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Riesz transforms on forms
and Lp-Hodge decomposition

on complete Riemannian manifolds

Xiang-Dong Li

Abstract

In this paper we prove the Strong Lp-stability of the heat semi-
group generated by the Hodge Laplacian on complete Riemannian
manifolds with non-negative Weitzenböck curvature. Based on a pro-
babilistic representation formula, we obtain an explicit upper bound
of the Lp-norm of the Riesz transforms on forms on complete Rie-
mannian manifolds with suitable curvature conditions. Moreover, we
establish the Weak Lp-Hodge decomposition theorem on complete
Riemannian manifolds with non-negative Weitzenböck curvature.

1. Introduction

1.1. Background

It is well-known that the Riesz transforms Rj on Rn, defined by the principal
value of the singular integrals

Rjf(x) =
Γ((n + 1)/2)

π
n+1

2

∫
Rn

f(y)
xj − yj

|x− y|n+1
dy, j = 1, . . . , n,

are weak (1, 1) and are bounded in Lp(Rn, dx) for all p > 1, see e.g. E.M.
Stein [64]. In recent years, there has been considerable interest in finding
the exact value or obtaining a good estimate of the Lp-norm of the Riesz
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transforms. In 1972, Pichorides [57] proved that the Lp-norm of the Hilbert
transform on the real line

Hf(x) =
1

2π

∫
R

f(y)

x − y
dy

is given by

‖H‖p,p = cot

(
π

2p∗

)
, ∀ p > 1.

Here and throughout of this paper, we denote

p∗ = max

{
p,

p

p − 1

}
.

In 1996, Iwaniec and Martin [34] proved that the Lp-norm of the Riesz
transforms Rj is also given by

‖Rj‖p,p = cot

(
π

2p∗

)
, j = 1, . . . , n.(1.1)

In [10], Bañuelos and Wang gave an alternative proof of (1.1) and proved
that for all p > 1 the Lp-norm of the vector Riesz transform ∇(−Δ)−1/2 =
(R1, . . . , Rn) has an explicit and dimension-free upper bound

(1.2)
∥∥∇(−Δ)−1/2

∥∥
p,p

≤ 2(p∗ − 1).

One of the motivations of the above study can be seen in Donaldson
and Sullivan [20] and in Iwaniec and Martin [33, 34], where it has been
pointed out that the knowledge of the exact value or a good estimate of
the Lp-norm of the Riesz transforms can lead important applications in the
study of quasi-conformal mappings and related nonlinear geometric PDEs
as well as in the Lp-Hodge decomposition theory. In their 1993 Acta Math
paper [33], using the Lp-boundedness of the Riesz transforms, Iwaniec and
Martin proved the following version of the Lp-Hodge decomposition theorem
on Rn.

Theorem 1.1 Let ω ∈ Lp(Rn, ΛkRn), 1 < p < ∞, and k = 1, . . . , n − 1.
Then there is a (k − 1)-form α and (k + 1)-form β such that

ω = dα + d∗β

and
dα, d∗β ∈ Lp(Rn, Λk

R
n),

where d∗ denotes the L2-adjoint of d with respect to the Lebesgue measure
on Rn.
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Moreover, dα and d∗β are unique,

α ∈ Ker d∗ ∩ Lp
1(R

n, Λk−1
R

n), β ∈ Ker d ∩ Lp
1(R

n, Λk+1
R

n),

and there exists a constant Cp(k, n) > 0 such that

‖α‖Lp
1(Rn) + ‖β‖Lp

1(Rn) ≤ Cp(k, n)‖ω‖p,

where Lp
1(R

n, ΛkRn) denotes the homogeneous Sobolev space of k-forms on Rn

whose first order derivatives are Lp-integrable with respect to the Lebesgue
measure on R

n, on which ‖ω‖Lp
1(Rn) := ‖dω‖p + ‖d∗ω‖p.

It might be interesting to point out that, in his 1858 Crelle’s paper [32],
in order to solve boundary value problems arising from the study of hydro-
dynamic systems, Helmholtz formulated a result on the splitting of vector
fields into vortices and gradients, which can be understood in a suitable
form of what is now called the “Hodge decomposition”. In his fundamental
paper [38], Leray used the L2-orthogonal projection P = Id + ∇(−Δ)−1div
to study the Navier-Stokes equations. So far, it has been well-known that
the Lp-boundedness of the Riesz transforms and the Lp-Hodge decompo-
sition theorem have important applications in the study of elliptic and
parabolic PDEs [26], the Navier-Stokes equations [47], boundary valued
problems [55], quasi-conformal mappings and related nonlinear geometric
PDEs [20, 33, 34, 58] as well as in stochastic differential equations [67].

1.2. Motivation

To what extent can the classical analysis on Euclidean space be extended
to complete Riemannian manifolds? This is an important issue in analysis
on complete non-compact Riemannian manifolds. Let (M, g) be a com-
plete non-compact Riemannian manifold, n = dimM , v the Riemannian
volume measure, i.e., dv(x) =

√
det g(x)dx. For any k = 1, . . . , n, we use

C∞
0 (ΛkT ∗M) to denote C∞

0 (M, ΛkT ∗M). Let dk be the exterior differential
on k-forms, d∗

k the formal L2-adjoint of dk with respect to ν. The Hodge
Laplacian on k-forms is defined by

�k = dk−1d
∗
k−1 + d∗

kdk.

Inspired by the Witten deformation of the Morse theory [69], we consider
more general weighted Hodge Laplacians on complete Riemannian mani-
folds. More precisely, let M be a complete Riemannian manifold equipped
with a weighted volume measure

dμ = e−φdv,

where φ ∈ C2(M).
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Let d∗
φ,k the formal L2-adjoint of dk with respect to μ, i.e., for all α ∈

C∞
0 (ΛkT ∗M) and β ∈ C∞

0 (Λk+1T ∗M), we have∫
M

< dα, β > dμ =

∫
M

< α, d∗
φβ > dμ.

The weighted Hodge Laplacian on k-forms with respect to the weighted
volume measure μ, also called the Witten Laplacian on k-forms with respect
to μ, is defined by

�φ,k = dk−1d
∗
φ,k−1 + d∗

φ,kdk.

When φ ≡ 0, we have d∗
0,k = d∗

k and �0,k = �k, k = 0, 1, . . . , n. For

all p > 1, let Lp(ΛkT ∗M, μ) be the completion of C∞
0 (ΛkT ∗M) with respect

to the Lp-norm ‖ · ‖p defined by

‖ω‖p
p :=

∫
M

|ω(x)|pdμ(x).

By[15, 65], it is well-known that �k is essentially self-adjoint onL2(ΛkT ∗M,v).
Similarly, we can prove that �φ,k is essentially self-adjoint on L2(ΛkT ∗M, μ).

The purpose of this paper is to study the following fundamental prob-
lems.

Problem 1.2 Under which conditions on a complete non-compact Rieman-
nian manifold M and φ ∈ C2(M), the Riesz transforms d�−1/2

φ,k and d∗
φ�

−1/2
φ,k

are bounded in Lp with respect to the weighted measure dμ = e−φdv for some
or all p > 1?

Problem 1.3 Under which conditions on a complete non-compact Rieman-
nian manifold M and φ ∈ C2(M), the Weak Lp-Hodge decomposition theo-
rem holds for some or all p > 1?

When φ ≡ 0, Problem 1.2 was originally raised by Strichartz in his 1983
celebrated paper [65] and sometimes is called the Strichartz problem by
people working in harmonic analysis on complete non-compact manifolds.
In [65], Strichartz has implicitly pointed out the deep relationship between
the above two problems. When p = 2, using Gaffney’s integration by parts
formula, it is well-known that the Riesz transforms d�−1/2

φ,k and d∗
φ�

−1/2
φ,k are

always bounded in L2, and the Weak L2-Hodge decomposition theorem is
always true on all complete Riemannian manifolds with C2-weighted volume
measures, see e.g. [19, 65, 12]. However, for p 
= 2, the situation is very
complicated. Since 1983, many people have studied the above problems
on complete non-compact Riemannian manifolds with various geometric or
analytic conditions, see e.g. [65, 48, 5, 62, 71, 72, 16, 17, 2, 14, 49, 41, 42]
and reference therein.
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1.3. Previous results

We now describe some results of Bakry [5]. Using a martingale approach
to the Littlewood-Paley-Stein inequalities, Bakry [5] proved that, for any
diffusion operator L = Δ −∇φ · ∇ on a complete Riemannian manifold M ,
where φ ∈ C2(M), if the Ricci curvature associated with L is bounded
below by −a, i.e., Ric(L) = Ric + ∇2φ ≥ −a, where a ≥ 0 is a non-
negative constant, then for all p > 1 the Riesz transform ∇(a − L)−1/2 is
bounded in Lp with respect to the weighted volume measure dμ = e−φdv
and its Lp-norm is bounded above by a universal constant depending only
on p. In particular, if Ric(L) ≥ 0, then the Riesz transform ∇(−L)−1/2

is bounded in Lp for all p > 1 and its Lp-norm is bounded above by a di-
mensional free constant. This recaptures an earlier famous result due to
P.A. Meyer [53] on the Lp-boundedness of the Riesz transforms associated
with the Ornstein-Uhlenbeck operator on finite or infinite dimensional Gaus-
sian spaces. In [5], Bakry also proved that, if M is a complete Riemannian
manifold with Wk ≥ −a and Wk+1 ≥ −a for some positive constant a > 0,
where Wk denotes the k-th Weitzenböck curvature on (M, g), then the Riesz
transforms d(a+�k)

−1/2 associated with the Hodge Laplacian �k is bounded
in Lp for all p > 1, and there exists a universal constant Cp,k > 0 which is
independent of n = dimM and a, such that for all ω ∈ C∞

0 (ΛkT ∗M),

∥∥d(a + �k)
−1/2ω

∥∥
p
≤ Cp,k‖ω‖p, .(1.3)

Under the same conditions, the Riesz transform d∗(a+�k+1)
−1/2 is bounded

in Lp for all p > 1. Moreover,

∥∥d∗(a + �k+1)
−1/2ω

∥∥
p
≤ Cp,k‖ω‖p.(1.4)

It is very natural to ask whether the Riesz transforms d�−1/2
k and d∗�−1/2

k+1

are bounded in Lp for all 1 < p < ∞ if M is a complete Riemannian manifold
with non-negative Weitezenböck curvatures Wi ≥ 0, i = k, k + 1. Whether
or not this result is true is very important to obtain an affirmative answer
to the Strichartz problem and to prove the Weak Lp-Hodge decomposition
theorem on complete Riemannian manifolds with non-negative Weizenböck
curvatures. When k ≥ 1, it seems that one cannot find an explicit state-
ment of this result in [5] even though it can be derived from Bakry’s Lp-
estimates (1.3) and (1.4) with universal constant. Indeed, (1.3) is equiva-
lent to

∥∥dω
∥∥

p
≤ Cp,k

∥∥(a + �k)
1/2ω

∥∥
p
, ∀ω ∈ C∞

0 (ΛkT ∗M).(1.5)
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Using Lemma 5.2 in [5], there exists a constant A > 0 independent of a
and p such that∥∥(a + �k)

1/2ω
∥∥

p
≤ A

(√
a‖ω‖p + ‖�1/2

k ω‖p), ∀ω ∈ C∞
0 (ΛkT ∗M).(1.6)

Since the universal constants Cp,k and A are independent of a > 0, one can
take the limit a → 0 in (1.5) and (1.6), and deduce that

‖dω‖p ≤ ACp,k‖�1/2
k ω‖p, ∀ω ∈ C∞

0 (ΛkT ∗M).

Thus, the Riesz transform d�−1/2
k is bounded in Lp for all p > 1 on complete

Riemannian manifolds with non-negative Weitezenböck curvatures Wi ≥ 0,
i = k, k + 1. By duality argument, under the same conditions, the Riesz
transform d∗�−1/2

k+1 is bounded in Lp for all p > 1, Moreover, for all p > 1
and k = 1, . . . , n, we have

‖d�−1/2
k ‖p,p ≤ ACp,k,

‖d∗�−1/2
k+1 ‖p,p ≤ ACp,k.

Inspired by the above mentioned results due to of Pichorides [57], Iwaniec-
Martin [34] and Bañuelos-Wang [10] on the Lp-norm estimates of the Riesz
transforms on Euclidean space, it is very natural to ask what is the asymp-
totic behavior of the constant Cp,k when p → 1 and p → ∞ for all k =
0, 1, . . . , n. In our previous paper [42], we developed a new probabilistic
approach in the study of the Riesz transforms on complete Riemannian
manifolds and proved that, if the Bakry-Emery Ricci curvature associated
with L = Δ − ∇φ · ∇ is non-negative, i.e., Ric(L) = Ric + ∇2φ ≥ 0, then
the Lp-norm of the Riesz transform ∇(−L)−1/2 with respect to the weighted
volume measure μ satisfies

‖∇(−L)−1/2‖p,p ≤ 2(p∗ − 1), ∀p > 1.(1.7)

In particular, on all complete Riemannian manifolds with non-negative Ricci
curvature, we proved in [42] that

‖∇(−Δ)−1/2‖p,p ≤ 2(p∗ − 1), ∀p > 1.(1.8)

These can be considered as a refinement of the above mentioned result
of Bakry [5] and a natural generalization of the above mentioned results due
to Pichorides [57], Iwaniec-Martin [34] and Bañuelos-Wang [10]. Moreover,
using the results of Iwaniec-Martin [34], Bañuelos-Wang [10], Arcozzi [1] and
Larsson-Cohn [37], we pointed out that the above estimates (1.7) and (1.8)
are asymptotic sharp when p → 1 and when p → ∞. Now, it is very
natural to ask whether one can extend the above estimates (1.7) and (1.8)
to the Riesz transforms associated with the Witten Laplacians on complete
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Riemannian manifolds with non-negative Weitzenböck curvature. In this pa-
per, we study this problem and establish the Weak Lp-Hodge decomposition
theorem on complete Riemannian manifolds with non-negative Weitzenböck
curvature.

1.4. Notation and assumption

Let (M, g) be a complete non-compact Riemannian manifold, v the Rie-
mannian volume measure, n = dimM . Let ∇ be the Levi-Civita connection
on TM or the Levi-Civita covariant derivative operator on ΛT ∗M . Let
φ ∈ C2(M), and dμ = e−φdv. The Hodge Laplacian and the Witten Lapla-
cian on k-forms are denoted by �k and �φ,k respectively. When acting on
k-forms on M , k = 0, 1, . . . , n, we denote

Δφ = Δ −∇∇φ,

where Δ = tr∇2 is the covariant Laplace-Beltrami operator on (M, g). In
particular, when k = 0, we use L to denote Δφ|C∞

0 (M). More precisely,

L = Δ −∇φ · ∇.

Note that, for all f, g ∈ C∞
0 (M), we have the integration by parts formula∫

M

< ∇f,∇g > dμ = −
∫

M

(Lf)gdμ = −
∫

M

f(Lg)dμ.

In other words, L = −�φ,0. Similarly to the case φ = 0 as in [15, 65], L and
�φ,k are essentially self-adjoint on L2(M, μ) and L2(ΛkT ∗M, μ), k = 1, . . . , n.

Fix x ∈ M . Let e1, . . . , en be a normal orthonormal basis of TyM neat x
such that ∇ei

ej(x) = 0 for all i, j = 1, . . . , n, and let e∗1, . . . , e
∗
n be its dual

basis. By definition, the k-th Weitzenböck curvature associated with the
Witten Laplacian �φ on k-forms, is defined as a symmetric endomorphism
on ΛkT ∗M , and is given by

Wφ,k(x) :=
∑
i,j

e∗i ∧ iej
R(ei, ej) + dΛk∇2φ,

where R the Riemannian curvature of the Levi-Civita connection ∇ on
(M, g), iej

denotes the interior multiplication induced by the contraction
of the vector field ej on Λk(T ∗M), ∇2φ denotes the Hessian of φ with re-
spect to the Levi-Civita connection ∇, and dΛk∇2φ is defined by

dΛk∇2φ(v1 ∧ . . . ∧ vk) =
k∑

i=1

v1 . . . ∧ ∇2φ(vi) . . . ∧ vk, v1, . . . , vk ∈ TM.

For simplicity, we make use the convention that Wφ,k ≡ 0 for k = 0, n + 1.
When φ = 0, we denote Wk = W0,k, k = 0, . . . , n + 1.
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Throughout this paper, we make the following basic assumption:

(A) The heat semigroup etL is a Markovian semigroup in the sense that
etL1(x) = 1 for all x ∈ M . In other words, the heat semigroup etL is
stochastically complete.

In the case φ ≡ 0, Yau [70] proved that the heat semigroup etΔ is Marko-
vian if M is a complete Riemannian manifold with Ricci curvature bounded
from below. More general criterion for the stochastical completeness of
the heat semigroup etΔ were given by Kanp-Li [36], Li-Schoen [39], and
Grigor’yan [27, 28]. In the case φ 
= 0, Bakry [4] proved that, if the Bakry-
Emery Ricci curvature Ric(L) = Ric + ∇2φ is bounded from below by a
negative constant, then etL is Markovian. More general criterion for the
stochastical completeness of the heat semigroup etL are due to Sturm [68]
and the author [40, p. 1306, Theorem1.4].

1.5. Main results

To state the main results of this paper, we first recall the rigorous definitions
of the Riesz transforms and the Riesz potentials associated with the Hodge
Laplacian on complete Riemannian manifolds.

Definition 1.4 ([65]) Let M be a complete Riemannian manifold, �φ,k be
the weighted Hodge Laplacian with respect to the weighted volume mea-
sure dμ = e−φdv. For a ≥ 0, the Riesz transforms d(a + �φ,k)

−1/2 and
d∗

φ(a + �φ,k)
−1/2 as well as the Riesz potential (a + �φ,k)

−1/2 are defined as
follows:

(i) A k-form ω ∈ Lp(ΛkT ∗M, μ) is in the Lp domain of d(a+�φ,k)
−1/2 if

d(a + �φ,k)
−1/2ω :=

1

Γ(1/2)
lim

N→∞

∫ N

0

de−t(a+�φ,k)ω
dt√

t

exists in Lp(Λk+1T ∗M, μ).

(ii) A k-form ω ∈ Lp(ΛkT ∗M, μ) is in the Lp domain of d∗
φ(a+�φ,k)

−1/2 if

d∗
φ(a + �φ,k)

−1/2ω :=
1

Γ(1/2)
lim

N→∞

∫ N

0

d∗
φe

−t(a+�φ,k)ω
dt√

t
,

exist in Lp(Λk−1T ∗M, μ).

(iii) A k-form ω ∈ Lp(ΛkT ∗M, μ) is in the Lp domain of (a+�φ,k)
−1/2 if

(a + �φ,k)
−1/2
φ,k ω :=

1

Γ(1/2)
lim

N→∞

∫ N

0

e−t(a+�φ,k)ω
dt√

t

exists in Lp(ΛkT ∗M, μ).
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Now we state the main results of this paper. The first result of this paper
is the Strong Lp-stability of the Hodge Laplacian on complete Riemannian
manifolds with non-negative Weitzenböck curvature operator. It seems that
neither an explicit statement nor a proof of it can be found in the literature.
It plays a crucial role in this paper.

Theorem 1.5 Let M be a complete Riemannian manifold, φ ∈ C2(M).
Suppose that

Wφ,k ≥ 0.

Then the heat semigroup e−t�φ,k and the Poisson semigroup e−t
√

�φ,k are
Lp-strong stable in (Ker�φ,k)

⊥ ∩ Lp(ΛkT ∗M, μ), i.e.,

lim
t→∞

‖e−t�φ,kω − Hpω‖p = 0, ∀ω ∈ Lp(ΛkT ∗M, μ),

lim
t→∞

‖e−t
√

�φ,kω − Hpω‖p = 0, ∀ω ∈ Lp(ΛkT ∗M, μ),

where
Hp : Lp(ΛkT ∗M, μ) → (Ker�φ,k) ∩ Lp(ΛkT ∗M, μ)

denotes the Lp-Hodge harmonic projection.

The second result is a refinement of the above mentioned result due to
Bakry [5].

Theorem 1.6 Let (M, g) be a complete Riemannian manifold, φ ∈ C2(M).
Suppose that the heat semigroup etL is conservative, and Wφ,i ≥ −a, i = k,
k + 1, where a is a non-negative constant. Then, there exists a constant
Ck > 0 such that, for all 1 < p < ∞, we have

‖d(a + �φ,k)
−1/2‖p,p ≤ Ck(p

∗ − 1)3/2,

‖d∗
φ(a + �φ,k+1)

−1/2‖p,p ≤ Ck(p
∗ − 1)3/2.

In particular, if the k-th and (k + 1)-th Weitzenböck curvatures are non-
negative, i.e.,

Wφ,i ≥ 0, i = k, k + 1,

then the Riesz transforms d �−1/2
φ,k and d∗

φ�
−1/2
φ,k+1 are bounded in Lp for all

p > 1. Moreover, for all p > 1,

‖d�−1/2
φ,k ‖p,p ≤ Ck(p

∗ − 1)3/2,

‖d∗
φ�

−1/2
φ,k+1‖p,p ≤ Ck(p

∗ − 1)3/2.
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The third result provides us with a reasonable condition on the Weitzen-
böck curvatures under which the asymptotically sharp Lp-norm estimates
(1.2), (1.7) and (1.8) extend to the Riesz transforms associated with the
Witten Laplacians on k-forms. See also Remark 6.5.

Theorem 1.7 Let (M, g) be a complete Riemannian manifold, φ ∈ C2(M).
Suppose that etL is conservative, Wφ,k = −a and Wφ,k+1 ≥ −a, where a ≥ 0
is a non-negative constant. Then, there exists a constant Ck, such that for
all 1 < p < ∞, we have

‖d(a + �φ,k)
−1/2‖p,p ≤ Ck(p

∗ − 1),

‖d∗
φ(a + �φ,k+1)

−1/2‖p,p ≤ Ck(p
∗ − 1),

where Ck is a positive constant depending only on k = 0, 1, . . . , n.

Moreover, at least on the Euclidean spaces, an upper bound of the order
O(p∗−1) for the Lp-norm of the Riesz transforms associated with the Hodge
Laplacian is asymptotically sharp when p → 1 and when p → ∞.

By Gallot-Meyer [25], on the hyperbolic manifold M = Γ\Hn(−1) of con-
stant sectional curvature −1, where Γ is any torsion-free discrete subgroup
of G = SO+(n, 1) (the group of isometries on H

n(−1)), we have

Wk = −k(n − k)Id.

From this and Theorem 1.7 we have the following result which is also new
in the literature.

Theorem 1.8 Let M = Γ\Hn(−1) be the hyperbolic manifold of constant
sectional curvature −1, where Γ is any torsion-free discrete subgroup of G =
SO+(n, 1). Then, for k = n−1

2
, . . . , n if n is odd, k = n

2
, . . . , n if n is even,

and for all p > 1, we have

‖d (k(n − k) + �k)
−1/2 ‖p,p ≤ Ck(p

∗ − 1),

‖d∗ (k(n − k) + �k+1)
−1/2 ‖p,p ≤ Ck(p

∗ − 1),

where Ck is a universal constant depending only on k.

Finally we establish the following Weak Lp-Hodge decomposition the-
orem on complete Riemannian manifolds with non-negative Weitzenböck
curvatures, which is a natural extension of Theorem 1.1.
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Theorem 1.9 Let (M, g) be a complete Riemannian manifold, φ ∈ C2(M).
Suppose that etL is conservative, and the Weitzenböck curvatures are non-
negative:

Wφ,i ≥ 0, i = k − 1, k, k + 1.

Then, for all 1 < p < ∞, every ω ∈ Lp(ΛkT ∗M, μ) has a unique decomposi-
tion in Lp:

ω = Hpω + dd∗
φ�−1

φ ω + d∗
φd�−1

φ ω,

where Hp : Lp(ΛkT ∗M, μ) → Ker�φ,k ∩ Lp(ΛkT ∗M, μ) denotes Hodge har-
monic projection.

1.6. Remarks

Remark 1.10 As far as we know, we cannot find an explicit statement of
Theorem 1.5 and a proof for it in the literature. The Lp-contractivity of the
heat semigroup e−t�φ on differential forms plays an important role in the
above proof. In [66], Strichartz studied the problem of the Lp-contractivity of
the heat semigroup e−t� on differential forms and the Lp-contractivity of the
Hodge-Kodaira projection on complete non-compact Riemannian manifolds.
He pointed out that the heat semigroup on k-forms is always L2-contractive
but one cannot expect that the Lp-contractivity of the heat semigroup is
always “yes”. In [66, p. 353], he wrote: “If etΔ were Lp contractive then by
taking the limit as t → ∞ we would obtain that the Kodaira projection op-
erator T onto the harmonic k-forms is Lp-contractive.” Here, according
to the notation in [66], Δ denotes the negative Hodge-de Rham Laplacian
on k-form.

Remark 1.11 By [57, 33, 10],

‖Rj‖p,p = cot
( π

2p∗

)
and ‖∇(−Δ)−1/2‖p,p ≤ 2(p∗ − 1), ∀p > 1.

From these one can derive that, for all k = 0, 1, . . . , n, and for all p > 1,

2

π
(p∗ − 1)(1 + o(1)) ≤ ‖d�−1/2

k ‖p,p ≤ Ck(p
∗ − 1),

2

π
(p∗ − 1)(1 + o(1)) ≤ ‖d∗�−1/2

k ‖p,p ≤ Ck−1(p
∗ − 1),

where the left hand sides make sense when p → 1 or p → ∞. This can be
viewed as an particular example of Theorem 1.7. It also indicates that at
least in the case of Euclidean spaces, an upper bound of the order O(p∗−1)

for the Lp-norm of the Riesz transforms d�−1/2
k and d∗�−1/2

k is asymptoti-
cally sharp when p → 1 or p → ∞. For details, see Example 6.6. However,
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it is still an open problem to determine the exact value of the Lp-norm of
the Riesz transforms ∇(−Δ)−1/2 as well as d�−1/2

k and d∗�−1/2
k for n ≥ 2

and p 
= 2.

Remark 1.12 To prove Theorem 1.6 and Theorem 1.7, we will first prove
a probabilistic representation formula of the Riesz transforms on differential
forms, cf. Theorem 5.3 below. In the proof of Theorem 5.3, we use the
Littlewood-Paley identity. However, the proof of Theorem 1.6 and Theo-
rem 1.7 does not need to use the Littlewood-Paley-Stein inequalities. The
proof of Theorem 1.7 is inspired by the argument used in Bañuelos-Wang [10]
for the estimates (1.1) and (1.2). Se also Remark 6.5.

Remark 1.13 In [44], using a probabilistic approach which is different from
the present one, we proved that, under the condition Wk ≥ 0, the singular
integral operators dd∗�−1

k and d∗d�−1
k are bounded in Lp for all p > 1. This

further implies that the Weak Lp-Hodge decomposition theorem holds on
Lp(ΛkT ∗M) for all p > 1 providing that Wk ≥ 0.

1.7. Applications

The method and the main results of this paper will be used in three forth-
coming papers [45, 43, 46]. In [45], we use the main results of this paper to
prove the Strong Lp-Hodge decomposition theorem and to prove some van-
ishing theorems of the Lp-cohomology on complete Riemannian manifolds
with suitable geometric conditions. In [43], we use the main results of this
paper to prove some Sobolev inequalities on differential forms and to prove
some vanishing theorems of the Lp,q-cohomology on complete Riemannian
manifolds with suitable geometric conditions. In [46], we use the method
of this paper to prove the Lp-boundedness of the Riesz transforms associ-
ated with the complex Kodaira-Hodge Laplacian on complete Kähler mani-
folds with non-negative curvature operator, and use this result to prove the
Lp-estimates and existence theorems of the ∂̄-operator on complete Kähler
manifold with suitable curvature conditions. The main result in [46] can
be viewed as a non-trivial extension of the famous Hörmander-Andreotti-
Vesentini L2-estimate and existence theorem of the ∂̄-operator on complete
Kähler manifolds with semi-positive curvature.

The rest of this paper is organized as follows. In Section 2, we recall
the well-known probabilistic representation formulas of the heat semigroup
and the Poisson semigroup generated by the Hodge Laplacian or the Witten
Laplacians on forms on complete Riemannian manifolds, as well as the well-
known semigroup domination inequalities. In Section 3, we prove the strong
Lp-stability of the heat semigroup and the Poisson semigroup on forms on
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complete Riemannian manifolds with non-negative Weitzenböck curvature.
In Section 4, we formulate the Burkholder sharp Lp-inequality for martingale
transforms on complete Riemannian manifolds. In Section 5, we prove the
probabilistic representation formulas for the Riesz transforms and the Riesz
potentials on forms on complete Riemannian manifolds. In Section 6, we
prove Theorem 1.6, Theorem 1.7 and Theorem 1.8. In Section 7, we prove
the Weak Lp-Hodge decomposition theorem (i.e., Theorem 1.9) on complete
Riemannian manifolds with non-negative Weitzenböck curvatures.

Acknowledgments. The author is very grateful to Professors D.Bakry,
J.-M. Bismut, Th.Coulhon, M.Ledoux, Y. Le Jan, N. Lohoué and P.Mallia-
vin for stimulated discussions and constant encouragements during many
years. Part of this work was supported by a Delegation in CNRS at the
University of Paris-Sud during the 2005-2006 academic year. The author
would like to thank Professor J.-M. Bismut for his kind invitation and Le
Laboratoire de Mathématiques d’Orsay for a very nice hospitality. Finally,
the author thanks an anonymous referee for his careful reading and for valu-
able comments which lead him to improve the paper.

2. Heat semigroup and Poisson semigroup on forms

2.1. The weighted Bochner-Weitzenböck formula

We first recall the weighted Bochner-Weitzenböck formula which has been
well-known to experts. To sake the completeness of the paper, we give a
proof for it.

Theorem 2.1 Let ∇ be the Levi-Civita connection on (M, g), φ ∈ C2(M).
Let

Δφ = Δ −∇∇φ

be the covariant weighted Laplace-Beltrami operator, where Δ = Tr∇2 is the
covariant Laplace-Beltrami operator on k-forms. Let

Wφ,k =
∑
i,j

e∗i ∧ iej
R(ei, ej) + dΛk∇2φ

be the weighted Weitzenbock curvature, where e1, . . . , en is a normal or-
thonormal basis at TyM for y ∈ M near x ∈ M such that ∇ei

ej(x) = 0, ∇2φ
denotes the Hessian of φ with respect to the Levi-Civita connection ∇. Then

�φ,k = −Δφ + Wk,φ.(2.1)
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Proof. By definition, the L2-adjoint of dk with respect to the measure μ,
denoted by d∗

φ,k : C∞
0 (Λk+1T ∗M) → L2(ΛkT ∗M, μ), satisfies∫
M

< dkω, η > dμ =

∫
M

< ω, d∗
φ,kη > dμ.

Standard argument based on integration by parts formula shows that

d∗
φ,k = d∗ + i∇φ,

where i∇φ denotes the interior multiplication induced by the contraction of
the vector field ∇φ on Λk+1T ∗M . This yields

�φ,k = d(d∗ + i∇φ) + (d∗ + i∇φ)d = (dd∗ + d∗d) + (di∇φ + i∇φd).

Using the Cartan identity

di∇φ + i∇φd = L∇φ,

we obtain

�φ,k = � + L∇φ.(2.2)

By the standard Bochner-Weitzenböck formula, we have

� = −Δ +
∑
i<j

e∗i ∧ iej
R(ei, ej).(2.3)

We now prove the following identity

L∇φω = ∇∇φω + dΛk∇2φω.(2.4)

To prove (2.4), notice that ∇ej
iei

= 0 holds at the point x. Hence

di∇φω =
∑
i,j

e∗j ∧ ∇ej
(< ∇φ, ei > iei

ω)

=
∑
i,j

∇ej
< ∇φ, ei > e∗j ∧ iei

ω +
∑
i,j

< ∇φ, ei > e∗j ∧ iei
∇ej

ω

=
∑
i,j

∇2φ(ei, ej)e
∗
i ∧ iej

ω +
∑
i,j

< ∇φ, ei > e∗j ∧ iei
∇ej

ω,

and

i∇φdω =
∑
i,j

< ∇φ, ei > iei
e∗j ∧ ∇ej

ω

=
∑
i,j

< ∇φ, ei > ∇ei
ω −

∑
i<j

< ∇φ, ei > e∗j ∧ iei
∇ej

ω

= ∇∇φω −
∑
i<j

< ∇φ, ei > e∗j ∧ iei
∇ej

ω.

Combining the above identities, we obtain (2.4). From (2.2)-(2.4), we ob-
tain (2.1). �
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2.2. Heat semigroup on forms

In this subsection we recall the well-known probabilistic representation for-
mula of the heat semigroup on forms and the semigroup domination inequal-
ities.

Let Xx
t be a diffusion process on M with infinitesimal generator L = Δ−

∇∇φ and with X0 = x. By Itô’s theory of diffusion process on Riemannian
manifolds, there exists a Brownian motion Wt on Rn, such that

dXx
t = Ut ◦ dWt −∇φ(Xx

t )dt,

X0 = x,

where Ut ∈ End(TxM, TXx
t
M) denotes the stochastic parallel transport along

the path {Xx
s , s ∈ [0, t]} with respect to the Levi-Civita connection, and is

the unique solution to the following covariant SDE along {Xx
s , s ∈ [0, t]}:

∇◦dXx
t
Ut = 0, U0 = IdTxM ,

where ◦d denotes the Stratonovich stochastic differentiation.

By Itô’s formula and the weighted Bochner–Lichnerowicz-Weitzenböck
formula, and using the same argument as in the proof of the Feynman-Kac
formula for vector valued function on Rn, we have the following well-known
probabilistic representation formula of the heat semigroup generated by the
Witten Laplacian �φ,k on k-forms:

e−t�φ,kω(x) = E
[
M∗

t,kω(Xx
t )
]
,(2.5)

where Mt,k ∈ End(ΛkT ∗
xM, ΛkT ∗

Xx
t
M) is the solution of the covariant differ-

ential equation

(2.6)
∇
∂t

Mt,k = −Wφ,k(X
x
t )Mt,k, M0,k = IdΛkT ∗

x M ,

where ∇
∂t

:= Ut
∂
∂t

U−1
t denotes the covariant derivative operator with respect

to the Levi-Civita connection along the path of {Xx
s , s ∈ [0, t]}. For a proof

of (2.5), we refer the reader to Elworthy-Le Jan-X.-M. Li [21].
We have the following well-known semigroup domination inequality, cf. [21].

Theorem 2.2 Let M be a complete Riemannian manifold, φ ∈ C2(M).
Suppose that Wφ,k ≥ a, where a ∈ R. Then, for all ω ∈ C∞

0 (ΛkT ∗M),∣∣e−t�φ,kω(x)
∣∣ ≤ e−atetL|ω|(x), ∀x ∈ M, t > 0.(2.7)

Remark 2.3 In the case k = 0 and φ ≡ 0, the probabilistic representation
formula (2.5) of the heat semigroup e−t� and the semigroup domination
inequality (2.7) can be traced back to Malliavin [50].
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2.3. Poisson semigroup on k-forms

Using the Bochner subordination formula, for all ω ∈ C∞
0 (ΛkT ∗M), and for

all (x, t) ∈ M × R+, the Poisson semigroup e−t
√

a+�φ,k on one-forms can be
defined as follows

e−t
√

a+�φ,kω(x) =
1√
π

∫ ∞

0

e−
t2

4u
(a+�k,φ)ω(x)e−uu−1/2du.

In the case k = 0, for all f ∈ C∞
0 (M), the Poisson semigroup e−t

√
a−L on

functions can be given by

e−t
√

a−Lf(x) =
1√
π

∫ ∞

0

e−
t2

4u
(a−L)f(x)e−uu−1/2du.

We can also give the probabilistic representation formulas for the Poisson

semigroup e−t
√

a−L and the Poisson semigroup e−t
√

a+�φ. To do so, let Bt

be the Brownian motion with infinitesimal generator d2

dy2 instead of 1
2

d2

dy2 and
starting from B0 = y > 0, which is independent of Xx

t , and let

τy = inf{t > 0 : Bt = 0}.

Then it is well-known that for all λ > 0, we have

Ey

[
e−λτy

]
= e−y

√
λ.

This leads us to the following probabilistic representation formula for the
Poisson semigroup on functions

e−y
√

a−Lf(x) = Ey

[
e−(a−L)τyf(x)

]
= Ey

[
e−aτyE[f(Xx

τy
)]
]
.

That is

e−y
√

a−Lf(x) = Ey

[
e−aτyf(Xx

τy
)
]
.

Similarly, for any ω ∈ C∞
0 (ΛkT ∗M), the Poisson semigroup e−y

√
a+�φ,kω(x)

can be represented by

e−y
√

a+�φ,kω(x) = Ey

[
e−(a+�k,φ)τyω(x)

]
= Ey

[
e−aτyE[M∗

τy ,kω(Xx
τy

)]
]
.

Let E(x,y) denote the expectation with respect to the law of (Xx
t , Bt). Then

e−y
√

a+�φ,kω(x) = E(x,y)

[
e−aτyM∗

τy ,kω(Xx
τy

)
]
.
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3. Strong Lp-stability of the heat semigroup and the
Poisson semigroup

In this section we prove the Strong Lp-stability of the heat semigroup and
the Poisson semigroup on complete Riemannian manifolds with non-negative
Weitzenböck curvatures. This result will play a crucial role in the proof of
Theorem 1.6.

We first prove the following result which is essentially due to Bakry [5].

Theorem 3.1 Let M be a complete Riemannian manifold. Suppose that
Wφ,k ≥ −a, where a > 0 is a constant. Then, for all p ∈ [1,∞] and t > 0,
we have

∥∥e−t(a+�φ,k)
∥∥

p,p
≤ e−2min{ 1

p
,1− 1

p
}at,(3.1) ∥∥e−t

√
a+�φ,k

∥∥
p,p

≤ e−2min{ 1
p
,1− 1

p
}√at.(3.2)

Proof. Using the semigroup domination inequality (2.7) and the fact that etL

is Lp-contractive, under the curvature condition Wφ,k ≥ −a, we have

‖e−t(a+�φ,k)ω‖p ≤ ‖etL|ω|‖p ≤ ‖ω‖p, ∀p ∈ [1,∞], t > 0.

Therefore

‖e−t(a+�φ,k)‖p,p ≤ 1, ∀p ∈ [1,∞], t > 0.

This proves (3.1) for p = 1,∞. On the other hand, for all ω ∈ L2(ΛkT ∗M, μ),

∂

∂t

∥∥e−t�φ,kω
∥∥2

2
= −2

∫
M

< �φ,ke
−t�φ,kω, e−t�φ,kω > dμ ≤ 0.

Hence ∥∥e−t�φ,kω
∥∥

2
≤ ‖ω‖2.

This yields

‖e−t(a+�φ,k)‖2,2 ≤ e−at, ∀t > 0.

By the Riesz convexity interpolation, for all p ∈ (1, 2), letting θ ∈ (0, 1) be
such that 1/p = θ/1 + 1 − θ/2, i.e., θ = 2/p − 1, we have

∥∥e−t(a+�φ,k)
∥∥

p,p
≤ ∥∥e−t(a+�φ,k)

∥∥θ

1,1

∥∥e−t(a+�φ,k)
∥∥1−θ

2,2

≤ e−(1−θ)at = e−
2(p−1)at

p , ∀t > 0.
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Similarly, for all p ∈ (2,∞), letting θ ∈ (0, 1) be such that 1/p = 1 − θ/2 +
θ/∞, i.e., θ = 1 − 2/p, we have∥∥e−t(a+�φ,k)

∥∥
p,p

≤ ∥∥e−t(a+�φ,k)
∥∥θ

∞,∞
∥∥e−t(a+�φ,k)

∥∥1−θ

2,2

≤ e−(1−θ)at = e−
2at
p , ∀t > 0.

These finish the proof of (3.1) for all p ∈ [1,∞] and t > 0. Similarly, for all
p ∈ [1,∞] and t > 0, we can prove (3.2). �

We would like to point out that Theorem 3.1 plays a crucial role in
Bakry’s proof of the Lp-boundedness of the Riesz transforms d(a+�φ,k)

−1/2

on complete Riemannian manifolds with Wφ,k ≥ −a and Wφ,k+1 ≥ −a for
some positive constant a > 0. According to [22], Theorem 3.1 says that,
under the condition Wφ,k ≥ −a with a > 0, the heat semigroup e−t(a+�φ,k)

and the Poisson semigroup e−t
√

a+�φ,k are exponentially stable when t → ∞.
In particular, we obtain the following

Corollary 3.2 Under the same conditions as in Theorem 3.1, for all p > 1,
we have

lim
t→∞

∥∥e−t(a+�φ,k)
∥∥

p,p
= 0,

lim
t→∞

∥∥e−t
√

a+�φ,k
∥∥

p,p
= 0.

Remark 3.3 In the case where M is a complete non-compact Riemannian
manifold with non-negative Weitzenböck curvature Wφ,k ≥ 0, if we do not
assume some additional condition on M , we cannot prove that the heat

semigroup e−t�φ,k and the Poisson semigroup e−t
√

�φ,k are exponentially
stable. This might be the most important reason why we cannot find an
explicit statement in [5] saying that the Riesz transform d�−1/2

φ,k is bounded
in Lp for all p > 1 if M is a complete Riemannian manifold with Wφ,k ≥ 0
and Wφ,k+1 ≥ 0.

An important observation of this paper is that, even though the heat

semigroup e−t�φ,k and the Poisson semigroup e−t
√

�φ,k are usually not ex-
ponentially stable on complete Riemannian manifolds with non-negative
Weitzenböck curvatures Wφ,k ≥ 0, they are strong stable in Lp for all p > 1
in the sense of Theorem 1.5. It will play a crucial role in the proof of Theo-
rems 1.6, 1.7 and Theorem 1.9.

Proof of Theorem 1.5. Using the semigroup domination inequality (2.7),
as Wφ,k ≥ 0, we have∣∣e−t�φ,kω(x)

∣∣ ≤ etL|ω|(x), ∀ω ∈ Lp(ΛkT ∗M, μ), x ∈ M, t > 0.
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Since etL is a Markovian semigroup, it is Lp-contractive. Therefore

‖e−t�φ,kω‖p ≤ ‖ω‖p, ∀t > 0.

By Bochner subordination, we have

‖e−t
√

�φ,kω‖p ≤ ‖ω‖p, ∀t > 0.

Slightly modifying the argument used in the proof of Theorem 1 in E.M.
Stein [63, p. 67] or Theorem 4.2.12 in Jacob [35, p. 293], using the fact that
�φ,k is a self-adjoint operator on L2(ΛkT ∗M, μ), and that e−t�φ,k is Lp-
contractive for all p ∈ [1,∞], we can prove that e−t�φ,k has an analytic
continuation from the sector Σθ(p) to Lp(ΛkT ∗M, μ), where

Σθ(p) =

{
z ∈ C : |arg(z)| <

π

2

(
1 −
∣∣∣∣2p − 1

∣∣∣∣
)}

, p > 1.

By the theory of analytic semigroups, see e.g. Theorem 4.2.7 in Jacob [35],
there exists two constants δ ∈ (0, π

2
) and M > 0 such that

Σπ
2
+δ =

{
λ ∈ C : |argλ| <

π

2
+ δ
}
∪ {0} ⊂ ρp(�φ,k),

and

‖(λ − �φ,k)
−1‖p,p ≤ M

|λ| , ∀λ ∈ Σπ
2
+δ \ {0},

where ρp(�φ,k) denotes the resolvent set of �φ,k in Lp(ΛkT ∗M, μ). Equiva-
lently, the Lp-spectra of �φ,k satisfies

σp(�φ,k) ∩ iR ⊂ {0}.

By a theorem of Arendt-Batty-Lyubich-Vũ, see [22] (Ch. VI Theorem 2.21,
see also Example 2.23(i) of Ch. VI), we obtain

lim
t→∞

‖e−t�φ,kω − Hpω‖p = 0, ∀ω ∈ Lp(ΛkT ∗M, μ).

This proves that e−t�φ,k is strong stable in (Ker�φ,k)
⊥∩Lp(ΛkT ∗M, μ). Sim-

ilarly, we can prove that the Poisson semigroup e−t
√

�φ,k is strong stable in
(Ker�φ,k)

⊥ ∩ Lp(ΛkT ∗M, μ). The proof of Theorem 1.5 is completed. �
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4. Martingale transforms on complete Riemannian ma-
nifolds

In this section, we formulate the Burkholder Lp-sharp inequality for mar-
tingale transforms on complete Riemannian manifolds. For this, we borrow
some ideas from Bañuelos-Wang [10] and Arcozzi [1].

Let Ft be the filtration generated by the n-dimensional Brownian mo-
tion Wt. Let Yt be a real-valued L2-martingale on the Brownian filtration Ft.
Then

Yt = E[Yt] +

∫ t

0

Hs · dWs,

where Ht is a predictable process with value in Rn. Let A ∈ M(n, R) be
an n × n real matrix-valued predictable process. Define the martingale
transformation

(A ∗ Y )t =

∫ t

0

A(s)Hs · dWs.

Let

‖|A|‖ = sup
s≥0

‖A(s)‖, where ‖A(s)‖ = sup
{‖A(s)v‖Rn : v ∈ R

n, ‖v‖Rn ≤ 1
}
.

Then

< A ∗ Y >t − < A ∗ Y >s≤ ‖|A|‖2 < Y >t −‖|A|‖2 < Y >s .

According to [13, 10, 1], this means that (A∗Y )t is differentially subordinate
to ‖|A|‖Yt.

The following theorem is essentially due to Burkholder [13]. It gives the
best constant in the Lp-inequality for the differential subordinate martin-
gales.

Theorem 4.1 ([13, 10, 1]) Let Y and A∗Y be as above. Then, for any p >1,
we have

‖A ∗ Y ‖p ≤ (p∗ − 1)‖|A|‖ ‖Y ‖p

and the constant (p∗ − 1)‖|A|‖ is the best possible here.

Let M be a complete Riemannian manifold, n = dimM , and φ ∈ C2(M).
Suppose that the L-diffusion process Xt is stochastically complete, i.e., the
lifetime of the L-diffusion process is infinite. By Itô’s SDE theory, we have

dXt = Ut ◦ dWt −∇φ(Xt)dt,
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where Wt is the standard Brownian motion on R
n, Ut denotes the stochastic

parallel transport along the trajectory of {Xs : s ∈ [0, t]}, i.e., Ut satisfies the
following covariant SDE on the orthonormal frame bundle O(M) over M :

∇◦dXtUt = 0.

Note that the Brownian filtration Ft coincides with the filtration generated
by Xt, since we can reconstruct the Rn-valued Brownian motion Wt from
the M-valued L-diffusion process Xt in the following way:

Wt =

∫ t

0

U−1
s ◦ dXs +

∫ t

0

U−1
s ∇φ(Xs)ds,

where ◦dXs denotes the Stratonovich differential along the trajectory of
{Xs, s ∈ [0, t]}.
Definition 4.2 Let F be a vector bundle over M , < ·, · >F be an inner
product over F . Let E = Λ·T ∗M ⊗ F . Let UF

t : FX0 → FXt be the
stochastic parallel transport along the trajectory of {Xs : s ∈ [0, t]}. An
End(E)-valued martingale transformer over the L-diffusion process Xt on
M is a bounded and continuous process At such that

At(ω) ∈ End
(
Λ·T ∗

Xt(ω)M ⊗ FXt(ω)

)
.

Let Ψt be a continuous, bounded process with values in E = Λ·T ∗M ⊗ F
over X. The martingale transform of the FX0-valued Itô stochastic integral

(IΨ)t =

∫ t

0

UF,−1
s ΨsUsdWs

by the martingale transformer A ∈ End(E), denoted by (A ∗ IΨ)t, is the
FX0-valued martingale defined by

(A ∗ IΨ)t =

∫ t

0

UF,−1
s AsΨsUsdWs.

The following theorem is a straightforward extension of a result due to
Arcozzi [1] where F is a trivial vector bundle over M , i.e., F = Rl.

Theorem 4.3 Let Xt be a stochastically complete L-diffusion process on M .
Let At be a martingale transformer over Xt. Suppose that

‖|A|‖ = sup
s>0

sup
ω∈Ω

‖As(ω)‖op < ∞,

where ‖As(ω)‖op denotes the operator norm of As(ω) ∈ End(Λ·T ∗
Xs

M⊗FXs).
Then

‖A ∗ IΨ‖p ≤ (p∗ − 1)‖|A|‖ ‖IΨ‖p.
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Proof. By Theorem 4.1, we need only to prove that A ∗ IΨ is differentially
subordinate to IΨ. The covariance process of the martingale transformation
A ∗ IΨ is

< A ∗ IΨ >t=

∫ t

0

Tr(AsΨs ⊗ AsΨs)ds

Let e1, . . . , en be an orthonormal basis of TxM , and let f1, . . . , fl be an
orthonormal basis of FXs(ω). Then

{
ei⊗fj , 1 ≤ i ≤ n, 1 ≤ j ≤ l

}
is an ONB

of EXs(ω) = Λ·T ∗
Xs(ω)M ⊗ FXs(ω). By definition, we have

Tr(AsΨs ⊗ AsΨs) (Xs(ω)) =
n∑

i=1

l∑
j=1

< AsΨs(ei ⊗ fj), AsΨs(ei ⊗ fj) >EXs(ω)

=
n∑

i=1

l∑
j=1

| < AsΨs, ei ⊗ fj >EXs(ω)
|2

= ‖AsΨs‖2
EXs(ω)

≤ ‖As‖2
op‖Ψs‖2

EXs(ω)
≤ ‖|A|‖2‖Ψs‖2

EXs(ω)
.

Hence

< A ∗ IΨ >t≤ ‖|A|‖2

∫ t

0

‖Ψs‖2
EXs

ds = ‖|A|‖2 < IΨ >t .

This yields that A ∗ Y is a differential subordination to Y , i.e., we have

< A ∗ IΨ >t − < A ∗ IΨ >s≤ ‖|A|‖ < IΨ >t −‖|A|‖ < IΨ >s, ∀ 0 ≤ s < t.

The proof of Theorem 4.3 is completed. �

5. Martingale representation of Riesz transforms and

Riesz potentials

5.1. Background radiation process

From this section, let Xμ
t be the diffusion process on M whose infinitesimal

generator is L and whose initial measure is μ, and let Bt be a one-dimensional
Brownian motion starting from B0 = y with infinitesimal generator d2

dy2

(instead of 1
2

d2

dy2 ) and independent of the horizontal diffusion Xμ
t . Note that

dBt · dBt = 2dt (instead of dBt · dBt = dt). Following P. A. Meyer [52]
and Gundy [30], we introduce the so-called background radiation process on
M × R

+ as follows
Zμ

t := (Xμ
t , Bt).
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In fact, {Zμ
t , t ∈ [0, τ ]} is a diffusion process on M ×R

+ whose infinitesimal
generator is L+ d2

dy2 and whose initial distribution is μ⊗δy supported on the

hypersurface M×{y} at time t = 0. The process {Zμ
t , t ∈ [0, τy]} terminates

at time t = τy upon hitting the boundary M × {0}.
Let P(x,y) be the probability law of the process Zx

t = (Xx
t , Bt) starting

at (x, y) ∈ M × R
+. We define the measures {Py, y > 0} on the path space

C([0,∞), M × R) as

Py(Z
μ
t ∈ B) =

∫
M

P(x,y)(Z
x
t ∈ B)dμ(x),

for all Borel sets B⊂M×R+. Let Ey be the expectation corresponding to Py.

In the sequel, to simplify the notation, we use τ to denote τy and use Xt

(respectively, Zt) to denote Xμ
t (respectively, Zμ

t ).

5.2. Covariant Itô’s calculus

The following proposition will be used in the proof of the results of the next
sections.

Proposition 5.1 For all ω ∈ C∞
0 (ΛkT ∗M) and all a ≥ 0, we have

e−atω(Xτ)=eaτM∗,−1
τ ωa(Z0)+

∫ τ

0

ea(τ−s)M∗,−1
τ M∗

s

(
∇,

∂

∂y

)
ωa(Zs)·(UsdWs, dBs).

(5.1)

where
ωa(x, y) := e−y

√
a+�φω(x), ∀(x, y) ∈ M × R

+.

Proof . By (2.6), we have

∇
∂t

(M∗
t ) = −M∗

t Wφ,k(Xt).

Using the covariant version of the Itô formula acting on differential forms,
cf. Elworthy-Le Jan-X.M. Li [21] and Norris [56], we have

∇(e−atM∗
t ω(Xt)) = − ae−atM∗

t ω(Xt)dt + e−at∇M∗
t ω(Xt)dt

+ e−atM∗
t (∇ω)(Xt) ◦ dXt

= − e−atM∗
t (a + Wφ,k(Xt))ω(Xt)dt+e−atM∗

t (∇ω)(Xt)dXt

+ e−atM∗
t ∇2ω(Xt)(dXt, dXt).

Note that
dXt = Ut ◦ dWt −∇φ(Xt)dt.
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Hence

∇2ω(Xt)(dXt, dXt) =
∑
i,j

∇2ω(Xt)(Utei, Utej)dW i
t dW j

t

=
∑
i,j

∇2ω(Xt)(Uei, Uej)δijdt

= Tr∇2ω(Xt)dt

= Δω(Xt)dt.

This yields that

∇(e−atM∗
t ω(Xt)) = e−atM∗

t (∇ω)(Xt)dXt

+ e−atM∗
t (Δ − Wφ,k(Xt) − a)ω(Xt)dt

= e−atM∗
t (∇ω)(Xt)UtdWt

+ e−atM∗
t (Δ −∇∇φ

− Wφ,k(Xt) − a)ω(Xt)dt

= e−atM∗
t (∇ω)(Xt)UtdWt

− e−atM∗
t (−Δφ + Wφ,k(Xt) + a)ω(Xt)dt.

By the weighted Bochner-Weitzenbock formula (2.1), we obtain

∇(e−atM∗
t ω(Xt)) = e−atM∗

t (∇ω)(Xt)UtdWt − e−atM∗
t (a + �φ,k)ω(Xt)dt.

Therefore, for all ω ∈ Ker(a + �φ), we have

∇(e−atM∗
t ω(Xt)) = e−atM∗

t (∇ω)(Xt)UtdWt.

Integrating from s to t along the trajectory of the diffusion process X we get

e−atM∗
t ω(Xt) = e−asM∗

s ω(Xs) +

∫ t

s

e−asM∗
r (∇ω)(Xr)UrdWr.

Replacing Xt by the background radiation process Zt = (Xt, Bt), and re-
placing the (a + �φ)-harmonic form ω ∈ Ker(a + �φ) on M by the Poisson

semigroup ωa(x, y) = e−y
√

a+�φ,kω(x) on M × R+, we get

e−atM∗
t ωa(Zt) = e−asM∗

s ωa(Zs)+

∫ t

s

e−arM∗
r

(
∇,

∂

∂y

)
ωa(Zr)·(UrdWr, dBr).

In particular, at t = τ and s = 0, we get

ω(Xτ)=eaτM∗,−1
τ ωa(Z0)+

∫ τ

0

ea(τ−s)M∗,−1
τ M∗

s

(
∇,

∂

∂y

)
ωa(Zs)·(UsdWs, dBs).

The proof of Proposition 5.1 is completed. �
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5.3. A probabilistic representation formula of k-forms

The formula (5.1) in Proposition 5.1 gives a probabilistic representation
of k-form in terms of the time derivative and the covariant derivative of
its Poisson semigroup composed with the background radiation process on
M × R+. In this subsection we prove a probabilistic representation formula
of k-forms which uses only the time derivative of the Poisson semigroup.

Theorem 5.2 Suppose that Wφ,k ≥ −a, where a is a non-negative constant.
Then, for all ω ∈ C∞

0 (ΛkT ∗M), we have

(5.2)
1

2
ω(x) = lim

y→∞
Ey

[∫ τ

0

ea(s−τ)MτM
−1
s

∂

∂y
ωa(X

μ
s , Bs)dBs |Xμ

τ = x

]
,

where
ωa(x, y) = e−y

√
a+�φω(x), ∀ (x, y) ∈ M × R

+.

Proof . Let η ∈ C∞
0 (ΛkT ∗M). By Proposition 5.1, we have

η(Xτ)=eaτM∗,−1
τ ηa(X0,B0)+

∫ τ

0

ea(τ−s)M∗,−1
τ M∗

s

(
∇,

∂

∂y

)
η(Xs,Bs)·(UsdWs, dBs).

Hence∫
M

〈
Ey

[∫ τ

0

ea(s−τ)MτM
−1
s

∂

∂y
ωa(Xs, Bs)dBs

∣∣∣∣Xτ = x

]
, η(x)

〉
dμ(x)

= Ey

[〈∫ τ

0

ea(s−τ)MτM
−1
s

∂

∂y
ωa(Xs, Bs)dBs, η(Xτ )

〉]
= I1 + I2,

where

I1 = Ey

[〈∫ τ

0

ea(s−τ) MτM
−1
s

∂

∂y
ωa(Xs, Bs)dBs, eaτM∗,−1

τ ηa(X0, B0)

〉]
,

I2 = Ey

[〈∫ τ

0

ea(s−τ) MτM
−1
s

∂

∂y
ωa(Zs)dBs,∫ τ

0

ea(τ−s)M∗,−1
τ M∗

s (∇, ∂y)ηa(Zs) · (UsdWs, dBs)

〉]
.

Using the martingale property of the Itô stochastic integral, we have

I1 = Ey

[〈∫ τ

0

easM−1
s

∂

∂y
ωa(Xs, Bs)dBs, ηa(X0, B0)

〉]

= Ey

[〈
E

[∫ τ

0

easM−1
s

∂

∂y
ωa(Xs, Bs)dBs

∣∣∣∣ (X0, B0)

]
, ηa(X0, B0)

〉]
= 0.
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By the L2-isometry of the Itô stochastic integral, we have

I2 = Ey

[∫ τ

0

〈
MτM

−1
s

∂

∂y
ωa(Zs), M

∗,−1
τ M∗

s

∂

∂y
ηa(Zs)

〉
ds

]

= Ey

[∫ τ

0

〈
∂

∂y
ωa(Zs), M−1,∗

s M∗
τ M∗,−1

τ M∗
s

∂

∂y
ηa(Zs)

〉
ds

]

= Ey

[∫ τ

0

〈
∂

∂y
ωa(Zs),

∂

∂y
ηa(Zs)

〉
ds

]
.

The Green function of the background radiation process is given by 2(y∧z).
Thus

Ey

[ ∫ τ

0

〈
∂

∂y
ωa(Xs,Bs),

∂

∂y
ηa(Xs, Bs)

〉
ds

]
=

= 2

∫
M

∫ ∞

0

(y ∧ z)

〈
∂

∂z
ωa(x, z),

∂

∂z
ηa(x, z)

〉
dzdμ(x).

Using the spectral decomposition, we have the Littlewood-Paley identity

lim
y→∞

∫
M

∫ ∞

0

(y ∧ z)

〈
∂

∂z
ωa(x, z),

∂

∂z
ηa(x, z)

〉
dzdμ(x)=

∫
M

〈ω(x), η(x)〉dμ(x).

Therefore

〈ω, η〉L2(μ) = 2 lim
y→∞

∫
M

〈
Ey

[ ∫ τ

0

ea(s−τ)MτM
−1
s

∂

∂y
ωa(Xs, Bs) · dBs

∣∣∣Xτ = x

]
, η(x)

〉
dμ(x).

Since the above identity holds for all η ∈ C∞
c (M, ΛkT ∗M), we get

ω(x) = 2 lim
y→∞

Ey

[∫ τ

0

MτM
−1
s

∂

∂y
ωa(Xs, Bs) · dBs |Xτ = x

]
.

The proof of Theorem 5.2 is completed. �

5.4. Representation of Riesz transforms on k-forms

Following [65, 5], we consider the Riesz transforms d(a+�φ,k)
−1/2 and d∗

φ(a+

�φ,k)
−1/2 associated with the Witten Laplacian on k-forms. To simplify the

notations, let

R1
a(�φ,k) := d(a + �φ,k)

−1/2 ∈ End(ΛkT ∗M, Λk+1T ∗M),

R2
a(�φ,k) := d∗

φ(a + �φ,k)
−1/2 ∈ End(ΛkT ∗M, Λk−1T ∗M).
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We have the following probabilistic representation formulas of the Riesz
transforms on k-forms.

Theorem 5.3 For all ω ∈ C∞
0 (ΛkT ∗M), a ≥ 0, let

Qk,aω(x, y) = e−y
√

a+�φ,kω(x), ∀ x ∈ M, y ≥ 0.

Then, for all x ∈ M , we have

−1

2
R1

a(�φ,k)ω(x) = lim
y→∞

Ey

[∫ τ

0

ea(s−τ)Mτ,k+1M
−1
s,k+1(5.3)

dkQk,a(ω)(Zs)dBs

∣∣∣Xτ = x

]
,

−1

2
R2

a(�φ,k)ω(x) = lim
y→∞

Ey

[∫ τ

0

ea(s−τ)Mτ,k−1M
−1
s,k−1(5.4)

d∗
φ,kQk,a(ω)(Zs)dBs

∣∣∣Xτ = x

]
.

Proof. By Theorem 5.2, for all ω ∈ C∞
0 (ΛkT ∗M), we have

1

2
ω(x) = lim

y→+∞
Ey

[∫ τ

0

ea(s−τ)Mτ,kM
−1
s,k

∂

∂y
Qk,aω(Zs)dBs |Xτ = x

]
.

Replacing ω by dk(a + �φ,k)
−1/2ω, we obtain

−1

2
R1

a(�φ,k)ω(x) = lim
y→∞

Ey

[∫ τ

0

ea(s−τ)Mτ,k+1M
−1
s,k+1

√
a + �φ,k+1Qk+1,a

dk(a + �φ,k)
−1/2ω(Zs)dBs

∣∣∣Xτ = x

]
.

Using the commutative formula

dk

√
a + �φ,kω =

√
a + �φ,k+1dkω,

we obtain

1

2
R1

a(�φ,k)ω(x) = − lim
y→∞

Ey

[∫ τ

0

ea(s−τ)Mτ,k+1M
−1
s,k+1Qk+1,a

dkω(Zs)dBs

∣∣∣Xτ = x

]
.

Using again dkQk,a = Qk+1,adk, we prove (5.3). Similarly, we can prove (5.4).
�

Remark 5.4 When k = 0, the formula (5.3) was proved in [42]. It is a natu-
ral extension of the well-known Gundy-Varopoulos probabilistic representa-
tion formula of the Riesz transforms on Rn [31] and Gundy’s representation
formula of the P.A. Meyer Riesz transforms on the Weiner space [30].
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5.5. Representation of Riesz potential on k-forms

In this subsection we give a probabilistic representation of the Riesz potential
�−1/2

φ,k and the Bessel potential (a+�φ,k)
−1/2 on k-forms, even though we do

not need it in the study of the Riesz potentials on Riemannian manifolds.

Theorem 5.5 Under the same notations as in Theorem 5.3, for all a ≥ 0,
we have

1

2
(a + �φ,k)

−1/2ω(x) = − lim
y→∞

Ey

[∫ τ

0

ea(s−τ) Mτ,kM
−1
s,k e−Bs

√
a+�φ,k(5.5)

ω(Xs)dBs

∣∣∣Xτ = x

]
.

In particular, for a = 0,

1

2
�−1/2

φ,k ω(x)= − lim
y→∞

Ey

[∫ τ

0

Mτ,kM
−1
s,k e−Bs

√
�φ,kω(Xs)dBs

∣∣∣Xτ = x

]
.(5.6)

Proof . Applying the general representation formula (5.2) to (a + �)
−1/2
φ,k ω,

the formula (5.5) follows. Taking a = 0, we get (5.6). �

6. Proof of Theorem 1.6 and Theorem 1.7

In this section we prove Theorem 1.6 and Theorem 1.7. It would be inter-
esting to ask whether one can give an analytic proof of Theorem 1.6 without
using “the magic world of Brownian motion”.

6.1. Proof of Theorem 1.6

In this subsection, we prove Theorem 1.6. More precisely, we prove the
following

Theorem 6.1 Let M be a complete Riemannian manifold, φ ∈ C2(M).
Suppose that etL is conservative, Wφ,k ≥ −a and Wφ,k+1 ≥ −a, where a is a
non-negative constant. Then, there exists a constant Ck > 0 such that, for
all p > 1,

‖d(a + �φ,k)
−1/2‖p,p ≤ CAk(p

∗ − 1)3/2,(6.1)

‖d∗
φ(a + �φ,k+1)

−1/2‖p,p ≤ CAk(p
∗ − 1)3/2,(6.2)

where C > 0 is a constant independent of p and k, Ak denotes the uniform
norm in the following inequality

‖dω‖∞ ≤ Ak‖∇ω‖∞, ∀ω ∈ C∞
0 (ΛkT ∗M).
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Proof. In the case p = 2, it is well-known that, using the Gaffney integration
by parts formula [23], the Riesz transform d(a + �φ,k)

−1/2 is bounded in L2

on all complete Riemannian manifolds and its L2-norm is less than 1. Below,
we consider the case p 
= 2.

For all p > 1, since conditional expectation E[· |Xτ = x] is contractive
in Lp, we have

‖d(a + �φ,k)
−1/2ω‖p

p

=2p

∫
M

lim
y→∞

∣∣∣∣Ey

[∫ τ

0

ea(s−τ)Mτ,k+1M
−1
s,k+1dQa,kω(Xs, Bs)dBs |Xτ =x

]∣∣∣∣
p

dμ(x)

≤2p lim inf
y→∞

∫
M

Ey

[∣∣∣∣
∫ τ

0

ea(s−τ)Mτ,k+1M
−1
s,k+1dQa,kω(Xs, Bs)dBs

∣∣∣∣
p∣∣∣∣Xτ =x

]
dμ(x)

≤ 2p lim inf
y→∞

Ey

[∣∣∣∣
∫ τ

0

ea(s−τ)Mτ,k+1M
−1
s,k+1dQa,kω(Xs, Bs)dBs

∣∣∣∣
p]

,

where in the second step we have used Fatou’s lemma. Let

Iy =

∫ τ

0

ea(s−τ)Mτ,k+1M
−1
s,k+1dQa,kω(Xs, Bs)dBs.

Then

‖d(a + �φ,k)
−1/2ω‖p ≤ 2 lim inf

y→∞
‖Iy‖p.(6.3)

We now estimate ‖Iy‖p. Notice that, at any fixed point x ∈ M , for all
ω ∈ Γ(ΛkT ∗M ⊗ R),

dω(x, ·) =
n∑

i=1

e∗i ∧∇ei
ω(x, ·),

where e1, . . . , en is a normal orthonormal basis at TxM such that ∇ei
ej(x)=0

for all i, j = 1, . . . , n, and e∗1, . . . , e
∗
n is its dual basis. Let ∇ = ∇TM⊗R. Then,

for all ω ∈ Γ(ΛkT ∗M ⊗ R), we have

dω(x, y)=
n∑

j=1

e∗j∧∇ej
ω(x, y)=

⎛
⎜⎜⎜⎜⎝

0 . . . 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 . . . 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
e∗1∧ . . . e∗j∧ . . . e∗n∧ 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

∇e1ω
. . .

∇ej
ω

. . .
∇enω
∂yω

⎞
⎟⎟⎟⎟⎟⎟⎠

(x).

Let A denote the (n+1)× (n+1) operator-valued matrix before (∇ω, ∂yω).
Then

dω(x, y) = A∇ω(x, y).
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Hence, the Itô integral Iy can be reformulated as a martingale transform
given by

(6.4) Iy =

∫ τ

0

ea(s−τ)Mτ,k+1M
−1
s,k+1A∇Qa,kω(Xs, Bs) · (UsdWs, dBs).

By the Burkholder-Davies-Gundy inequality, we have

‖Iy‖p ≤ Cp

∥∥∥∥∥
{∫ τ

0

|ea(s−τ)Mτ,k+1M
−1
s,k+1A|2|∇Qa,kω(Xs, Bs)|2ds

}1/2
∥∥∥∥∥

p

,

where (cf. Shigekawa [61, p. 50])

Cp =

{
1

2
p(p − 1)

(
p

p − 1

)p}1/2

.

Note that

Ak = ‖A‖ := sup
ω∈Γ(ΛkT ∗M),∇ω �=0

‖dω‖∞
‖∇ω‖∞ < +∞

is a positive constant depending only on k = 0, 1, . . . , n. Moreover, under
the curvature assumptions Wφ,k+1 ≥ −a, we have

sup
s∈[0,τ ]

‖ea(s−τ)Mτ,k+1M
−1
s,k+1‖ ≤ 1.

Therefore

‖Iy‖p ≤ AkCp‖Jy‖p(6.5)

where

Jy =

{∫ τ

0

|∇Qa,kω(Xs, Bs)|2ds

}1/2

.

Proposition 6.2 Let p > 1. Then, for all a ≥ 0, ω ∈ Lp(ΛkT ∗M, μ) (with
additional assumption Hpω = 0 if a = 0 ), we have

lim inf
y→∞

‖Jy‖p ≤ Bp‖ω‖p,(6.6)

where

Bp =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(2p)1/2

(p − 1)3/2
, p ∈ (1, 2),

1, p = 2,

p√
2(p − 2)

, p > 2.
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Proof. Let ωa(x, y) = Qa,kω(x, y). By the Bochner-Weitzenböck formula,
as Wφ,k ≥ −a, we have

(
∂2

∂y2
+ L

)
|ωa(x, y)|2

= 2|∇ωa(x, y)|2 + 2

〈(
∂2

∂y2
− �φ,k + Wφ,k

)
ωa(x, y), ωa(x, y)

〉
= 2|∇ωa(x, y)|2 + 2 < (a + Wφ,k)ωa(x, y), ωa(x, y) >

≥ 2|∇ωa(x, y)|2.

Therefore

√
2Jy ≤

∥∥∥∥∥
{∫ τ

0

(
∂2

∂y2
+ L

)
|ωa(Xs, Bs)|2ds

}1/2
∥∥∥∥∥

p

,

Let Nt = |ωa(Xτ∧t, Bτ∧t)|2 − |ωa(X0, B0)|2. Then Nt is a continuous sub-
martingale with the Doob-Meyer decomposition Nt = Mt + At, where Mt is
the continuous martingale

Mt = Nt −
∫ τ∧t

0

(
∂2

∂y2
+ L

)
|ωa(Xs, Bs)|2ds,

and At is the bounded variation part of Nt given by

At =

∫ τ∧t

0

(
∂2

∂y2
+ L

)
|ωa(Xs, Bs)|2ds.

(i) Let p = 2. By Doob’s stopping time theorem, we have

E [A∞] = E[N∞] = ‖ωa(Xτ , Bτ )‖2
2 − ‖ωa(X0, B0)‖2

2 ≤ ‖ω‖2.

This proves (6.6) with B2 = 1.

(ii) Let p > 2. By the Lenglart-Lépingle-Pratelli inequality, we have

E
[
A

p
2∞
]
≤ p

p
2 E

[
sup
t≥0

|Nt|
p
2

]

Moreover, using Doob’s martingale inequality, we have

E

[
sup
t≥0

|Nt|
p
2

]
≤
(

p/2

p/2 − 1

) p
2

E
[
|N∞| p

2

]
.
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Hence

‖A1/2
∞ ‖2

p ≤
p2

p − 2
‖N∞‖ p

2

=
p2

p − 2

∥∥|ω(Xτ)|2 − |ωa(X0, B0)|2
∥∥

p
2

≤ p2

p − 2

(
‖|ω(Xτ)|2‖ p

2
+ ‖|ωa(X0, B0)|2‖ p

2

)

=
p2

p − 2

(‖ω(Xτ)‖2
p + ‖ωa(X0, B0)‖2

p

)
=

p2

p − 2

(
‖ω‖2

p +
∥∥∥e−y

√
a+�φω

∥∥∥2

p

)
.

By Theorem 3.1 and Theorem 1.5, we can therefore deduce that

lim inf
y→∞

Jy ≤ 1√
2

lim inf
y→∞

∥∥∥∥∥
{∫ τ

0

(
∂2

∂y2
+ L

)
|ωa(Xs, Bs)|2ds

}1/2
∥∥∥∥∥

p

(6.7)

≤ p√
2(p − 2)

‖ω‖p.

This proves (6.6) with Bp = p√
2(p−2)

for all p > 2.

(iii) Let 1 < p < 2. By [71, p. 641, Lemma 6.1] or [41, p. 622,
Lemma 4.5], we have

|∇ωa(x, y)|2 ≤ 1

p(p − 1)
|ωa(x, y)|2−p lim inf

ε→0

(
∂2

∂y2
+ L

)
(|ωa(Xs, Bs)|2 + ε2)

p
2 .

This implies

Jy ≤ 1√
p(p − 1)

∥∥∥∥
{∫ τ

0

|ωa(Xs, Bs)|2−p lim inf
ε→0

(
∂2

∂y2
+ L

)

(|ωa(Xs, Bs)|2 + ε2)
p
2 ds

}1/2∥∥∥∥
p

≤ 1√
p(p − 1)

∥∥∥∥sup
s≥0

|ωa(Xs, Bs)| 2−p
2

{∫ τ

0

lim inf
ε→0

(
∂2

∂y2
+ L

)

(|ωa(Xs, Bs)|2 + ε2)
p
2 ds

}1/2∥∥∥∥
p

.
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Using the Hölder inequality to 2/(2 − p) and 2/p, we get

Jy ≤ 1√
p(p − 1)

‖ sup
s≥0

|ωa(Xs, Bs)|‖
2−p
2

p(6.8)

∥∥∥∥
∫ τ

0

lim inf
ε→0

(
∂2

∂y2
+ L

)
(|ωa(Xs, Bs)|2 + ε2)

p
2 ds

∥∥∥∥
1/2

1

.

We need to prove two preliminary results.

Proposition 6.3 For all 1 < p < 2, we have

lim inf
y→∞

∥∥∥∥
∫ τ

0

lim inf
ε→0

(
∂2

∂y2
+ L

)
(|ωa(Xs, Bs)|2 + ε2)

p
2 ds

∥∥∥∥
1

(6.9)

≤ 2

(
p

p − 1

)p

‖ω‖p
p.

Proof. Similarly to Yoshida [71, p. 644], we set f(x, y) = (|ωa|2(x, y)+ε2)p/2,
and Nt = f(Xt, Bt). Then Nt = Mt + At is a P(x,y)-submartingale, where
Mt is the martingale part given by

Mt = Nt − N0 −
∫ t

0

(
∂2

∂y2
+ L

)
f(Xs, Bs)ds,

and At is the bounded variation part given by

At =

∫ t∧τ

0

(
∂2

∂y2
+ L

)
f(Xs, Bs)ds.

By the Lenglart-Lépingle-Pratelli inequality, we have

E [Aτ ] ≤ 2E

[
sup
t>0

|Nt − N0|
]

= 2E

[
sup
t>0

(|ωa|2(Xt, Bt) + ε2
)p/2
]

+ 2E
[(|ωa|2(X0, B0) + ε2

)p/2
]
.

Using the elementary inequality (a + b)p/2 ≤ ap/2 + bp/2 for p ∈ (1, 2), and
a, b ≥ 0, we have

E [Aτ ] ≤ 2E

[
sup
t>0

|ωa|p(Xt, Bt)

]
+ 2E [|ωa|p(X0, B0)] + 4εp.

By Doob’s martingale inequality, we have

E

[
sup
t>0

|ωa|p(Xt, Bt)

]
≤
(

p

p − 1

)p

E [|ωa|p(Xτ , Bτ )] .
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Therefore

E [Aτ ] ≤ 2

(
p

p − 1

)p

E [|ωa|p(Xτ , Bτ )] + 2E [|ωa|p(X0, B0)] + 4εp.

Taking ε → 0 and using Fato’s lemma, we have

E

[
lim inf

ε→0

∫ τ

0

(
∂2

∂y2
+ L

)(|ωa(Xs, Bs)|2 + ε2
)p/2

ds

]

≤ lim inf
ε→0

E

[∫ τ

0

(
∂2

∂y2
+ L

)(|ωa(Xs, Bs)|2 + ε2
)p/2

ds

]

≤ 2

(
p

p − 1

)p

E [|ωa|p(Xτ , Bτ)] + 2E [|ωa|p(X0, B0)]

= 2

(
p

p − 1

)p

‖ω(Xτ)‖p
p + 2E [|ωa|p(X0, B0)]

= 2

(
p

p − 1

)p

‖ω‖p
p + 2E [|ωa|p(X0, B0)] .

By Theorem 3.1 and Theorem 1.5, for all ω ∈ Lp(ΛkT ∗M, μ) (with Hpω = 0
in the case a = 0), we have

lim
y→∞

E [|ωa|p(X0, B0)] = lim
y→∞

∥∥∥e−y
√

a+�φ,kω
∥∥∥p

p
= 0.

Hence

lim inf
y→∞

E

[
lim inf

ε→0

∫ τ

0

(
∂2

∂y2
+ L

)(|ωa(Xs, Bs)|2 + ε2
)p/2

ds

]
≤ 2

(
p

p − 1

)p

‖ω‖p
p.

This completes the proof of (6.9). �

Proposition 6.4 For all 1 < p < 2, we have

‖ sup
s≥0

|ωa(Xs, Bs)|‖p ≤ p

p − 1
‖ω‖p.(6.10)

Proof . Using the semigroup domination inequality (2.7), as Wφ,k ≥ −a, we
have

|e−t�φ,kω(x)| ≤ eatetL|ω|(x), ∀x ∈ M, t > 0.

From this and using the Bochner subordination, we get

|ωa(x, y)| =
∣∣∣e−y

√
a+�φ,kω(x)

∣∣∣ ≤ e−y
√−L|ω|(x) = |ω|(x, y).

This yields that∥∥ sup
s≥0

|ωa(Xs, Bs)|
∥∥

p
≤ ∥∥ sup

s≥0
|ω|(Xs, Bs)

∥∥
p
.
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Since
|ω|(x, y) = e−y

√−L|ω|(x)

is a
(

∂2

∂y2 +L
)
-harmonic function, |ω|(Xτ∧t, Bτ∧t) is a martingale. By Doob’s

martingale inequality, we have∥∥ sup
s≥0

|ω|(Xτ∧t, Bτ∧t)
∥∥

p
≤ p

p − 1
‖|ω|(Xτ , Bτ )‖p =

p

p − 1
‖ω‖p.

The maximal inequality (6.10) is proved. �

End of Proof of Proposition 6.2. It remains to prove (6.6) for 1 < p < 2.
Combining (6.8), (6.9) and (6.10), for all 1 < p < 2, we have

Jy ≤ 1√
p(p − 1)

√
2

(
p

p − 1

)p(
p

p − 1

) 2−p
2

‖ω‖p.(6.11)

This completes the proof of (6.6) for all 1 < p < 2 with

Bp =
(2p)1/2

(p − 1)3/2
.

�

End of Proof of Theorem 6.1. By (6.3), (6.5), (6.6) and Proposition 6.2,
we have

‖d(a + �φ,k)
−1/2ω‖p ≤ 2p Cp Ak√

2(p − 2)
‖ω‖p, ∀p > 2,

‖d(a + �φ,k)
−1/2ω‖p ≤ 2Cp (2p)1/2Ak

(p − 1)3/2
‖ω‖p, ∀1 < p < 2.

Note that

Cp =

{
1

2
p(p − 1)

(
p

p − 1

)p}1/2

.

Therefore, for all p > 2,

2p Cp√
2(p − 2)

=

√(
p

p − 1

)p
p3(p − 1)

p − 2
≤ √

e(p − 1)3/2(1 + o(1)),

and for all 1 < p < 2,

2Cp (2p)1/2

(p − 1)3/2
= 2

(
p

p − 1

)1+p/2

≤ 2
√

e

(
1

p − 1

)3/2

(1 + o(1)).

This finishes the proof of (6.1) in Theorem 1.5.
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It remains to prove (6.2). Let ( )∗φ denote the L2-adjoint of the operator

in ( ) with respect to dμ = e−φdv. Then

d∗
φ,k−1(a + �φ,k)

−1/2 = ((a + �φ,k)
−1/2dk−1)

∗
φ = (dk−1(a + �φ,k−1)

−1/2)∗φ.

Using the duality argument, for all p > 1, we have

‖d∗
φ,k−1(a + �φ,k)

−1/2‖p,p = ‖(a + �φ,k)
−1/2dk−1‖q,q(6.12)

= ‖dk−1(a + �φ,k−1)
−1/2‖q,q

Indeed, for all ω ∈ Lp(ΛkT ∗M, μ) and all η ∈ Lq(Λk−1T ∗M, μ), we have

‖d∗
φ,k−1(a + �k,φ)−1/2ω‖p = sup

‖η‖q=1

∫
M

< d∗
φ,k−1(a + �φ,k)

−1/2ω, η > dμ

= sup
‖η‖q=1

∫
M

< ω, (a + �φ,k)
−1/2dk−1η > dμ

≤ sup
‖η‖q=1

‖ω‖p‖(a + �k,φ)
−1/2dk−1η‖q

≤ ‖(a + �φ,k)
−1/2dk−1‖q,q ‖ω‖p

= ‖dk−1(a + �φ,k−1)
−1/2‖q,q ‖ω‖p .

Thus
‖d∗

φ,k−1(a + �φ,k)
−1/2‖p,p ≤ ‖dk−1(a + �φ,k−1)

−1/2‖q,q .

Similarly, we can prove that

‖dk−1(a + �φ,k−1)
−1/2‖q,q ≤ ‖d∗

φ,k−1(a + �φ,k)
−1/2‖p,p .

This proves (6.12). By (6.1) and (6.12), we finish the proof of (6.2) in Theo-
rem 1.5. �

6.2. Proof of Theorem 1.7 and Theorem 1.8

By (6.4), the Itô integral Iy can be reformulated as a martingale transform
on M × R:

Iy =

∫ τ

0

ea(s−τ)Mτ,k+1M
−1
s,k+1AUsU

−1
s ∇ωa(Xs, Bs) · (UsdWs, dBs).

By the Burkholder sharp Lp-inequality for martingale transforms, cf. The-
orem 4.3, we get

‖Iy‖p ≤ (p∗ − 1) sup
s∈[0,τ ]

‖ea(s−τ)Mτ,k+1M
−1
s,k+1AUs‖op

×
∥∥∥∥
∫ τ

0

U−1
s ∇ωa(Xs, Bs) · (UsdWs, dBs)

∥∥∥∥
p

.
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Under the curvature assumption Wφ,k+1 ≥ −a, we have

sup
s∈[0,τ ]

‖ea(s−τ)Mτ,k+1M
−1
s,k+1AUs‖op ≤ Ak.

Therefore

(6.13) ‖Iy‖p ≤ (p∗ − 1)Ak

∥∥∥∫ τ

0

U−1
s ∇ωa(Xs, Bs) · (UsdWs, dBs)

∥∥∥
p
.

By Itô’s formula, we can prove that

U−1
τ ωa(Xτ , Bτ ) − ωa(X0,B0) =

∫ τ

0

U−1
s ∇ωa(Xt, Bt)(UtdWt, dBt)

−
∫ τ

0

U−1
s

(
∂2

∂y2
+ Δ −∇∇φ

)
ωa(Xs, Bs)ds.

By the Bochner-Weitzenböck formula �φ,k = −Δφ + Wφ,k, we have(
∂2

∂y2
+ Δ −∇∇φ

)
ωa(x, y) = (�φ,k + a + Δ −∇∇φ)ωa(x, y)

= (−Δφ + Wφ,k + a + Δ −∇∇φ) ωa(x, y)

= (a + Wφ,k)ωa(x, y).

Therefore, as Wφ,k = −a, it holds that∫ τ

0

U−1
s ∇ωa(Xt, Bt)(UtdWt, dBt) = U−1

τ ωa(Xτ , Bτ ) − ωa(X0, B0).(6.14)

Combining (6.3), (6.13) with (6.14), we obtain

‖R1
a(�φ,k)ω‖p ≤ 2(p∗ − 1)Ak lim inf

y→∞

∥∥U−1
τ ωa(Xτ , Bτ ) − ωa(X0, B0)

∥∥
p

= 2(p∗ − 1)Ak lim inf
y→∞

‖U−1
τ ω(Xτ ) − ω(X0, B0)‖p

≤ 2(p∗ − 1)Ak lim inf
y→∞

[‖ω(Xτ)‖p + ‖ωa(X0, B0)‖p

]
.

Since Xτ has the law μ, we have

‖ω(Xτ )‖p = ‖ω‖p.

On the other hand, by Theorem 1.5 and Theorem 3.1, for all p > 1, and
ω ∈ Lp(ΛkT ∗M, μ) (with the additional condition Hpω = 0 when a = 0), we
have

lim
y→∞

‖ωa(X0, B0)‖p = lim
y→∞

∥∥∥e−y
√

a+�φ,kω
∥∥∥

p
= 0.(6.15)
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Thus

‖R1
a(�φ,k)ω‖p ≤ 2(p∗ − 1)Ak‖ω‖p.

This implies that

‖d(a + �φ,k)
−1/2‖p,p ≤ 2Ak(p

∗ − 1).

From this and using (6.12), we have

‖d∗
φ(a + �φ,k+1)

−1/2‖p,p ≤ 2Ak(p
∗ − 1).

The proof of Theorem 1.7 is completed. Note that when k = 0, we have
A0 = 1.

In the particular case where M = Γ\Hn(−1), we have Wk = −k(n−k)Id.
From this and using Theorem 1.7, we can easily prove Theorem 1.8. �

Remark 6.5 In general, using the weighted Bochner-Weitzenböck formula,
we have∫ τ

0

U−1
s

(
∂2

∂y2
+ Δ −∇∇φ

)
ωa(Xs, Bs)ds=

∫ τ

0

U−1
s (a + Wφ,k)ωa(Xs, Bs)ds 
= 0

except that Wφ,k = −a. Under the assumption of Theorem 1.6, one cannot
prove that its Lp norm is dominated by Ck(p

∗ − 1)‖ω‖p. This explains
why we claimed before the statement of Theorem 1.7 that Wφ,k+1 ≥ −a
and Wφ,k = −a give us a reasonable condition to extend the asymptotically
sharp bound of the form O(p∗−1) to the Riesz transforms associated with the
Hodge (or Witten) Laplacian on forms on complete Riemannian manifolds.

6.3. Examples

Example 6.6 Let M = Rn, φ = 0, and dμ(x) = dx. Then ‖d�−1/2
k ‖p,p ≤

Ck(p
∗ − 1) for all p > 1 and k = 0, 1 . . . , n. Let ω = ωIdxI , where I =

(i1, . . . , ik), 1 ≤ i1 < · · · < ik ≤ n. Then �kω = −ΔωIdxI , and

d�−1/2
k ω = d(−Δ)−1/2ωIdxI =

∑
j /∈I

∂

∂xj

(−Δ)−1/2ωIdxj ∧ dxI .

By the estimate (1.1) of Pichorides [57], Iwaniec and Martin [34] and Ba-
ñuelos-Wang [10],

‖d�−1/2
k ‖p,p = sup

ω �=0

‖d�−1/2
k ω‖p

‖ω‖p
≥ sup

ωI �=0

‖RjωI‖p

‖ω‖p
= ‖Rj‖p,p = cot

(
π

2p∗

)
.
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Thus, when p → 1, we have

‖d�−1/2
k ‖p,p ≥ 2

π

1

p − 1
(1 + o(1)) .

Combining this with ‖d�k‖p,p ≤ Ck(p
∗ − 1), when p → 1, we have

2

π

1

p − 1
(1 + o(1)) ≤ ‖d�−1/2

k ‖p,p ≤ Ck

p − 1
.

Similarly, when p → ∞, we have

‖d�−1/2
k ‖p,p ≥ cot

(
π

2p∗

)
≥ 2

π
(p − 1)(1 + o(1)).

Hence
2

π
(p − 1)(1 + o(1)) ≤ ‖d�−1/2

k ‖p,p ≤ Ck(p − 1).

By (6.12), we have ‖d∗�−1/2
k ‖p,p = ‖d�−1/2

k−1 ‖q,q. The above estimates for

d�−1/2
k lead to similar estimates for the Lp-norm of d∗�−/2

k . More precisely,
when p → 1,

2

π
(p − 1)−1(1 + o(1)) ≤ ‖d∗�−1/2

k ‖p,p ≤ Ck−1(p − 1)−1,

and when p → ∞,

2

π
(p − 1) (1 + o(1)) ≤ ‖d∗�−1/2

k ‖p,p ≤ Ck−1(p − 1).

Thus, in the Euclidean case, an upper bound of the order O(p∗−1) of the Lp-

norm of the Riesz transforms d�−1/2
k and d∗�−1/2

k are asymptotically sharp
when p → 1 and when p → ∞.

Example 6.7 Let M = Rn, φ(x) = ‖x‖2

2
, and μ be the standard Gaussian

measure on Rn. Then L = Δ − x · ∇ is the Ornstein-Uhlenbeck operator.
The k-th Witten Laplacian on the Gaussian space is given by

�φ,k = k − L, k = 0, . . . , n,

and the k-th Weitzenböck curvature is

Wφ,k = k, k = 0, . . . , n.

By Theorem 1.6, for all p > 1 and all a ≥ 0, we have

‖d(a + �φ,k)
−1/2‖p,p ≤ Ck(p

∗ − 1)3/2.
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On the other hand, taking again ω = ωIdxI as in the above example, we get

d�−1/2
φ,k ω = d(k − L)−1/2ωIdxI =

∑
j /∈I

∂

∂xj
(k − L)−1/2ωIdxj ∧ dxI ,

from which we get

‖d�−1/2
φ,k ‖p,p = sup

ω �=0

‖d�−1/2
φ,k ω‖p

‖ω‖p

≥ sup
ωI �=0

‖ ∂
∂xj

(k − L)−1/2ωI‖p

‖ωI‖p

=

∥∥∥∥ ∂

∂xj
(k − L)−1/2

∥∥∥∥
p,p

.

For n = 1, let D = d/dx. Then L = D2 − xD. By Larsson-Cohn [37], for
any a > 0, taking fa(x) = x/a for |x| ≤ a and fa(x) = sign(x) for |x| > a,
where x ∈ R, we have

lim sup
a→0

‖D2(−L)−1/2fa‖p

‖f ′
a‖p

≥ 2

π

1

p − 1
(1 + o(1)) .

Notice that D2(−L)−1/2fa = D(1 − L)−1/2f ′
a. Taking ωI(x1, . . . , xn) =

fa(xj), we can prove that when p → 1,

‖d�−1/2
φ,1 ‖p,p ≥ 2

π

1

p − 1
(1 + o(1)) .

Therefore, when p → 1, we have

2

π

1

p − 1
(1 + o(1)) ≤ ‖d�−1/2

φ,1 ‖p,p ≤ C1

(p − 1)3/2
.

Similarly, we can prove that, when p → ∞, we have ‖d�−1/2
φ,1 ‖p,p ≥

2
π
(p − 1)(1 + o(1)). Hence

2

π
(p − 1)(1 + o(1)) ≤ ‖d�−1/2

φ,1 ‖p,p ≤ C1(p − 1)3/2.

By (6.12), we have ‖d∗
φ�

−1/2
φ,2 ‖p,p = ‖d�−1/2

φ,1 ‖q,q. The above estimates for

d�−1/2
φ,1 lead to similar estimates for the Lp-norm of d∗

φ�
−1/2
φ,2 . More precisely,

when p → 1,

2

π
(p − 1)−1(1 + o(1)) ≤ ‖d∗

φ�
−1/2
φ,2 ‖p,p ≤ C1(p − 1)−3/2,

and when p → ∞,

2

π
(p − 1) (1 + o(1)) ≤ ‖d∗

φ�
−1/2
φ,2 ‖p,p ≤ C1(p − 1)3/2.

It would be very interesting to know whether we can replace (p − 1)3/2,
(p − 1)−3/2 in the above estimates by (p − 1), (p − 1)−1 respectively.
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7. Lp-Hodge decomposition

In this section we prove the Weak Lp-Hodge decomposition theorem on
complete Riemannian manifolds with non-negative Weitzenböck curvatures.

Let M be a complete Riemannian manifold. By spectral decomposition,
cf. [44], we can prove that

dd∗
φ�−1

φ ω := lim
N→∞

∫ N

0

dd∗
φe

−s�φωds

exists in L2 and hence μ-a.s. Similarly,

d∗
φd�−1

φ ω := lim
N→∞

∫ N

0

d∗
φde−s�φωds

exists in L2 and hence μ-a.s. This yields the Weak L2(μ)-Hodge orthogonal
decomposition formula

ω = Hω + dd∗
φ�−1

φ ω + d∗
φd�−1

φ ω,

where Hω denotes the harmonic projection of ω from L2(ΛkT ∗M, μ) to
Ker�φ,k ∩ L2(ΛkT ∗M, μ).

By duality argument, we can prove that, if the Riesz transform d�−1/2
φ,k

is a bounded operator from Lp(ΛkT ∗M, μ) into Lp(Λk+1T ∗M, μ) for a fixed

p > 1, then �−1/2
φ,k d∗

φ = (d�−1/2
φ,k )∗φ is bounded from Lq(Λk+1T ∗M, μ) into

Lq(ΛkT ∗M, μ), where q = p
p−1

. Moreover,

‖(d�−1/2
φ,k )∗φ‖p,p = ‖d�−1/2

φ,k ‖q,q.

Since d∗
φ�

−1/2
φ,k+1 = �−1/2

φ,k d∗
φ, we obtain

‖d∗
φ�

−1/2
φ,k+1‖p,p = ‖d�−1/2

φ,k ‖q,q.

Suppose that the Riesz transforms d�−1/2
φ,k−1 and d�−1/2

φ,k are bounded in Lp(μ)

and in Lq(μ), where 1
p
+ 1

q
= 1, 1 < p, q < ∞. Then, for all ω ∈ C∞

0 (ΛkT ∗M),
we have

‖dd∗
φω‖p ≤ ‖d�−1/2

φ,k−1‖p,p ‖�1/2
φ,k−1d

∗
φω‖p

= ‖d�−1/2
φ,k−1‖p,p ‖d∗

φ�
1/2
φ,kω‖p

≤ ‖d�−1/2
φ,k−1‖p,p ‖d∗

φ�
−1/2
φ,k ‖p,p ‖�1/2

φ,k�1/2
φ,kω‖p

= ‖d�−1/2
φ,k−1‖p,p ‖d�−1/2

φ,k−1‖q,q ‖�φ,kω‖p.

Equivalently,

‖dd∗
φ�−1

φ,kω‖p ≤ ‖d�−1/2
φ,k−1‖p,p ‖d�−1/2

φ,k−1‖q,q‖ω‖p.
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Similarly, we have

‖d∗
φdω‖p ≤ ‖d∗

φ�
−1/2
φ,k+1‖p,p ‖�1/2

φ,k+1dω‖p = ‖d∗
φ�

−1/2
φ,k+1‖p,p ‖d�1/2

φ,kω‖p

≤ ‖d∗
φ�

−1/2
φ,k+1‖p,p ‖d�−1/2

φ,k ‖p,p ‖�1/2
φ,k�1/2

φ,kω‖p

= ‖d∗
φ�

−1/2
φ,k ‖p,p ‖d�−1/2

φ,k ‖q,q ‖�φ,kω‖p.

Equivalently,

‖d∗
φd�−1

φ,kω‖p ≤ ‖d�−1/2
φ,k ‖p,p ‖d�−1/2

φ,k ‖q,q‖ω‖p.

Therefore

‖ω − Hω‖p ≤
[
‖d�−1/2

φ,k−1‖p,p ‖d�−1/2
φ,k−1‖q,q + ‖d�−1/2

φ,k ‖p,p ‖d�−1/2
φ,k ‖q,q

]
‖ω‖p.

(7.1)

Now we are able to give the proof of Theorem 1.9.

Proof of Theorem 1.9. By Theorem 1.6, for all p > 1 and q = p
p−1

, we get

‖dd∗
φ�−1

φ,kω‖p ≤ ‖d�−1/2
φ,k−1‖p,p ‖d�−1/2

φ,k−1‖q,q ‖ω‖p

≤ C2
k−1(p

∗ − 1)3/2(q∗ − 1)3/2‖ω‖p = C2
k−1(p

∗ − 1)3‖ω‖p.

Similarly, we have

‖d∗
φd�−1

φ,kω‖p ≤ ‖d�−1/2
φ,k ‖p,p ‖d�−1/2

φ,k ‖q,q ‖ω‖p ≤ C2
k(p∗ − 1)3‖ω‖p.

Therefore, the operators dd∗
φ�−1

φ,k and d∗
φd�−1

φ,k are bounded in Lp for all
p > 1. Note that

dd∗
φ�−1

φ ω −
∫ N

0

dd∗
φe

−s�φωds =

∫ ∞

N

dd∗
φe

−s�φωds =

∫ ∞

0

dd∗
φe

−(N+t)�φωdt

=

∫ ∞

0

dd∗
φe

−t�φ
(
e−N�φω − Hω

)
dt = dd∗

φ�−1
φ

(
e−N�φω − Hω

)
,

which yields∥∥∥∥
∫ N

0

dd∗
φe

−t�φωdt − dd∗
φ�−1

φ ω

∥∥∥∥
p

=
∥∥dd∗

φ�−1
φ

(
e−N�φω − Hω

)∥∥
p

≤ ∥∥dd∗
φ�−1

φ

∥∥
p,p

∥∥e−N�φω − Hω
∥∥

p
.

Similarly,∥∥∥∥
∫ N

0

d∗
φde−t�φωdt − d∗

φd�−1
φ ω

∥∥∥∥
p

=
∥∥d∗

φd�−1
φ

(
e−N�φω − Hω

)∥∥
p

≤ ∥∥d∗
φd�−1

φ

∥∥
p,p

∥∥e−N�φω − Hω
∥∥

p
.
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Since Wk ≥ 0, by Theorem 1.5, lim
N→∞

‖e−N�φω −Hω‖p = 0. As dd∗
φ�−1

φ,k and

dd∗
φ�−1

φ,k are bounded in Lp, we have

lim
N→∞

∥∥∥∥
∫ N

0

dd∗
φe

−s�φωds − dd∗
φ�−1

φ,kω

∥∥∥∥
p

= 0,(7.2)

lim
N→∞

∥∥∥∥
∫ N

0

d∗
φde−s�φωds − d∗

φd�−1
φ,kω

∥∥∥∥
p

= 0.(7.3)

Now

e−t�φω − ω =

∫ t

0

∂

∂s
e−s�φωds in Lp(ΛkT ∗M, μ).

Taking t → ∞ and using ∂
∂s

e−s�φω = −�φe−s�φω, we get

ω − Hω =

∫ ∞

0

(dd∗
φ + d∗

φd)e−t�φωds.

Combining this with (7.2) and (7.3), we obtain the Weak Lp-Hodge decom-
position

ω = Hω + dd∗
φ�−1

φ,kω + d∗
φd�−1

φ,kω.

Finally, from (7.1) we can deduce that

‖(I − H)ω‖p ≤ (C2
k−1 + C2

k)(p∗ − 1)3‖ω‖p.

Thus, the Hodge harmonic projection

H : Lp(ΛkT ∗M, μ) → (Ker�φ)⊥ ∩ Lp(ΛkT ∗M, μ)

is bounded. The proof of Theorem 1.9 is completed. �
The argument used in the proof of Theorem 1.9 goes back to [65]. It

can be considered as a natural extension of the heat equation approach
initiated by Milgram-Rosenbloom [54] for the Hodge decomposition theorem
on compact Riemannian manifolds and developed by Gaffney [24] for the L2-
Hodge decomposition theory on complete Riemannian manifolds.
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[48] Lohoué, N.: Comparaison des champs de vecteurs et des puissances du
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