parameter Carnot–Carathéodory
ball B(x; δ1, . . . , δk) to be the closure of the set of all points

etN δjN
XjN etN−1δjN−1

XjN−1 · · · et1δj1
Xj1 (x),

where N ≥ 0 is an integer, 1 ≤ ji ≤ k, for each 1 ≤ i ≤ N , and
∑N

i=1 |ti| ≤ 1.

Essentially, this is the set of points which can be reached by starting
at x, then flowing first along one vector field δj1Xj1 , then along another, and
so on, for total time less than or equal to 1.

We now give a heuristic proof of Theorems 2 and 3. We caution the
reader that the equations in the following two paragraphs are not quite true
or are false without additional assumptions, and require some proof at the
very least.

For Theorem 2, we consider Ω = B(0; δ1, . . . , δk), with 0 < δj 	 1. Since

etδjXjΩ ⊂ B(0; 2δ1, . . . , 2δk)

whenever |t| ≤ 1 and since

|B(x; 2δ1, . . . , 2δk)| ∼ |B(x; δ1, . . . δk)|,

we have that |Ω|
|πj(Ω)| � δj . Thus if (2.4) holds, we must have that δb � |Ω|. As

|B(x; δ1, . . . , δk)| ∼ sup
I

δdeg(I)|λI(x)|

(roughly), we must have b ∈ P .
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For Theorem 3, let Ω ⊂ supp(a). Then for 1 ≤ j ≤ k, αj represents
the average of the 1-dimensional Hausdorff measure of the set π−1

j {y} for
y ∈ πj(Ω). Hence we expect that for a ‘good’ point x ∈ Ω and for 1 ≤ j ≤ k,

∣∣{t ∈ R : etXj (x) ∈ Ω}∣∣ ∼ αj.

Iterating, Ω contains a set which ‘looks like’ the Carnot–Carathéodory ball
B(x; α1, . . . , αk), so whenever λI(x) �= 0,

αdeg I ∼ αdeg I |λI(x)| � |B(x; α1, . . . , αk)| ≤ |Ω|.(6.1)

Thus, from the definition of P , we obtain (2.4), and by real interpolation,
Theorem 3.

There are certain technicalities involved in the proof of Theorems 2 and 3,
for instance a correct analogue of (6.1), for which we will not be able to use
the Carnot–Carathéodory balls themselves. The remainder of this section
will be devoted to translating Tao and Wright’s discussion of certain sets and
mappings associated to the Carnot–Carathéodory balls from the bilinear to
the multilinear setting. We will return to the Carnot–Carathéodory balls
themselves in Section 8.

We begin by reviewing some notation from [22]. For the remainder of this
section ε > 0 will be a small parameter, and K will be a large parameter.
We will be more specific about these quantities later on. For the purposes
of this section, all implicit constants depend on ε and on the πj .

We let δ1, . . . , δk be positive numbers which satisfy the smallness and the
nondegeneracy conditions

δj ≤ cε,K, 1 ≤ j ≤ k(6.2)

δi � δε
j , 1 ≤ i, j ≤ k.(6.3)

We remark that the nondegeneracy condition is necessary for the balls
B(x; δ1, . . . , δk) to satisfy the doubling property of [13] and [18, Ch. 1], for
instance. Indeed, there is an example in [4] of a pair of vector fields X1

and X2 which satisfy the Hörmander condition but have the property that
there is no universal constant C such that

|B(0; 2δ1, 2δ2)| ≤ C|B(0; δ1, δ2)|
for all sufficiently small δ1, δ2.

By Theorem 1, we may assume that there exists I0 ∈ W n with λI0(0) �= 0.
Shrinking V , we may in fact assume that |λI0| ∼ 1 throughout V . We let
d :=

∑k
j=1(deg I0)j, and define I to be the finite set

I :=
{
I ∈ W n : (deg I)j ≤ d

ε
, 1 ≤ j ≤ k

}
.(6.4)
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If I /∈ I and δ = (δ1, . . . , δk) is as above, then (Kδ)deg I � (Kδ)deg I0 . We
define Λ = ΛKδ by

Λ(x) = ((Kδ)deg IλI(x))I∈I.(6.5)

Since |Λ(x)| � (Kδ)deg I0, we have that

(Kδ)deg I |λI(x)| � CI |Λ(x)|,(6.6)

for all I ∈ W n and x ∈ V .
With x0 ∈ V fixed, we choose Ix0 = (w1, . . . , wn) ∈ I so that

(Kδ)deg Ix0 |λIx0
(x0)| ∼ |Λ(x0)|.(6.7)

Our goal is to gain a basic understanding of the mapping Φ = Φx0,Kδ de-
fined by

Φ(t1, . . . , tn) = exp(

n∑
j=1

K−1(Kδ)deg wj tjXwj
)(x0)(6.8)

for t near 0 in R
n. By smallness of the Kδj , the domain of definition of Φ

may be taken to be uniform in x0 ∈ V and δ.
Since

| detDΦ(0)| = K−n(Kδ)deg I |λIx0
(x0)| ∼ |Λ(x0)| �= 0,(6.9)

the mapping Φ is a diffeomorphism on a neighborhood U of 0. For t ∈ U
and w ∈ W , we define Yw to be the pullback by Φ of K−1(Kδ)deg wXw:

Yw(t) = (DΦ(t))−1[K−1(Kδ)deg wXw(Φ(t))].(6.10)

Although we are suppressing this in the notation, we keep in mind through-
out that the map Φ, the set U , and the vector fields Yw depend on the base
point x0 ∈ V as well as δ.

The following lemmas are proved in [22]. Though the authors only claim
the results in the case k = 2, their proofs extend to the multilinear case with
almost no alteration. For what follows, all bounds are uniform in K > Cε,
0 < δ1, . . . , δk < cK,ε satisfying (6.3), and the base point x0 ∈ V , but may
depend on ε and the Xj .

Lemma 1. If Br(0) ⊂ U , for some 0 < r � 1, then

Ywi
(t) = ∂i + O( |t|

K
)(6.11)

and in particular,

| det(Yw1, . . . , Ywn)(t)| ∼ 1(6.12)

for all t ∈ Br(0).



Lp
improving multilinear Radon-like transforms 1071

Lemma 2. If Br(0) ⊂ U for some 0 < r � 1, then

|Λ ◦ Φ(t)| ∼ (Kδ)deg Ix0 |λIx0
◦ Φ(t)|(6.13)

on Br(0).

Lemma 3. There exists C ∼ 1 so that B := BC(0) ⊂ U .

Lemma 4. If w ∈ W , then

‖Yw‖CM (B) ≤ Cw,M ,(6.14)

provided K is sufficiently large depending on w, M , and ε.

Lemma 5. If E is a measurable subset of B, then

|Φ(E)| ∼ K−n|Λ(x0)||E|.(6.15)

We will not repeat the proofs of these lemmas, for which we direct the
reader to Proposition 4.1 of [22]. To offer some explanation for the param-
eter K, however, we will sketch the argument for the first three lemmas.

It is easy to compute Ywj
(0) = ∂j , and moreover, at each point t ∈ R

n,
we have

r∂r :=
n∑

j=1

tj∂j =
n∑

j=1

tjYwj
.

With these facts, and after some algebra and differential identities, we can
compute radial derivatives using Lie brackets with the Ywj

. The factor K−1

in the definitions above helps minimize the contribution coming from higher
order Lie brackets once we pull back (which has the effect of replacing δ
with 1), since

[Yw, Yw′] = K−1(DΦ(t))−1(K−1(Kδ)deg w+deg w′
[Xw, Xw′](Φ(t)))(6.16)

for any w, w′ ∈ W . Together with Gronwall’s inequality, the bounds on the
radial derivatives imply the first two lemmas. The third lemma follows from
the first two and continuity, since

| det DΦ(t)| =
K−n(Kδ)deg Ix0 |λIx0

(Φ(t))|
| det(Yw1, . . . , Ywn)(t)| .

We note that (6.16) would hold if we replaced each instance of Kδ with δ in
the above discussion, but if we did that, unless each of the wi was actually
in {1, . . . , k}, Φ(B1(0)) would be much smaller than B(x0; δ1, . . . , δk) for
large K.
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7. Proof of Theorem 2

Here we adapt Tao and Wright’s proof that the bound (2.2) can only hold
if b(p) (see (2.5)) lies in the Newton polytope P .

We first record some geometric properties of P . By definition, P is
convex and

b ∈ P and b′ ≥ b implies b′ ∈ P .(7.1)

Moreover, by Theorem 1, we may assume that P �= ∅. Since the vertices of P
are k-tuples of non-negative integers, by (7.1) P has only finitely many ver-
tices. It is also clear from the definition that b ∈P implies that

∑k
j=1 bj ≥n.

Now suppose that p satisfies (2.1) and that b(p) does not lie in P . Then
there exists a ∈ R

k and d ∈ R so that

b(p) ∈ {
b ∈ R

k : a · b < d
}

=: H−, P ⊂ {
b ∈ R

k : a · b > d
}

=: H+.

From (7.1), each entry of a is non-negative, and since b(p)∈ [0,∞)k, d > 0.
Since P has finitely many vertices, and since each vertex lying in H+ im-
plies that P lies in H+, we may assume that each entry of a is positive by
continuity. Finally, by scaling, we may assume that d = 1.

Let δ0 > 0. Then since a ∈ (0,∞)k,

δ := (δa1
0 , . . . , δak

0 )(7.2)

satisfies (6.3) for some ε > 0, independent of δ0. Shrinking ε if needed, we
may assume that the set I defined in (6.4) contains all of the vertices of P
and that

a · b(p) < 1 − ε a · b > 1 + ε(7.3)

for each b ∈ P .
We will use the results of Section 6 to show that S is not of restricted

weak-type (p1, . . . , pk).
With x0 =0, choose K large enough that (6.13) and (6.15) hold and (6.14)

holds with w = 1, . . . , k and M = 0 on B = BC(0), whenever δ satisfies (6.2)
and (6.3).

Let 0 < cε < C be sufficiently small for later purposes, and let

Ω = Φ(Bcε(0)).

If x = Φ(t) ∈ Ω, s 	 1, and 1 ≤ j ≤ k, then

esδjXj (x) = Φ(esYj(t)) ⊂ Φ(BC(0))
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by (6.14) and the smallness of cε. Hence

|Ω|
|πj(Ω)| � δj .

Thus (2.4) implies that
δb(p) � |Ω|.

But by (6.15),
|Ω| � K−n|Λ(0)| � CKδb0

for some b0 ∈ P . Hence (as K depends on ε), by (7.3) we have

δ1−ε
0 < δ

b(p)·a
0 � CKδb0·a

0 � CKδ1+ε
0 .

Letting δ0 → 0, we obtain a contradiction.

8. Multi-parameter Carnot–Carathéodory Balls II

In this section, we return to the multi-parameter Carnot–Carathéodory balls
B(x; δ1, . . . , δk), defined in Section 6. We will obtain estimates for the vol-
umes of these balls, and will use these estimates to give alternate statements
to Theorems 2 and 3. We will also prove that, under the assumptions (6.2)
and (6.3), the balls satisfy the doubling property. As mentioned earlier,
most of the needed results can be obtained by translating existing results
from the bilinear to the multilinear setting.

As before, we let V be a small neighborhood of 0, and let X1, . . . , Xk be
smooth vector fields defined on R

n. We assume that there exists I0 ∈ W n so
that |λI0(x)| ∼ 1 for all x ∈ V . All implicit constants in this section depend
on ε > 0 and the vector fields X1, . . . , Xk.

If δ = (δ1, . . . , δk) is a k-tuple of positive numbers satisfying (6.3), we
let Λδ be defined as in (6.5), with K = 1.

Proposition 1. There exists a constant Cε > 1 such that

|B(x; δ)| � Cε|Λδ(x)|,

whenever x ∈ V and δ = (δ1, . . . , δk) is a k-tuple of positive numbers satis-
fying (6.3) and δi < C−1

ε .

Proof. Let K = Kε be sufficiently large that the conclusions of Lemmas 1–5
hold (with M = 0 in Lemma 4), uniformly in x ∈ V and δ satisfying (6.2)
and (6.3). (Note that cK,ε is indirectly a function of ε alone.) Henceforth x, δ
will be fixed, with Φ and the Yw defined accordingly.
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Define B̃(0; cε, . . . , cε) to be the closure of the set of all points

etN YjN · · · et1Yj1 (0),

where N is a non-negative integer, 1≤ji ≤k for 1≤ i ≤N and
∑N

i=1 |ti| ≤ cε.

Then, if cε is sufficiently small depending on the C0 norms of Y1, . . . , Yk,
we have that B̃(0; cε, . . . , cε) is contained in B (the domain of Φ). Since Yi

is the pullback by Φ of δiXi,

B̃(0; cε, . . . , cε) = Φ−1(B(x; cεδ1, . . . , cεδk)).

Thus, by (6.15),

|B(x; cεδ1, . . . , cεδk)| � K−n|ΛKδ(x)| · |B| ∼ Cε|Λδ(x)|. �
Proposition 2. There exists Cε > 1 such that whenever x ∈ V and δ
obeys (6.3) and δi ≤ C−1

ε , we have

|B(x; δ)| ≥ C−1
ε |Λδ(x)|.

Furthermore, there exists a sequence j = (j1, . . . , jn) ∈ {1, . . . , k}n so that

|Bj(x; δ)| ≥ C−1
ε |Λδ(x)|,(8.1)

where Bj(x; δ) is defined to be the closure of the set

{etnδjnXjn · · · et1δj1
Xj1 (x) : |ti| ≤ 1, 1 ≤ i ≤ n}.

The proof of this proposition, which uses the Arzela–Ascoli theorem and
the Nagel–Stein–Wainger theory, is based on the proof of a related lemma
in [4]. The proof of the analogous fact in [22] seems more specialized to the
bilinear case, as it uses the fact that there are only two possibilities for j,
namely (1, 2, 1, . . .) and (2, 1, 2, . . .).

Proof. If the statements in the proposition were false, there would exist se-
quences {x(�)} of points in V and {δ(�)} of k-tuples satisfying the hypotheses
of the proposition such that

lim
�→∞

δ(�) = (0, . . . , 0)

and if
Φ(�) := Φx(�),Kδ(�),

then

lim
�→∞

|[Φ(�)]−1(Bj(x; δ(�)))| = 0(8.2)

for each j ∈ {1, . . . , k}n. (Here K = Kε is sufficiently large to allow the
applications of Lemmas 1–5 below.)
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Letting Y
(�)
i be the pullback of δ

(�)
i Xi by Φ(�), by (6.14) and the Arzela–

Ascoli theorem, passing to subsequences if necessary, there exists a vector
field Yi so that Y

(�)
i → Yi in CM(B), with B as in Lemma 3 and for M

arbitrarily large. We take M � ε−1 so that each sequence Y
(�)
w with w ∈ I

(defined in (6.4)) converges in CN(B), for N large. By Lemma 1, for each �

there exists (w
(�)
1 , . . . , w

(�)
n ) ∈ I so that

| det(Y
(�)

w
(�)
1

, . . . , Y
(�)

w
(�)
n

)| ∼ 1 in B.

By finiteness of I, after passing to a subsequence we may assume that there
is a single such n-tuple, (w1, . . . , wn). We then have that

| det(Yw1, . . . , Ywn)| ∼ 1 in B.

Now we have a contradiction. On the one hand, by the work of Nagel,
Stein, and Wainger in [13], there exists a sequence j and a constant 0 < cε < 1
so that

|B̃j(0, cε, . . . , cε)| ∼ 1,(8.3)

where B̃j(0, cε, . . . , cε) is the closure of the set
{
etncεYjn · · · et1cεYj1 (0) : |ti| ≤ 1, 1 ≤ i ≤ n

}
.

Thus, if we let
Φj(t) := etnYjn · · · et1Yj1 (0),

then for some t0 with
∑ |t0i | < cε, det DΦj(t0) �= 0.

On the other hand, because the vector fields Y
(�)
i converge to Yi in CM(B)

for large M , the maps Φ
(�)
j (defined analogously to the map above) converge

to Φj in (say) C2(B). Thus | detDΦ
(�)
j (t0)| > c > 0 (eventually), and so

the Φ
(�)
j are injective on a uniform neighborhood of t0. This gives a lower

bound on ∣∣B̃(�)
j (0; cε)

∣∣ := Φj

({t ∈ R
n : |ti| ≤ cε, 1 ≤ i ≤ n}).

But the above set is just Φ−1
Kδ(�)(Bj(x; δ(�))), and we have the promised con-

tradiction. �

The two propositions imply the following doubling property.

Corollary. Whenever δ = (δ1, . . . , δk) satisfies (6.2) and (6.3), we have that

|B(x; 2δ1, . . . , 2δk)| ≤ Cε|B(x; δ1, . . . , δk)|
uniformly in x ∈ V .
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We also obtain the following alternative characterization of the Newton
polytope P .

Proposition 3. The Newton polytope P associated to the vector fields
X1, . . . , Xk is equal to the set of all points b = (b1, . . . , bk) so that

|B(0; δ1, . . . , δk)| � δb,(8.4)

where the implicit constant depends on ε, but is uniform in δ1, . . . , δk > 0
satisfying (6.2) and (6.3).

Proof. If b /∈ P , then by the propositions of this section and the proof of
Theorem 2, for some ε > 0 no uniform bound

|B(0; δ1, . . . , δk)| �
k∏

j=1

δ
bj

j

can hold. If b ∈ P and δ1, . . . , δk are any positive numbers, then

δb ≤
∑
I∈I0

δI ∼ |Λδ(0)|,

where I0 is the set of vertices of P . By the propositions of this section, we
thus have (8.4). �

By the doubling property, we have

|B(x; δ1, . . . , δi, . . . , δk)| ∼ |B(x; δ1, . . . , 2δi, . . . , δk)|.
Since etδiXiB(x; δ) ⊂ B(x; δ1, . . . , 2δi, . . . , δk), while πi ◦ etXj ≡ πi, by the
coarea formula we must have

|B(x; δ1, . . . , δk)|
|πi(B(x; δ1, . . . , δk))| �ε δi.

From this and the propositions, we are able to obtain geometric versions of
Theorems 2 and 3.

Theorem 2 is thus equivalent to the following tautology: If S is of re-
stricted weak-type (p1, . . . , pk), then (2.4) (with the implicit constant depen-
ding on ε) holds whenever δ satisfies (6.2) and (6.3) and Ω=B(0; δ1, ..., δk).

We now give an alternative, more geometric, statement of Theorem 3,
analogous to the formulation in [4].

Theorem 4. Assume that p = (p1, . . . , pk) satisfies (2.1). Suppose that for
each ε > 0 there exists cε > 1 so that whenever δ = (δ1, . . . , δk) is a k-tuple
of sufficiently small (depending on ε) positive numbers satisfying (6.3), we
have

|B(0; δ)| ≤ cε

k∏
j=1

|πj(B(0; δ))|1/pj .

Then whenever p̃ > p (i.e. p̃i > pi, 1 ≤ i ≤ k), we have (1.2).
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9. Proof of Theorem 3

In this section we will prove that if V is a sufficiently small neighborhood of 0
and a ∈ C∞

c (V ), then S is of restricted weak-type (p1, . . . , pk) whenever p
satisfies (2.1) and b(p) lies in the interior of the Newton polytope P . One
may use the arguments in this section together with a partition of unity to
see the following: If V is bounded and for every vertex b of P and x ∈ V
there exists I ∈ W n with deg(I) ≤ b and λI(x) �= 0, then V is sufficiently
small in the above sense. By real interpolation, this proves Theorem 3.

We note that the arguments of this section are largely based on those
in [4] and [22], but some new details, such as in the refinement, are needed
in the multilinear setting.

We let I0 ⊂ W n be the (finite) set of all n-tuples of words I such that
λI(0) �= 0 and such that deg(I) is a vertex of P . By passing to a smaller
subset of V if needed, we may assume that if I ∈ I0, then λI ∼ 1 on V .

Let Ω ⊂ V be a Borel set having positive Lebesgue measure, and let
α1, . . . , αk be defined as in (2.3). By symmetry, we may assume that

α1 ≥ · · · ≥ αk.

Since αj � diam(V ), by passing to a smaller subset of V if needed, we may
assume that each αj is as small as we like.

In order to prove that

|Ω| � αb1
1 · · ·αbk

k(2.4)

for b lying in the interior of P , it suffices to show that if b ∈ P , there exists
a constant C > 0 so that for every ε > 0 we have

|Ω| � αCε
k αb,(9.1)

where in the preceding statement and for the remainder of this section the
implicit constant is allowed to depend on ε. To see that this suffices, note
that if b ∈ int P, then there exists b′ ∈ int P such that b′ < b. Then
b > b′ + (0, . . . , 0, Cε) if ε is sufficiently small, so (9.1) with b = b′ im-
plies (2.4), by smallness of the αj .

We will assume throughout that ε is small enough that I0 ⊂ I, where I
is the set defined in (6.4).

9.1. Refining Ω

To apply what we learned in previous sections, we must put ourselves in the
situation of considering a “large” subset of Ω which “looks like” a Carnot
Carathéodory ball with weakly comparable radii.
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In this subsection, we will make an initial refinement of Ω which will give
us the weakly-comparable “radii”.

By boundedness of V , we may decompose Ω as the disjoint union of
� α−Cε

k Borel sets of diameter � αε
k. Henceforth, we will work with the

largest of these, denoted Ω̃, which has measure

|Ω̃| � αCε
k |Ω|.

Next, we refine Ω̃. Let J ∈ {1, . . . , k}nkn
be a sequence which is formed

by concatenating all of the elements of {1, . . . , k}n in some order. Our next
goal is to construct a sequence of refinements

Ω0 ⊂ Ω1 ⊂ · · · ⊂ Ωnkn ⊂ Ω̃

of Ω̃ so that Ω0 �= ∅ and so that for 1 ≤ i ≤ nkn and x ∈ Ωi−1, the set

{t : |t| 	 1 and etXJi (x) ∈ Ωi}

has a particular form.

The following definition is due to Tao and Wright.

Definition 1. If 0 < ε, w 	 1, then a central set of width w is a subset S
of [−w, w] having positive measure and such that for any interval I

|I ∩ S| �
(

|I|
w

)ε

|S|.

There is an analogous definition due to Christ in [4].

Lemma 6. Let Ω′ ⊂ Ω̃ with |Ω′| � αCε
k |Ω̃|. Then if 1 ≤ j ≤ k, there exists

a subset 〈Ω′〉j ⊂ Ω′ so that |〈Ω′〉j| � αC′ε
k |Ω̃| and so that for each x ∈ 〈Ω′〉j,

{
t : |t| 	 1 and etXj (x) ∈ Ω′}

is a central set of width w,

αC′ε
k αj � w � αε

k

and measure � αC′ε
k αj. Here C ′ is a constant which is larger than C, but

independent of ε.

The proof is the same as that of Lemma 8.2 in [22] and will be omitted.
We now define the refinements as follows:

Ωnkn := 〈Ω̃〉Jnkn ,
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given Ωi, 2 ≤ i ≤ nkn,
Ωi−1 := 〈Ωi〉Ji−1

,

and Ω0 := Ω1. Then |Ω0| � αCε
k |Ω| > 0, so Ω0 �= ∅. Moreover, since Ωi

satisfies the conclusion of Lemma 6 with j = Ji, and since Ωi−1 ⊂ Ωi,
whenever x ∈ Ωi−1,

{
t : |t| 	 1 and etXJi (x) ∈ Ωi

}

is a central set of width wi, C−1
ε αCε

k αJi
≤ wi � αε

k and measure ≥ C−1
ε αCε

k αJi
,

where Cε is a constant depending on ε.

9.2. Filling out Ω̃

In this subsection, we show that Ω̃ contains a set which looks like a Carnot–
Carathéodory ball with radii coming from the measures of the central sets
in the previous subsection. We also sketch a heuristic argument for the
conclusion of the proof.

Fix a base point x0 ∈ Ω0 and set

δj := C−1
ε αCε

k αj , 1 ≤ j ≤ k.

Then the δj satisfy (6.3), though possibly with a smaller value of ε. Hence
we may choose an n-tuple j ∈ {1, . . . , k}n so that

|Bj(x0; δ1, . . . , δk)| ∼ |B(x0; δ1, . . . , δk)|.
For 1 ≤ i ≤ n, define on a ball Bi centered at 0 in R

i of radius ∼ 1

Φi
j(t1, . . . , ti) := etiXji · · · et1Xj1 (x0).

Let � be such that (J�n+1, . . . , J�n+n) = (j1, . . . , jn). Define

T1 =
{
t1 ∈ R : |t1| 	 1 and Φ1

j (t1) ∈ Ω�n+1

}
.

Then since x0 ∈ Ω�n+1, T1 is a central set of width w1 (after reindexing),
with

αCε
k αj1 � w1 � αε

k

and measure � αCε
k αj1 . Assuming Ti−1 has been defined, and 2 ≤ i ≤ n, we

define
τi(t) :=

{
ti ∈ R : |ti| 	 1 and Φi

j(t, ti) ∈ Ω�n+i

}
whenever t ∈ Ti−1, and let

Ti :=
{
(t, ti) ∈ R

i : t ∈ Ti−1 and ti ∈ τi(t)
}
.
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Then each of the τi(t) is a central set of width wi,

αCε
k αji

� wi � αε
k

and measure � αCε
k αji

.

Since Φn
j (Tn) ⊂ Ω̃, it suffices to prove a lower bound for |Φn

j (Tn)|. In
fact, since

|Bj(x0; δ1, . . . , δk)| ∼ |B(x0; δ1, . . . , δk)| �
∑
I∈I0

δdeg(I) � αCε
k αb,

it suffices to show that

|Φn
j (Tn)| � αCε

k |Bj(x0; δ1, . . . , δk)|.
The rest of this section will be devoted to making the following heuristic

argument rigorous:
Let

T̃n =
{
(t1, . . . , tn) ∈ R

n : |ti| ≤ δji

}
.

Then

|Bj(x0; δ1, . . . , δk)| = |Φn
j (T̃n)| ∼

∫
T̃n

| det ∂tΦ
n
j (t)|dt

� |T̃n|
|Tn|

∫
Tn

| det ∂tΦ
n
j (t)|dt � α−Cε

k |Φn
j (Tn)|.

In the lines above, we certainly ignored some details, but despite this, the
properties of central sets, together with the smoothness of the Xj make this
heuristic surprisingly close to the truth.

9.3. Polynomials on Tn

This subsection closely follows the work of Christ in [4].

Lemma 7. If S is a central set of width w � 1, and P is a polynomial of
degree D on R, then

|P | � CD‖P‖L∞([−w,w])

on a subset S ′ ⊂ S of measure � |S|.
Sketch of proof. This is proved in [4]. Roughly, the values of x ∈ [−w, w]
such that |P (x)| 	 ‖P‖L∞([−w,w]) lie near the ≤ D complex zeros of P a
distance � w from [−w, w]. Thus off the union of ≤ D intervals Ii of length
	 D−1w, |P | � CD‖P‖L∞([−w,w]). The intersection of S with this union is
small by centrality, so we may take S ′ = S\⋃

i Ii. �
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In particular, if we take S = [−w, w], we see that

‖P‖L∞([−w,w]) ∼ w−1

∫
[−w,w]

|P |.

Lemma 8. If Ti ⊂ R
i, 1 ≤ i ≤ n, if Ti+1 ⊂ Ti × [−1, 1], 1 ≤ i ≤ n − 1,

and if the sets

τ1 := T1 τi(t) := {s ∈ [−C, C] : (t, s) ∈ Ti}

are central sets of width w1 and wi for each t ∈ Ti−1, respectively, and if P
is a polynomial of degree D on R

n, then

|P | � CD‖P‖L∞(
∏n

i=1[−wi,wi])

on a subset T ′
n ⊂ Tn of measure � |Tn|.

Proof. We briefly recount the proof of this from [4]. Its proof from the
previous lemma is as follows. Considering P 2 if necessary, we may assume
that P ≥ 0.

We define polynomials Pi on R
i, 1 ≤ i ≤ n of degree ≤ D as follows:

Let Pn := P , and for 1 ≤ i ≤ n − 1 and t ∈ R
i, define

Pi(t) = w−1
i+1

∫
[−wi+1,wi+1]

Pi+1(t, s)ds.

For each i, 2 ≤ i ≤ n and for each t ∈ Ti−1,

τ ′
i(t) :=

{
s ∈ τi(t) : Pi(t, s) � CD‖Pi(t, ·)‖L∞([−wi,wi])

}

has measure � |τi(t)| (because s �→ Pi(t, s) is a polynomial of degree ≤ D).
Let

T ′
1 :=

{
s ∈ T1 : |P1(s)| � CD‖P1‖L∞([−w1,w1])

}
and define the sets

T ′
i :=

{
(t, s) : t ∈ T ′

i−1 and s ∈ τ ′
i(t)

}
.

Then for each i, |T ′
i | ∼ |Ti|, and if t ∈ T ′

n,

P (t) ∼ CD‖P‖L∞(
∏n

i=1[−wi,wi]).

�
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9.4. Back to Φn
j

In this subsection, we use the polynomial lemmas to make the heuristic
arguments from an earlier subsection rigorous and thereby complete the
proof of Theorem 3. The main step will be to prove that the mapping Φn

j is
O(N)-to-1 off of a negligible set. This, when combined with the lemmas on
generic sets, will give us the lower bound on the volume of Φn

j (Tn) that we
need.

Because Φn
j is smooth, from the definition of Bj(x0; δ1, . . . , δk), we have

the upper bound

|Bj(x0; δ1, . . . , δk)| = |Φn
j (T̃n)| ≤

∫
T̃n

| det(∂tΦ
n
j (t))| dt(9.2)

≤ δdeg(j)‖ det ∂tΦ
n
j ‖L∞(T̃n) =: δdeg(j)Jj(δ).

In addition, we have already seen that

|Bj(x0; δ1, . . . , δk)| ∼ |B(x0; δ1, . . . , δk)| ∼ |Λδ(x0)|.(9.3)

Combining (9.2) and (9.3), we thus have the inequality

1
δdeg(j) |Λδ(x0)| � Jj(δ).

Because Φn
j is smooth, Jj(δ) is bounded above, and because |Λδ(x0)| �

δdeg(I0), Jj(δ) is bounded below. In particular, we have

αC
k � Jj(δ) � 1(9.4)

(by the definition of the δj and monotonicity of the αj).

We now use this information to establish a lower bound for |Φn
j (Tn)|.

This will complete the proof of the theorem. Let Qw :=
∏n

j=1[−wj , wj] be
the rectangle whose side-lengths are given by the widths wj (so Tn ⊂ Qw).
Then smoothness of Φn

j , the lower bound (9.4), and the fact that wj � αε
k

imply that we can control high order remainder terms in the Taylor series
of Φn

j on Qw. In fact, taking N � ε−1 and the αj sufficiently small, we have

‖Ψj − Φn
j ‖C2(Qw) ≤ c0α

C
k (Jj(δ))

2,(9.5)

where Ψj is the Taylor polynomial of Φn
j of degree N centered at 0, and

we may choose c0 as small and C as large as we like. (N will also depend
on C, c0.) Here we may choose the αj as small as needed (how small depends
on b, ε, N , and ‖Xj‖CMN (V ), j = 1, . . . , k) by making the initial partition of
unity sufficiently fine.
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We apply a linear transformation Aw, mapping Qw onto the unit cube Q.
The images of the τj, denoted τ̃j , are then central sets of width 1, and,
denoting by Ψ̃ and Φ̃ the compositions Ψj ◦A−1

w and Φn
j ◦A−1

w (respectively),

we have that Ψ̃ and Φ̃ are smooth, that Ψ̃ is the degree N Taylor polynomial
of Φ̃, and that the bound (9.5) is transformed to

‖Ψ̃ − Φ̃‖C2(Q) ≤ c0(J̃ )2,(9.6)

where J̃ = ‖ det ∂tΦ̃‖L∞(Q).
We are now in a position to apply Lemma 7.1 of [4], the upshot of which

we state below.

Lemma 9. The bound (9.6) and the centrality of the intervals τ̃j imply that

|Φ̃(Aw(Tn))| � |AwTn|J̃ � |AwTn|
|AwT̃n|

∫
AwT̃n

| det ∂tΦ̃(t)| dt.(9.7)

Undoing the linear transformation, this implies that

|Φn
j (Tn)| � |Tn|

|T̃n|

∫
T̃n

| det ∂tΦ
n
j (t)| dt � αCε

k |Bj(x; δ1, . . . , δn)|,

and the theorem is proved.
We briefly sketch the proof of Lemma 9.

Sketch of proof. First, we may use the bound (9.6) and centrality of the
Aw(τj) to refine Aw(Tn) to the region where

| det ∂tΨ̃(t)| ∼ | det ∂tΦ̃(t)| � J̃ ,

without significantly reducing the volume. Denote the refined region by ω.
The idea is to show that Φ̃ is O(N)-to-1 on ω, which implies that

|Φ̃(Aw(Tn))| ≥ |Φ̃(ω)| ≥ 1
CN

∫
ω

| det ∂tΦ̃(t)| dt;

(9.7) follows.
By quantitative forms of the inverse function theorem, Φ̃ is injective on

balls of diameter less than a small constant times J̃ . We cover ω by a fam-
ily {Qj} of such balls. The next step is to use the polynomial approximation
to complete the argument.

Let Q∗
j denote the dilate of Qj by a factor Cd. Then these cubes have

bounded overlap, and by Bezout’s theorem from algebraic geometry, a point
y ∈ R

n may lie in the image of at most CN,d of these cubes under the
(polynomial) mapping Ψ̃. The final step of the proof is to transfer this
property to Φ̃ by showing that Φ̃(Qn) ⊂ Ψ̃(Q∗

n).
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The argument is topological. Let y ∈ Φ̃(Qj) and let B be a ball with
Qj ⊂ B ⊂ Q∗

j . Local injectivity and the bound (9.6) imply that y /∈
Ψ̃(∂B) ∪ Φ̃(∂B) and that

Ψ̃|∂B : ∂B → R
n\{y} Φ̃|∂B : ∂B → R

n\{y}
are homotopic. By local injectivity, their topological degree must then be 1,
which implies in particular that y ∈ Ψ̃(B). Further details may be found
in [4]. �
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