
Rev. Mat. Iberoamericana 27 (2011), no. 3, 977–995

Closed ideals of A∞ and a famous
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Abstract

Using Fréchet algebraic technique, we show the existence of a
nuclear Fréchet space without basis, thus providing yet another proof
(of a different flavor) of a negative answer to a well known problem
of Grothendieck from 1955. Using Fefferman’s construction (which
is based on complex-variable technique) of a C∞-function on the
unit circle with certain properties, we give much simpler, transparent,
and “natural” examples of restriction spaces without bases of nuclear
Fréchet spaces of C∞-functions; these latter spaces, being classical
objects of study, have attracted some attention because of their rel-
evance to the theories of PDE and complex dynamical systems, and
harmonic analysis. In particular, the restriction space A∞(E), being a
quotient algebra of the algebra A∞(Γ), is the central one to other
examples; the algebras A∞ had played a crucial role in solving a
well-known problem of Kahane and Katznelson in the negative.

1. Introduction and history of the problem

The problem of determining what kinds of ideals and quotients can be found
in arbitrary Fréchet algebras arises not only from the aesthetic imperative
to understand the internal structure of these algebras but also from certain
applications. For example, the proof of the famous Wiener’s Theorem is one
of the early celebrated accomplishments of the theory of Banach algebras.
The Wiener’s original proof was a good deal more complicated but the use
of Banach algebra technique made it very easy.
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In this paper, we will experience same kind of phenomena in respect of
the existence of most easy and natural examples of nuclear Fréchet spaces
without bases. In particular, we are specifically concerned with the deter-
mination of those Fréchet algebras which admit a nuclear Fréchet space
without a basis as their quotient (see Theorem 2.7). In his famous mem-
oir [15], Grothendieck asked whether every nuclear Fréchet space has a basis.
The problem has been solved by Mittiagin and Zobin in 1974 [17], and since
then there are several various constructions of such spaces which relate to
subspaces as well as quotients. (See e.g. [4, 5, 10, 12, 13, 18].) We empha-
size that all results given in these references were obtained by assuming a
linear topological space structure. Though these constructions are ingenious
(some of them relatively elementary), all these examples of nuclear Fréchet
spaces without bases were constructed on purpose and they are not “natural”
spaces of functions, operators or measures appearing in analysis. Recently,
Domanski and Vogt [11] showed that the space of real-analytic functions
(which is not metrizable) has no basis, and, in the metrizable case, Vogt [23]
constructed an example of a nuclear Fréchet space without basis, consisting
of C∞-functions.

In our case, it is worth noticeable that the algebraic structure of an
algebra plays an important role to produce such examples, reducing more
complicated construction. In particular, the non-existence of a cyclic basis
in the algebra is due to the totally disconnected spectrum of the algebra;
this result is also related to the topological structure of the algebra, that
is, to having a special kind of topology on the algebra (see Corollary 2.6).
Thus the algebraic structure and the topological structure of the algebra are
closely related with each other. Though there are several results of automatic
continuity in the literature, the connection between these two structures has
been explored in a different manner for the first time in this paper.

We first obtain a few characterizations by investigating Fréchet algebras
with a power series generator (defined below). Although the theoretical
existence, obtained using the Fréchet algebraic technique, is very easy, the
existence of a concrete example seems to be a difficult problem. For this
we need to construct a non-zero C∞-function on the unit circle Γ with all
negative Fourier coefficients zero and which vanishes on a closed, totally
disconnected infinite subset of Γ. The construction of such function is given
by C. Fefferman using complex-variable theory. Using this function, we give
a few examples of nuclear Fréchet spaces without bases which are restriction
spaces of Fréchet spaces of C∞-functions on subsets of either R or C.

The situation with quotients is somewhat more complicated. In the first
place, a Fréchet space which admits a continuous norm can have a quotient
which does not. Indeed, in 1936, Eidelheit showed that any non-Banach
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Fréchet space has a quotient isomorphic to ω [14]. (Another complication
is that in order to obtain results one usually has to assume that the orig-
inal algebra is separable –the nonseparable case seems to be much more
difficult.) On the other hand, Bellenot and Dubinsky [3] showed that ev-
ery Fréchet-Montel space not isomorphic to ω has a nuclear Köthe quotient,
i.e., a quotient with a continuous norm and a basis. It is then of interest
to determine those Fréchet spaces which admit a nuclear Fréchet space with
a continuous norm but without a basis as their quotient (see e.g. [13]), and,
thus, our examples are different from Moscatelli’s examples given in [18] as
they are certainly not quojections.
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2. Existence using Fréchet algebraic technique

All algebras in this paper will be commutative and unital unless otherwise
specified. We use many concepts from the standard theory of Fréchet spaces
(and algebras). Thus, we recall that a Fréchet algebra is a complete metriz-
able topological algebra A whose topology may be defined by a sequence
(pk)k≥1 (assumed increasing without loss of generality) of submultiplicative
seminorms. The principal tool for studying Fréchet algebras is the Arens-
Michael representation, in which A = lim

←−
(Ak; dk) (see [19, §2] for more de-

tails). If each dk is a surjective operator from Ak+1 onto Ak, then we say
that a Fréchet space A is a quojection. If the topology of A can be defined by
a sequence (pk) of norms, then we say that A admits a continuous norm. In
fact, it is well known and easy to prove that a nuclear Fréchet space admits
a continuous norm if and only if it admits a sequence of norms defining its
Fréchet topology. A Fréchet algebra A is said to be a Q-algebra if the set of
all its invertible elements is open. A is local if the Gel’fand space M(A) is
singleton.
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A sequence (xn) in a Fréchet space A is a basis if for each y ∈ A there ex-
ists a unique expansion of the form y =

∑∞
n=0 λn xn, λn complex scalars. An

element x in a Fréchet algebra A is a power series generator (shortly: p.s.g.)
for A, if and only if each y ∈ A is of the form y =

∑∞
n=0 λn xn, λn complex

scalars, such that
∑∞

n=0 |λn|pk(x
n) < ∞ for all k ([6]). (A normed algebra

with a p.s.g. can analogously be defined.) Such an A is a commutative, sep-
arable and singly generated Fréchet algebra generated by x; also, if I is a
closed ideal of A, then A/I has a p.s.g. x+I. We remark that the elements y
in A may not necessarily have unique expansion of the form

∑∞
n=0 λn xn.

We write F for the algebra C[[X]] of all formal power series in an in-
determinate X, with complex coefficients. The algebra F is a Fréchet al-
gebra when endowed with the weak topology defined by the projections
πm : F → C, m ∈ Z+, where πm(

∑∞
n=0 λn Xn) = λm. A defining sequence

of seminorms for F is (p
′
k), where p

′
k(

∑∞
n=0 λn Xn) =

∑k
n=0 |λn| (k ∈ N).

A Fréchet algebra of power series is a subalgebra A of F such that A is a
Fréchet algebra containing the indeterminate X and such that the inclusion
map A ↪→ F is continuous [19]. In fact, surprising recent results show that
the continuity of the inclusion map A ↪→ F in this setting is automatic,
and hence the time-honored definitions of Banach and Fréchet (and, more
generally, (F )-) algebras of power series contain a redundant clause (see
[8, Corollaries 11.3 and 11.4]); this is not possible in the several-variable
case by Theorem 12.3 of [8]. Recently, Fréchet algebras of power series
–and more generally, the power series ideas in general Fréchet algebras–
have acquired significance in understanding the structure of a Fréchet alge-
bra [1, 6, 7, 8, 19, 20].

The initial range of examples of Fréchet algebras of power series having
a p.s.g. includes F , the Beurling-Fréchet algebras �1(Z+, W ), Hol(U) (U
a domain in C) and A∞(Γ); some other examples without a p.s.g. are the
disc algebra A(D), H∞(U) (U a bounded domain in C containing 0), Ak(Γ)
(see [6] for more details), and Fréchet algebras of power series in which
polynomials fail to be dense (see [19, Remarks 1 (b) and 2]). Also Fréchet
algebras with a cyclic basis generated by x are realized as examples of Fréchet
algebras of power series by identifying the series expansions.

A seminorm p on a Fréchet (or even metrizable) algebra A with a cyclic
basis generated by a p.s.g. x is a power series seminorm if p

(∑∞
n=0 λn xn

)
=∑∞

n=0 |λn| p(xn) for all y ∈ A. Now let (A, ‖ · ‖) be a normed algebra with
a p.s.g. x and let A∼ be the completion of A. Then A∼ need not be a
Banach algebra with a p.s.g. x; but, if there exits a power series norm | · |
on A equivalent to ‖ · ‖, then A∼ is a Banach algebra with a p.s.g. x (see [6,
Remark 2.4 and Proposition 2.5]). More generally, we have the following
lemma whose proof is based on [6, Lemma 2.2].
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Lemma 2.1. Let A be a Fréchet algebra having a p.s.g. x. Then x generates
a cyclic basis if and only if the topology of A is defined by a sequence of power
series seminorms.

A weight function on Z+ is a function ω : Z+ → R+ such that for all
m, n ∈ Z

+, ω(m + n) ≤ ω(m)ω(n) and ω(n) > 0. If A is a Fréchet algebra
with a cyclic basis generated by a p.s.g. x and we define ωk(n) = pk(x

n)
(n ∈ Z+), then W = (ωk) is a separating sequence of functions on Z+

satisfying ωk(m + n) ≤ ωk(m) ωk(n), ωk(n) ≤ ωk+1(n) and ωk(n) ≥ 0 for all
m, n ∈ Z+ all k ∈ N. Let

�1(Z+, W ) :=
{ ∞∑

n=0

λnXn ∈ F :
∞∑

n=0

|λn|ωk(n) < ∞ for all k
}
.

Since, by Lemma 2.1, each pk is a power series seminorm on A, the mapping
θ : �1(Z+, W ) → A defined by θ(

∑∞
n=0 λnXn) =

∑∞
n=0 λnx

n is a homeo-
morphic isomorphism in view of the open mapping theorem. Thus we have
the following characterization (see [6, Theorem 2.1] for more details):

Theorem 2.2. Let A be a Fréchet algebra with a cyclic basis generated by a
p.s.g. x. Then A is isomorphic to either F or the Beurling-Fréchet algebra
�1(Z+, W ) for an increasing sequence W of weights on Z+.

More generally, if A is a Fréchet algebra with a p.s.g. x, then A ∼=
�1(Z+, W )/kerθ, and so SpA(x) = M(A) is totally disconnected provided
that ker θ is proper (see [6, Theorem 3.7 (1)]). As corollaries, we have the
following characterizations. A Banach algebra A is uniform if ‖x2‖ = ‖x‖2

for all x ∈ A. By a proper seminorm we mean a seminorm that is not a norm.

Corollary 2.3. Let (A, ‖·‖) be a Banach algebra of power series such that X
is a p.s.g. for A. Then A is not a uniform Banach algebra.

Corollary 2.4. Let A be a Fréchet algebra. Then A is isomorphic to F if
and only if it is a Fréchet algebra with a p.s.g. and with its Fréchet topology
defined by a sequence (pk) of proper power series seminorms.

We remark that the above corollary also holds under the weak assump-
tions: A a Fréchet algebra of power series and any sequence (pk) of proper
seminorms on A (see [19, Corollary 3.4]). Thus every Fréchet algebra of
power series other than F admits a continuous norm.

Corollary 2.5. Let A be a Fréchet algebra with the Gel’fand space M(A)
of continuous characters which is not totally disconnected. If A has a p.s.g.,
then A is a semisimple Fréchet algebra and M(A) is either a disc in the
complex plane or is the whole of C.
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Proof. Evidently, A is not a local algebra as M(A) is not singleton. Fur-
ther, A ∼= �1(Z+, W ) since M(A) is totally disconnected in the other case
as remarked earlier after Theorem 2.2. Thus M(�1(Z+, W )) is not to-
tally disconnected, and contains at least two distinct points in C. Hence
r > 0, where r = supk rk and rk = infn∈Z+ ωk(n)1/n. This shows that
�1(Z+, W ) is semisimple. Now, by [6, Theorem 3.7 (2)], if r = ∞, then
A ∼= Hol(C), the Fréchet algebra of entire functions, and if r < ∞, then
either A ∼= Hol(U), U an open disc with radius r, or is a Q-algebra in which
case M(A) is a closed disc. �

The above corollary shows that the assumption that A is semisimple
in the statement (2) of Theorem 3.7 of [6] can be replaced by a weaker
hypothesis: SpA(x) is not singleton.

Corollary 2.6. Let A be a non-local Fréchet algebra with a p.s.g. x. The
following are equivalent.

(1) SpA(x) is a hemicompact metric space which is not totally discon-
nected.

(2) The p.s.g. x generates a cyclic basis for A.

(3) The topology of A is defined by a sequence of power series seminorms.

Proof . (2) ⇔ (3). This is an easy consequence of Lemma 2.1.
(1) ⇒ (2). By Corollary 2.5, A is a semisimple Fréchet algebra isomorphic
to the Beurling-Fréchet algebra �1(Z+, W ). Hence the p.s.g. x generates a
cyclic basis.
(2) ⇒ (1). By Theorem 2.2, A is isomorphic to �1(Z+, W ). The Gel’fand
space of �1(Z+, W ) is not totally disconnected. �

Remark. We note that the algebra C(E) of all continuous functions on a
totally disconnected compact metric space E is a uniform Banach algebra
with a p.s.g. eiθ|E, 0 ≤ θ ≤ 2π, whose topology is not given by a power series
norm and the Gel’fand space is E. In fact, C(E) is isomorphic to A+(E),
a quotient of the algebra A+(Γ) of absolutely convergent Taylor series. On
the other hand, by Corollary 2.3, there does not exist a Banach algebra of
power series having a p.s.g., which is also a uniform algebra. But, in the
Fréchet case, this can happen, for example in the algebra Hol(U). This is
one of the significant differences between Banach algebra of power series and
Fréchet algebra of power series at the level of uniform algebras with a p.s.g.

All of the ingredients are now present and we are ready to prove the
main result of this paper.
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Theorem 2.7. If A is a non-local, non-Banach Fréchet Q-algebra with a
cyclic basis generated by a p.s.g. x such that the Fréchet topology of A is
defined by a sequence (pk)k≥1, where pk(

∑∞
n=0 λnxn) = supn∈Z+ |λn| pk(x

n),
then A has a quotient which is a nuclear Fréchet space without a basis.

Proof. Let A satisfy the stated conditions. Then, by Theorem 2.2, A
is isomorphic to �1(Z+, W ). Also, by [21, Theorem 6.1.3], A is nuclear,
and, by Corollary 2.5, the Gel’fand space SpA(x) of continuous characters is
isomorphic with the closed unit disc D as A is a Q-algebra. Suppose that E
is a closed, totally disconnected infinite subset of Γ such that

I(E) :=
{
y ∈ A : ŷ ≡ 0 on E

}
is a proper closed ideal of A. Consider the restriction algebra A/I(E) :=
A(E). Clearly it is a non-local nuclear Fréchet Q-algebra with a p.s.g.x+I(E)
and E as its Gel’fand space. Then, by Corollary 2.6, it has no cyclic basis.
Suppose A(E), when considered as a nuclear Fréchet space, has some other
basis (xn). Then (xn) is equicontinuous. So, by the Dynin-Mitiagin Basis
Theorem, it is absolute. Hence, by [21, 10.2.2] due to Rolewicz, A(E) is iso-
morphic to a nuclear Fréchet sequence (Köthe) space. Thus, by [16, Propo-
sition 28.16], A(E) ∼= λ∞(A′), where A′ is the Köthe matrix (qk(xn))k,n∈Z+.
Also each z ∈ A(E) admits a unique expansion of the form

∑∞
n=0 μn xn, i.e.,

z =
∑∞

n=0 λn(x + I(E))n =
∑∞

n=0 μnxn. Since x + I(E) does not generate
a cyclic basis for A(E), z can be represented by the system (x + I(E))n,
n ∈ Z+, but not in a unique way, say,

∑∞
n=0 ηn(x + I(E))n is another ex-

pression for z. So there is at least one k ∈ Z+ such that λk �= ηk. For this k,
we have λk (x + I(E))k =

∑∞
n=0 μk

n xn since λk (x + I(E))k is an element of

A(E). But then ηk (x + I(E))k =
∑∞

n=0 ζk
n xn, where ζk

n = μk
nηk

λk
for all n.

Thus, we have

z = lim
n

n∑
k=0

λk

(
x + I(E)

)k
= lim

n
lim
m

n∑
k=0

( m∑
l=0

μk
l xl

)
=

∞∑
m=0

μmxm

since φk(l) = μk
l xl is uniformly Cauchy over k; note that, as a consequence of

the Grothendieck-Pietsch criterion, the Fréchet topology of A(E) can be de-
fined by (‖·‖k), where ‖(∑∞

n=0 μnxn)‖k = supn |μn| qk(xn). On the other hand,
we have

z = lim
n

n∑
k=0

ηk

(
x + I(E)

)k
= lim

n
lim
m

n∑
k=0

( m∑
l=0

ζk
l xl

)
=

∞∑
m=0

ζmxm

since φ
′
k(l) = ζk

l xl is uniformly Cauchy over k. Hence the two series expan-
sions of z about the system (xn) are different, showing that the system (xn)
cannot be a basis for A(E). Thus we have shown that there does not exist
any basis for A(E). �
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We give an alternate proof for a special case as follows; one can follow this
idea to give proof for a more general case by replacing A∞(Γ) and A∞(E)
by A and A(E), respectively.

First, we note that by using the formula

< ν, f > =

∞∑
n=0

f̂(n)νn

for ν = {νn} ∈ C0, the Banach space of all complex sequences converging
to zero at infinity, we identify A+(Γ) with the dual of C0. As in the proof
above, if A∞(E) has some other basis (Fn), then it is isomorphic to a nuclear
Fréchet sequence (Köthe) space. Hence, following the above argument, we
can identify A∞(E) with the dual of some suitable Fréchet sequence space C,
which is a subspace of C0. Further, using the above formula, it is easy to see
that if F = f |E = f + I(E) is an element of A∞(E), then < ν, f + g >
= < ν, f > for g ∈ I(E) and for a fixed element ν ∈ C ⊂ C0. By varying ν,
we see that < ν, g > = 0 for all ν ∈ C, and hence g = 0, implying that
I(E) = {0}, a contradiction of the fact that I(E) is a proper closed ideal of
A∞(Γ) (see §3).

We again emphasize that we have considered only separable algebras,
and, for the separability condition, x being a p.s.g. for A is sufficient (but
not necessary as evidenced by the examples before Lemma 2.1). Also the
specific Fréchet topology on A is required to ensure that A is nuclear. We
remark that the uniqueness of the Fréchet topology for Fréchet algebras of
power series has been established in Corollary 4.2 of [19], and the uniqueness
of the Fréchet topology for (F )-algebras of power series has been established
in Corollary 11.7 of [8] by another approach. The following counterexamples
show that the assumptions on A cannot be dropped.

Example 1. We note that F is a local algebra, satisfying all other stated
conditions. The non-zero ideals of F are just the principal ideals F Xk

(k ≥ 0); each of these is closed in F and therefore the quotient algebras
are finite-dimensional algebras. Hence, it is of interest to also note that F
is the only Fréchet algebra of finite type among Fréchet algebras of power
series [19, p. 132].

Example 2. If A was a non-local Banach algebra with a cyclic basis gen-
erated by a p.s.g. x, then, by Theorem 2.2, A is isomorphic to the semisim-
ple Beurling-Banach algebra �1(Z+, ω). Hence, A cannot be nuclear being
an infinite-dimensional normed algebra (Dvoretzky-Rogers Theorem), and
therefore the quotient algebras of A with a p.s.g. x + I cannot be nuclear
for the same reason.
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Example 3. Suppose that A is not a Q-algebra, satisfying all other stated
conditions. Then, by Corollary 2.5, A is isomorphic to �1(Z+, W ) which is
semi-simple, and therefore, by [6, Theorem 3.7], it is isomorphic to either
Hol(U) or Hol(C). If E is a closed, totally disconnected infinite subset of U
(or C), then elementary complex-variable theory shows that I(E) = {0} for
Hol(U) (or Hol(C)).

3. Fefferman’s construction of a C∞-function

We now show that I(E) of Example 4.1 is, indeed, proper for E given below.
We remark that the construction given here is different from a construction
of outer functions in A∞(Γ) for Carleson sets (see [22, Theorem 3.3]).

We consider the following subsets of Γ.
Let εN = 64−N for N ≥ 1. Let E =

{
exp(i

∑∞
n=1 σn εn) : each σn = ±1

}
and EN =

{
exp(i

∑N
n=1 σn εn) : each σn = ±1

}
for N ≥ 1. For 1 ≤ M ≤ N

and ζ = exp
(
i
∑M

n=1 σn εn

) ∈ EM , let

EN(ζ) =
{

exp
(
i

N∑
n=1

σ̂n εn

)
: each σ̂n = ±1, and σ̂n = σn if n ≤ M

}
.

It is easy to see that E is a closed, totally disconnected subset of Γ. Note that
ζ ∈ EM , ζ ′ ∈ EN (ζ) imply |ζ−ζ ′| ≤ εM and ζ ∈ E implies dist(ζ, EN) ≤ εN .
Also EN consists of 2N points on Γ and ζ ∈ EN implies dist(ζ, E) ≤ εN . For
any z ∈ C, and for M ≤ N , we have |dist(z, EM) − dist(z, EN )| ≤ εM .

Next, we define a basic analytic function and give some important prop-
erties of that function.

For 0 < ε < 1 and z ∈ U an open unit disc, define

G̃ε(z) =

∫ π

−π

|1 + ε − eiθ|−1/2dθ

1 − e−iθz
.

Lemma 3.1. For each 0 < ε < 1, the function G̃ε(z), defined initially for
z ∈ U , extends to a function Gε(z), defined for z ∈ D a closed unit disc,
and having the following properties:

(1) Gε(z) is analytic in U and C∞ on D.

(2)
∣∣( d

dz
)kGε(z)

∣∣ ≤ c(k)
[|1− z|+ ε

]−1/2−k
for z ∈ D, k ≥ 0 and 0 < ε < 1;

where c(k) is a constant depending only on k, but not on z or ε.

(3) Re Gε(z) ≥ c [ |1 − z| + ε]−1/2 for z ∈ D and 0 < ε < 1; where c is a
positive constant, independent of z and ε.
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Proof. For z ∈ U , we have

G̃ε(z) =
1

i

∮
|ζ|=1

|1 + ε − ζ |−1/2 dζ

ζ − z
.

It is easy to define single-valued branches of the analytic functions

(1 + ε − ζ)−1/4

in {|ζ | < 1 + ε} and (1 + ε − ζ−1)−1/4 in {|ζ | > (1 + ε)−1} so that we have

|1 + ε − ζ |−1/2 = (1 + ε − ζ)−1/4 (1 + ε − ζ−1)−1/4

for ζ ∈ Γ. Hence, for z ∈ U , we have

G̃ε(z) =
1

i

∮
|ζ|=1

(1 + ε − ζ)−1/4 (1 + ε − ζ−1)−1/4 dζ

ζ − z

=
1

i

∮
|ζ|=r

(1 + ε − ζ)−1/4 (1 + ε − ζ−1)−1/4 dζ

ζ − z

for 1 < r < 1+ ε. The last integral clearly defines a function of z analytic in
the disc {|z| < r}. Since r may be taken arbitrarily close to 1+ε, we conclude
that G̃ε(z), defined initially for z ∈ U , extends to an analytic function on
{|z| < 1 + ε}.This proves (1).

To prove (2), we consider integrals of the form

F (φ) =

∫ π

−π

K(φ − θ) f(θ) dθ, φ ∈ R,

under various assumptions on K and f . Regarding f , we assume that∣∣∣( d

dθ

)k

f(θ)
∣∣∣ ≤ c(k)

[|θ| + ε
]−1/2−k

for k ≥ 0, where c(k) is a constant depending only on k. Then we use the
following two propositions.

Proposition 3.2. Let F be defined as above, where f satisfies the assump-
tion given above. Let φ ∈ R. Under any of the following hypotheses, we have∣∣∣( d

dφ

)k

F (φ)
∣∣∣ ≤ c

′
(k)

[|φ| + ε
]−1/2−k

for k ≥ 0, where c
′
(k) depends only on k and on the constants c0 and c0(k)

below.
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(H1) |φ| ≤ ε, K is even, and
∫ π

−π
|K(θ)| dθ ≤ c0.

(H2) |φ| ≤ ε, K is odd, supp K ⊂ [−2ε, 2ε], and |K(θ)| ≤ c0

|θ| for all θ.

(H3) |φ| ≤ ε, K is odd, supp K ⊂ {θ : |θ| ≥ ε}, and |K(k)(θ)| ≤ c0(k)

|θ|1+k
for

all θ and k.

(H4) |φ| ≥ ε, supp f ⊂ {θ : |θ| ≤ |φ|
2
}, and |K(k)(θ)| ≤ c0(k)

|θ|1+k
for all θ ∈ R

and k ≥ 0.

(H5) |φ|≥ε, supp f ⊂{θ : 1
4
|φ|≤|θ|≤4|φ|}, K is even and

∫ π

−π
|K(θ)| dθ≤c0.

(H6) |φ| ≥ ε, supp f ⊂ {θ : 1
4
|φ| ≤ |θ| ≤ 4|φ|}, K is odd, supp K ⊂ {θ :

|θ| ≤ 1
8
|φ|}, and |K(θ)| ≤ c0

|θ| for all θ.

(H7) |φ| ≥ ε, supp f ⊂ {θ : 1
4
|φ| ≤ |θ| ≤ 4|φ|}, K is odd, supp K ⊂ {θ :

|θ| ≥ 1
16
|φ|}, and |K(θ)| ≤ c0

|θ| for all θ.

(H8) |φ| ≥ ε, supp f ⊂ {θ : |θ| ≥ 3|φ|}, and |K(θ)| ≤ c0

|θ| for all θ.

Sketch of Proof of Proposition 3.2. Under each of the above hypothe-
ses (H1),. . . ,(H8), one of the following formulas yields the result at once.

F(1) F (k)(φ) =
∫ π

−π
K(θ) f (k)(φ − θ) dθ,

F(2) F (k)(φ)=
∫ π

−π
K(θ)f (k)(φ−θ) dθ= 1

2

∫ π

−π
K(θ)[f (k)(φ−θ)−f (k)(φ+θ)] dθ

provided K is odd,

F(3) F (k)(φ) =
∫ π

−π
K(k)(θ) f(φ − θ) dθ, and

F(4) F (k)(φ) =
∫ π

−π
K(k)(φ − θ) f(θ) dθ.

Formulas F(1), . . . , F(4) are trivial consequences of the definition of F
above. When we apply F(2) to treat (H2) and (H6), we note that

|f (k)(φ − θ) − f (k)(φ + θ)| ≤ 2|θ| max{|f (k+1)(ξ)| : ξ ∈ (φ − θ, φ + θ)}.

We apply F(1) to treat (H1), (H5), (H7) and (H8). We apply F(3) to
treat (H3), and apply F(4) to treat (H4). For example, under (H6), we
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argue as follows.

|F (k)(φ)| =

∣∣∣∣12
∫ π

−π

K(θ) [f (k)(φ − θ) − f (k)(φ + θ)] dθ

∣∣∣∣
≤

∫ π

−π

|K(θ)| |θ| max
{|f (k+1)(ξ)| : ξ ∈ (φ − θ, φ + θ)

}
dθ

≤
∫
{|θ|≤ 1

8
|φ|}

|K(θ)| |θ| c(k)
[ 7

8
|φ|

]−1/2−(k+1)

dθ

≤ c0|φ| c(k)
[7

8
|φ|

]−1/2−(k+1)

≤ c
′
(k) [|φ| + ε]−1/2−k.

The remaining cases are no harder than the above, and are left to the
reader. �

Now let K(θ) be a function on [−π, π], satisfying the following condi-
tions:

(i) |K(k)(θ)| ≤ c0(k)

|θ|1+k
for all θ ∈ [−π, π], k ≥ 0, with c0(k) depending

only on k, and

(ii)
∫ π

−π
|K(θ) + K(−θ)| dθ ≤ c0.

Proposition 3.3. Let F and f be as in Proposition 3.2. Let K satisfy (i)
and (ii) above. Then

∣∣∣( d

dφ

)k

F (φ)
∣∣∣ ≤ c

′
(k)

[|φ| + ε
]−1/2−k

for k ≥ 0 and φ ∈ [−π, π], where c
′
(k) depends only on k and on the

constants c0(k
′
), c(k

′
) (k

′ ≥ 0), and on the constant c0 appearing in (H1),
(H6) and (H7). In particular, c

′
(k) does not depend on ε or φ.

Proof. First suppose |φ| ≤ ε. Then, by a partition of unity, we may write
K = Keven + Kodd,in + Kodd,out, where Keven, Kodd,in and Kodd,out satisfy
(H1), (H2), (H3) respectively. Hence, Proposition 3.3 in this case follows
easily from Proposition 3.2. Similarly, suppose |φ| ≥ ε. Then, by using
a partition of unity, we can write f = fin + fmed + fout, with fin, fmed, fout

satisfying the same assumption imposed on f (with different constants c(k)),

and with suppfin ⊂ {θ : |θ| ≤ |φ|
2
}, suppfmed ⊂ {θ : 1

4
|φ| ≤ |θ| ≤ 4|φ|}, and

suppfout ⊂ {θ : |θ| ≥ 3|φ|}. Also, by a partition of unity, we can express
K = Keven +Kodd,in +Kodd,out, where Keven, Kodd,in, Kodd,out satisfy the same
hypotheses as K (with different constants), and Keven is even; Kodd,in is odd
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and is supported in {θ : |θ| ≤ 1
8
|φ|}; and Kodd,out is odd and is supported in

{θ : |θ| ≥ 1
16
|φ|}. We then write

F (φ) =

∫ π

−π

K(φ − θ) f(θ) dθ

=

∫ π

−π

K(φ − θ) fin(θ) dθ +

∫ π

−π

Keven(φ − θ) fmed(θ) dθ

+

∫ π

−π

Kodd,in(φ − θ) fmed(θ) dθ +

∫ π

−π

Kodd,out(φ − θ) fmed(θ) dθ

+

∫ π

−π

K(φ − θ) fout(θ) dθ.

The terms on the right satisfy the conclusions of Proposition 3.2, thanks
to (H4), (H5), (H6), (H7), (H8) respectively. Therefore, Proposition 3.3
holds also for |φ| ≥ ε. This completes the proof of Proposition 3.3. �

Finally, we return to the setting of Lemma 3.1, and establish (2). First
suppose z ∈ U , say z = ρ eiφ. Then

Gε(z) = G̃ε(z) =

∫ π

−π

K(φ − θ) f(θ) dθ,

where K(θ) = 1
1−ρ eiφ for all θ, and f(θ) = |1 + ε − eiθ|−1/2. One checks

that K and f satisfy the assumptions of Proposition 3.3, whenever ρ ∈ (0, 1).
Moreover, the constants c0, c0(k), etc appearing in the hypotheses of Propo-
sition 3.3 may be taken to be independent of ρ ∈ (0, 1). Hence, Proposi-
tion 3.3 shows that∣∣∣( d

dφ

)k

G̃ε(ρeiφ)
∣∣∣ ≤ c

′
(k) for ε, ρ ∈ (0, 1), φ ∈ [−π, π], k ≥ 0.

Here, c
′
(k) depends only on k. Since G̃ε(z) is analytic in U , it follows that∣∣( d

dz
)kG̃ε(z)

∣∣ ≤ c
′′
(k) for k ≥ 0, 1

2
≤ |z| < 1, where c

′′
(k) depends only

on k. In fact, this inequality holds for z ∈ U due to the maximum modulus
principle. It now follows at once from (1) that it holds also for z ∈ D. This
proves (2).

To prove (3), first suppose z = ρ eiφ with ρ < 1. Then

Re Gε(z) = Re G̃ε(z) =

∫ π

−π

|1 + ε − eiθ|−1/2 Re

{
1

1 − ρ ei(φ−θ)

}
dθ

=

∫ π

−π

|1 + ε − eiθ|−1/2

{
1

2
+

1

2

1 − ρ2

1 + ρ2 − 2ρ cos(φ − θ)

}
dθ.
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We have 1 + ρ2 − 2ρ cos(φ − θ) ≤ c[(1 − ρ)2 + |φ − θ|2] for a universal
constant c. Also, |1 + ε − eiθ| ≤ ε + |θ|. Therefore,

Re Gε(ρ eiφ) ≥ c

∫ π

−π

[
ε + |θ|]−1/2 (1 − ρ)

(1 − ρ)2 + |φ − θ|2 dθ

for a universal constant c.
Restricting the region of integration to {θ : |θ−φ| ≤ 1−ρ}, we conclude

that

Re Gε(ρ eiφ) ≥ c

∫
{|θ−φ|≤1−ρ}

[
ε + |θ|]−1/2

dθ (1 − ρ)−1.

If |φ| ≥ 2(1 − ρ), then the above inequality yields

Re Gε(ρ eiφ) ≥ c
[
ε + |φ|]−1/2 ≥ c′

[
ε + |ρ eiφ − 1|]−1/2

,

and if |φ| < 2(1 − ρ), then it yields

Re Gε(ρ eiφ) ≥ c
[
ε + (1 − ρ)

]−1/2 ≥ c′
[
ε + |ρ eiφ − 1|]−1/2

.

Thus, in either case, we obtain

Re Gε(z) ≥ c′
[
ε + |1 − z|]−1/2

for z ∈ U.

Since Gε(z) and [ε + |1− z|]−1/2 are continuous on D, we conclude that this
inequality holds also for z ∈ D. This proves (3), completing the proof of
Lemma 3.1. �

Next, we take average over finitely many rotations. For N ≥ 1 and z ∈ D,
define HN(z) = 2−N

∑
ζ∈EN

GεN
(ζz). Since EN consists of 2N points on Γ,

Lemma 3.1 immediately shows the following properties of HN :

(1) HN(z) is analytic in U and C∞ on D.

(2) |( d
dz

)kHN(z)| ≤ c(k) [dist(z, EN ) + εN ]−1/2−k for z ∈ D and k ≥ 0;
where c(k) is a constant depending only on k, but not on z or N .

(3) Re HN(z) ≥ c 2−N
∑

ζ∈EN

[|ζ − z| + εN

]−1/2
for z ∈ Γ, where c is a

positive constant, independent of z and N .

From the above estimate for ReHN(z), we obtain the following lemma.

Lemma 3.4. ReHN (z) ≥ c′ [dist(z, EN ) + εN ]−1/4 for z ∈ Γ, where c′ is a
positive constant, independent of z and N .
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Proof. We look separately at the following cases.

Case (1): Suppose dist(z, EN ) ≥ ε1. Then we have

[dist(z, EN) + εN ]−1/4 ≤ ε
−1/4
1 .

Hence, the conclusion of the lemma follows in this case, if we can show that
Re HN(z) ≥ c′ ε−1/4

1 for z ∈ Γ. For z ∈ Γ and ζ ∈ EN , we have |ζ − z| ≤ 2.
Hence, [|ζ − z| + εN ]−1/2 ≥ 2−1/2, and therefore, by the property (3) of HN ,

Re HN(z) ≥ c 2−1/2 for z ∈ Γ. Taking c′ small enough that c 2−1/2 > c′ ε−1/4
1 ,

we find that the lemma holds in this case.

Case (2): Suppose, for some M (1 ≤ M < N), εM+1 ≤ dist(z, EN) < εM .
Let ζ̂ ∈ EM be the closest point of EM to z. Since

|dist(z, EN ) − dist(z, EM)| ≤ εM ,

we have dist(z, EM ) ≤ 2 εM , and thus |ζ̂ − z| ≤ 2 εM . We have |ζ − ζ̂| ≤ εM

for each ζ ∈ EN(ζ̂), and therefore |ζ − z| ≤ 3 εM for each ζ ∈ EN(ζ̂).
Consequently, [|ζ − z| + εN ]−1/2 ≥ [|ζ − z| + εM ]−1/2 ≥ [4εM ]−1/2 for any
ζ ∈ EN(ζ̂). Since there are 2N−M points in EN (ζ̂), by the property (3) of HN ,

we have Re HN(z) ≥ c 2−N 2N−M [4εM ]−1/2 = ( c
2
) 2−M ε

−1/2
M . Recalling that

εn = 64−n, we see that

Re HN(z) >
( c

8

)
[dist(z, EN ) + εN ]−1/4

since εM+1 ≤ dist(z, EN ) in this case. If we take c′ < c
8
, then the lemma

holds in this case.

Case (3): Suppose dist(z, EN) < εN . Then for some ζ̂ ∈ EN , we have
|ζ̂ − z| < εN . Hence [|ζ̂ − z| + εN ]−1/2 > [2εN ]−1/2. Consequently, by the
property (3) of HN and definition of εn, we have

ReHN(z) ≥ c2−N [2εN ]−1/2 =
( c√

2

)
2−Nε

−1/2
N ≥

( c√
2

)[
dist(z, EN)+εN

]−1/4

.

If we take c′ < c√
2
, then the lemma also holds in this case. The proof of the

lemma is complete. �
Now, let FN(z) = exp(−HN(z)) for N ≥ 1. Then FN (z) is analytic

in U and C∞ on D. Since dist(z, EN ) ≤ εN for z ∈ E, by Lemma 3.4,
|FN(z)| ≤ exp(−c′′ (εN)−1/4) for all z ∈ E, where c′′ is a positive constant,
independent of z and N . Further, we will estimate FN and its derivatives
on Γ. For k ≥ 0 and z ∈ Γ, we note that ( d

dz
)kFN (z) is a sum of terms of

the form

±
l∏

j=1

[(
d

dz

)kj

HN(z)

]
exp(−HN(z)),
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with 1 ≤ kj ≤ k for each j, and with k1 + k2 + · · · + kl = k. Thus, by the
property (2) of HN and Lemma 3.4, the absolute value of each such term is
at most

∏l
j=1[(c(kj) X−1/2−kj ] exp(−c′X−1/4), where X = [dist(z, EN)+εN ].

Consequently, each such term has absolute value at most c∗, where c∗ is a
constant determined by c(k1), . . . , c(kl) and c′. Since ( d

dz
)kFN(z) is a sum

of each such term, it follows that |( d
dz

)kFN(z)| ≤ c∗(k) for k ≥ 0 and z ∈ Γ
(and hence also for z ∈ D), where c∗(k) depends only on k, but not on z
or N . Finally, for k = 0, by the property (2) of HN ,

|HN(0)| ≤ c(0) [1 + εN ]−1/2 ≤ c(0)

since EN is a subset of Γ. Exponentiating it, we find that |FN (0)| ≥ ĉ,
where ĉ is a positive constant, independent of N .

Passing to a suitable convergent subsequence of (FN(z)) and taking the
limit, we obtain a function F (z) on D with the properties: (1) F (z) is
analytic on U and C∞ on D; (2) F (0) �= 0; and (3) F (z) = 0 for all z ∈ E.

4. Examples

4.1. Suppose that E is a closed, totally disconnected infinite subset of Γ (in
particular, E is a Carleson set) such that

I(E) :=
{
f ∈ A∞(Γ) : f ≡ 0 on E

}
is a proper closed ideal of A∞(Γ). Then the restriction algebra A∞(E) is
an easy and natural example of a nuclear Fréchet space without a basis.
The Fréchet topology of A∞(E) is defined by a sequence (‖ · ‖k) of quotient
norms, where

‖g‖k := inf
{‖G‖Ck : G ∈ A∞(Γ), G|E = g

}
, g ∈ A∞(E).

Hence A∞(E) is a semisimple, non-Banach Fréchet algebra which admits a
continuous norm. Thus it cannot be a quojection. It is also a Q-algebra as
its Gel’fand space E is compact, and therefore all maximal ideals in A∞(E)
are closed. In fact, they are principal, being the images of principal maximal
ideals in A∞(Γ) [20, 4.2 (a)].

We note that the algebra A∞(Γ) is the technical main-spring of [20],
in which the author has given sufficient conditions for the existence of
local analytic structure in the spectrum of a Fréchet algebra, characteriz-
ing locally Riemann algebras. Not only this, but, following the arguments
of [20, 4.2 (a)], it is easy to see that the algebra A∞(E) is another example
with no analytic structure in its spectrum E, and therefore it is not a locally
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Riemann algebra [20, 4.4], showing that the quotient algebras of locally Rie-
mann algebras need not be locally Riemann algebras. Thus, it is of interest
to obtain a criterion when a quotient algebra of a locally Riemann algebra
is itself a locally Riemann algebra.

Using a function in A∞(E) and the usual Fréchet algebraic technique,
Theorem 2 of [2] gives a negative solution to a well known problem of Kahane
and Katznelson (whether for every sequence of positive numbers (γn)n∈Z+

such that γn = 0(exp(ε n)), n → ∞, for all ε > 0, there exist a ZA+ set E
and a function f(eiθ) =

∑
n∈Z

cn einθ, eiθ ∈ Γ, such that
∑

n∈Z
|cn|γ|n| < ∞,

but f |E cannot be interpolated by a function in A+(Γ)) for Carleson sets;
similarly, in the Banach case, the algebras A+(Γ) and A+(E) (see Remark
after Corollary 2.6) have been used in Theorems 1 and 3 of [2], giving a
negative solution to this problem for ZA+ sets. Thus this shows that the
algebras A∞ have played an important role in solving two old and famous
problems of different areas.

4.2. More generally, take A = F (W̃ ) as in §6 of [7]. (A∞(Γ) is a particular

example of F (W̃ ).) Then A satisfies all the conditions stated in Theo-
rem 2.7. Hence it has a nuclear quotient space without a basis which is not
a quojection.

4.3. Consider the space s of rapidly decreasing sequences in F . Then s is a
Fréchet subalgebra of F with a p.s.g. X; the Fréchet topology is defined by a
sequence (pk), where pk(

∑∞
n=0 λnXn) =

∑∞
n=0 |λn|nk. Evidently, s ∼= A∞(Γ)

and therefore D is its Gel’fand space. Now, by 4.1, s has a nuclear quotient
space without a basis which is not a quojection.

We can now find a particular closed, totally disconnected subset E ′ of R

and a proper closed ideal I(E ′) providing a restriction space without a basis
in the following cases. We here note that Fréchet spaces of C∞-functions on
subsets of either R or C, being classical objects of study, have attracted some
attention in recent time mainly because of their relevance to the theories of
partial differential equations and complex dynamical systems.

4.4. Consider the closed subalgebra of C∞(R) having functions of 2π-period
on R and with negative Fourier coefficients equal to 0. It is isomorphic
to A∞(Γ). Thus it is a Fréchet algebra with a p.s.g. Let E be as in 4.1.
Then consider E ′ ⊂ R such that E ′ = p−1(E), where p is a natural projection
of R onto Γ. Since I(E) is a proper closed ideal in A∞(Γ), so is I(E ′).

4.5. Consider the closed subspace of C∞(R) having functions of 2π-period
on R. It is a closed subalgebra, isomorphic with s. Hence it is a Fréchet
algebra with a p.s.g. Clearly its Gel’fand space is isomorphic with Γ.
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which is a principal ideal domain. Studia Math. 138 (2000), no. 3, 265–275.

[8] Dales, H.G., Patel, S.R. and Read, C. J.: Fréchet algebras of power
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